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Abstract—Mini-batch shuffling is important for the deep learn-
ing training process. Most people use the random shuffling
method, which aims to produce a random permutation of the
training dataset in every epoch. In this study, we explore mini-
batch shuffling for multi-class imbalanced data classification by
investigating several shuffling strategies. We find that different
order of input data can significantly affect the results of deep
learning models. The results show that our proposed strategies
can improve the accuracy by around 2%, demonstrating that
higher diversity and lower imbalance ratio in each mini-batch
can lead to better results.

Index Terms—neural networks, shuffling, imbalanced classifi-
cation, deep learning

I. INTRODUCTION

Deep learning (DL) methods have achieved great success

in recent years, owing to their impressive capacity to learn

directly from raw data [1, 2, 3]. The ability of DL models

heavily depends not only on the architectures and delicately-

designed algorithms but also on the training dataset as well as

the data ordering. Usually, people shuffle the training dataset

randomly at the beginning of an epoch and divide it into mini-

batches with different samples during training. Shuffling with

mini-batches can help training converge faster and be more

stable, preventing the model from learning the order of the

training dataset. However, random shuffling may lead to dif-

ferent results across multiple deep learning experiments even

when the architectures and parameters are identical, which

can lead to difficulty reproducing the results. We investigate

this problem in this study and explore some new mini-batch

shuffling strategies for deep learning model training.

The classification problem is one of the most popular tasks

in machine learning. Over the years, the performance of

classification models has improved on high-quality synthetic

datasets, such as CIFAR [4], ImageNet [5] and MS-COCO [6].

However, in many fields such as biology [7], materials science

[8], manufacturing [9], social media [10], and others [11], data

often exhibits class-imbalanced distributions. The imbalanced

classification problems have attracted a lot of attention in the

deep learning community [12]. In imbalanced data, the class

that has more samples is the majority class and the class that

has fewer samples is the minority class. Training deep learning

models on imbalanced data is more challenging because the

models may perform with bias towards the majority class

and perform poorly on the minority class. Balancing the

data distribution is usually used to solve this challenge when

training the model. Resampling methods are commonly used

for this purpose, which resample the training set to balance the

dataset. There are two main resampling methods, oversampling

and undersampling [13, 14, 15, 16]. Oversampling typically

duplicates samples from the minority class, but it can cause

over-fitting and increase the training time. Undersampling

randomly removes samples from the majority class, however,

it may discard potentially useful data.

Compared to binary imbalanced classification, multi-class

imbalanced classification tasks are more challenging [17] and

have received significant research attention in recent years

[18]. Most existing solutions for multi-class imbalanced clas-

sification use class decomposition schemes to handle multi-

class and work with two-class imbalance techniques to handle

each imbalanced binary subtask. However, it can aggravate

imbalanced distributions [19], and combining results from

classifiers learned from different subproblems can cause po-

tential classification errors [20].

In this work, we explore a few mini-batch shuffling strate-

gies for the original data itself instead of oversampling or

undersampling methods for multi-class imbalanced data clas-

sification to avoid over-fitting problems while making full use

of all available data. First, we explore random shuffling for

multi-class imbalanced data by running multiple experiments

with the same parameters. Then, we propose some new mini-

batch shuffling strategies for multi-class imbalanced data.

II. METHODS

The random shuffling method randomly shuffles the training

dataset and divides it into mini-batches at the beginning of

each epoch. By running multiple experiments with the same

initial weights and parameter settings but different data order,

we know that random shuffling for multi-class imbalanced

data classification gives different results across multiple exper-

iments. The intuition here is that each mini-batch may have

a different data distribution for multi-class imbalanced data

across different experiments, especially when there are many

classes and the imbalance ratio is high.

In this work, we propose three shuffling strategies that con-

sider both class and imbalance ratios for mini-batch shuffling.

The proposed strategies randomly shuffle the training data,

then select samples for each mini-batch according to different
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criteria. We run every shuffling strategy multiple times with the

same initialization and parameter settings for evaluation and

comparison. The imbalanced dataset we used is constructed

from CIFAR-10. We use 5 majority classes and 5 minority

classes with a ratio of 10:1 to construct the dataset. Thus, the

training dataset has 27,500 images (5 majority classes of 5,000

images each, and 5 minority classes of 500 images each) and

5,500 validation images (5 majority classes of 1,000 images

each, and 5 minority classes of 100 images each). The specific

construction method will be introduced in the next section.

The first strategy is called ”class with imbalance”. The

criterion of selecting samples for each mini-batch here is to

make sure each mini-batch includes all the 10 classes and the

ratio between majority classes and minority classes is 10:1,

i.e.,
Cmaj

i

Cmin
j

= 10, where Cmaj
i is the number of samples in

majority class i and Cmin
j is the number of samples in minority

class j. When the batch size is N , the number of samples in

majority class Cmaj
i = 2N

11 , the number of samples in minority

class Cmin
j = N

55 . Compared to the random shuffling method,

each mini-batch here has the same data distribution as that of

the whole dataset.

The second strategy is called ”class with balance”. Inspired

by the resampling strategies, we assume that the balanced data

may increase the accuracy of deep learning models. Thus, we

design a strategy to construct balanced data in each mini-batch.

The initial mini-batches in every epoch include 10 classes with

the same number of samples. After all minority classes are

assigned to initial mini-batches, the remaining mini-batches

only include 5 majority classes with the same number of

samples.

The third strategy is called ”5 classes with balance”. Similar

to the second strategy, this strategy is to construct balanced

data in each mini-batch. Instead of each mini-batch having

10 classes for the initial mini-batches in every epoch, this

strategy tries to make sure that each mini-batch includes 5

classes with the same number of samples. Here the initial

mini-batches include 5 minority classes. After all minority

classes are assigned to initial mini-batches, the remaining

mini-batches include 5 majority classes.

III. EXPERIMENTS AND RESULTS

A. Dataset

We created an imbalanced dataset using CIFAR-10. The

original dataset contains 50,000 training images and 10,000

validation images of size 32 × 32 with 10 classes. Each

class has 5,000 training images and 1,000 validation images.

We randomly select 5 classes as majority classes and the

other 5 classes as minority classes. The majority classes have

the same number of images as before, while the minority

classes only have 1/10 of the original data. Our new class-

imbalanced dataset from the CIFAR-10 dataset thus contains

27,500 training images and 5,500 validation images with 10

classes. Each majority class has 5,000 training images and

1,000 validation images, while each minority class has 500

training images and 100 validation images.

B. Experimental Settings

We use a simple convolutional neural network (CNN) [21]

architecture here. For each strategy, 20 runs of model training

are performed with the same weights initialization, the number

of epochs, and network hyperparameters, but different random

shuffling seeds. The CNN model we used as shown in Figure

1. In this model, the first and second convolutional layers

have 16 and 32 3 × 3 kernels, respectively, followed by a

2 × 2 max pooling layer. The third convolutional layer has

64 3 × 3 kernels, which is followed by two fully connected

layers where the first and second layers contain 1,024 and 10

neurons, respectively. Cross entropy loss is used as the loss

function with Adam optimizer and setting a learning rate of

0.0001. The batch size is 512. The number of epochs is 100.

We use the best validation accuracy to compare the results.

We implemented all experiments in PyTorch with an NVIDIA

Quadro RTX 8000 GPU. The PyTorch shuffling seed is set as

34 for weights initialization. In k-th run, the random shuffling

seed for the training set for i-th epoch is k × 20 + i. The

code for data generation and all methods are available at

https://github.com/MaoYuwei/batch shuffling.

Fig. 1. The architecture of the CNN model.

C. Results

Figure 2 shows the training loss curves of 20 runs of

different shuffling strategies. Figure 3 shows the validation loss

curves of 20 runs of different shuffling strategies. We can see

the variation in training loss and validation loss across multiple

runs. Figure 2(a) shows that the training loss of different runs
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are different even though the parameters and architectures are

the same when training the deep learning models. Similar

results can be observed in 3(a), where the validation loss of

different runs is different. This observation demonstrates that

random shuffling will lead to different results across multiple

deep-learning experiments.

Fig. 2. Training loss of different shuffling strategies.

TABLE I
RESULTS OF DIFFERENT SHUFFLING STRATEGIES

Strategies mean(%) stddev(%)
random shuffling 78.0118 0.1301

class with imbalance 78.4264 0.1355
class with balance 79.4373 0.1870

5 classes with balance 79.6109 0.1730

The mean value and standard deviation of the accuracy

results are shown in Table I. It shows that the mean accuracy

is better when we consider class for mini-batch shuffling

rather than simple random shuffling on multi-class imbalanced

data. The mean accuracy of the proposed strategies is about

2% better than the random shuffling method, suggesting that

Fig. 3. Validation loss of different shuffling strategies.

diversity within each mini-batch is important for better learn-

ing. Random shuffling in a highly unbalanced scenario may

not guarantee enough diversity within each mini-batch. The

proposed strategies increase the diversity in each mini-batch,

which means the samples in each mini-batch are less similar

or clustered.

We also observe that the results of mini-batch shuffling

strategies with balance are slightly better than mini-batch

shuffling strategies with imbalance. And Figure 3(a)(b) show

that overfitting occurs after 40 epochs when we use random

shuffling and class with imbalance strategies. Figure 3(c)(d)

show that mini-bath shuffling strategies with balance do not

cause obvious overfitting with the same epoch number. We

believe it might be due to the fact that the classification for

balanced data is easier than for imbalanced data. If each mini-

batch has balanced data, the model apparently learns better.

The best mean accuracy is obtained with ”5 classes with

balance”, which is 79.6109%.
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IV. CONCLUSION

In this study, we explore some shuffling strategies for

multi-class imbalance data classification. The results show that

multiple experiments get different results even with the same

parameters, and reveal valuable insights into the impact of

shuffling on model accuracy and the importance of diversity

and data balance within each mini-batch. Preliminary results

also suggest that shuffling considering both class and im-

balance ratio may improve the results compared to random

shuffling. In the future, we will expand our exploration of

mini-batch shuffling strategies to different architectures and

more datasets, such as different ratio imbalanced data, multi-

labeled data, and long-tailed class data.
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