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Abstract. Multi-component workflows, where one component performs
a particular transformation with the data and passes it on to the next
component, is a common way of performing complex computations.
Using components as building blocks we can apply sophisticated data
processing algorithms to large volumes of data. Because the components
may be developed independently, they often use file I/O and the Parallel
File System to pass data. However, as the data volume increases, file
I/O quickly becomes the bottleneck in such workflows. In this work, we
propose an I/O arbitration framework called DTF to alleviate this prob-
lem by silently replacing file I/O with direct data transfer between the
components. DTF treats file I/O calls as I/O requests and performs I/O
request matching to perform data movement. Currently, the framework
works with PnetCDF-based multi-component workflows. It requires min-
imal modifications to applications and allows the user to easily control
I/O flow via the framework’s configuration file.

Keywords: Multi-component workflow · Workflow coupling
I/O performance · I/O arbitration

1 Introduction

In the past several years, the steady growth of computational power that newly
built High Performance Computing (HPC) systems can deliver allowed humanity
to tackle more complex scientific problems and advance data-driven sciences.

Rather than using the conventional monolithic design, many applications
running in these systems are multi-component workflows in which components
work together to achieve a common goal. Each component performs a particular
task, such as building different physics models or running a model with different
parameters as it is done in ensemble simulation programs. The result of the
computation is then passed to the next component for further processing. A
workflow may also include components for data analytics, in-situ visualization
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and so on. Components may be either loosely coupled, i.e., by using files to pass
data, or they can use a coupling software.

Such work pipelining allows to build powerful complex programs that perform
sophisticated data processing. The module-based approach can also facilitate the
development of new programs as they can be built fast by combining compo-
nents from previously developed workflows. Many recent research works focus
on tuning HPC systems so that they could run multi-component workflows more
efficiently [1,2]. The I/O bottleneck in such applications is one of the issues that
receives a lot of attention. The faster the component receives the data from the
previous component, the sooner it can start processing it. However, for work-
flows coupled through files, file I/O can become a bottleneck, especially when
they pass large amounts of data.

A motivating real-world application example for this work is an application
called SCALE-LETKF [3]. SCALE-LETKF is a real-time severe weather predic-
tion application that combines weather simulation with assimilation of weather
radar observations. It consists of two components (Fig. 1) — SCALE and LETKF
— that are developed independently. SCALE is a numerical weather prediction
application based on the ensemble simulation; LETKF performs data assimila-
tion of real-world observation data together with simulation results produced by
SCALE.

Fig. 1. SCALE-LETKF

In each iteration, SCALE writes the simulation result to the Parallel File
System (PFS) using the Parallel NetCDF [4] API. The files are subsequently
read by LETKF. After LETKF finishes assimilating the observation data, the
output is written to files which become the input for SCALE in the next iteration.
One of the results from every iteration is also used to predict weather for the
next 30 min on separate compute nodes.

A particular feature of SCALE-LETKF is that it has a strict timeliness
requirement. The target execution scenario is to assimilate the observations
arriving at an interval of 30 s. Therefore, one full iteration of SCALE-LETKF,
including the computations and I/O, must finish within this time period. How-
ever, this requirement quickly becomes hard to fulfill once the amount of file I/O
grows too big.
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One way to overcome this would be to switch from file I/O to some coupling
software. However, this would require rewriting the I/O kernels in both compo-
nents using the API of the coupler as such a software usually requires. This can
be a daunting task for a software as large and complex as SCALE-LETKF.

In this work, we propose a framework called Data Transfer Framework (DTF)
that silently bypasses file I/O by sending the data directly over network and
requires minimal modifications to application source code. Current implemen-
tation of DTF assumes that the workflow components use PnetCDF API for
file I/O. The framework uses the Message Passing Interface (MPI) [5] library
to transfer the data. Applications like SCALE-LETKF can benefit from DTF
because it allows the developers of the application to easily switch from file I/O
to direct data transfer without having to rewrite the I/O code.

The main contributions of this work are:

– We propose a simple data transfer framework called DTF that can be used
to silently replace PnetCDF-based file I/O with direct data transfer;

– Unlike many existing coupling solutions, DTF requires only minimal modi-
fications to the application and does not require modifications of PnetCDF
calls themselves;

– DTF automatically detects what data should be transferred to what processes
transparently for the user, hence, it can be plugged into workflows fast and
with minimal efforts and there is no need to provide a description of I/O
patterns across components;

– Using a benchmark program, we show that the DTF exhibits stable per-
formance under different I/O loads. A test run of DTF with the real-world
workflow application (SCALE-LETKF) shows that the DTF can help multi-
component workflows achieve real-time requirements.

The rest of this paper is organized as follows. In Sect. 2 we present in detail
the design of our data transfer framework and discuss its implementation in
Sect. 3. We present the results of the performance evaluation of the framework
in Sect. 4. In Sect. 5 we overview existing solutions proposed to facilitate the data
movement between the components in multi-component workflows. Finally, we
conclude with Sect. 6.

2 Data Transfer Framework

DTF can be used in workflows in which the components use the PnetCDF library
for file I/O. In this section, we first present some basic concepts of the (P)netCDF
data format that had a direct influence on the design of the DTF. We then
present the general overview of the framework and, finally, discuss in detail how
the data transfer is performed.

We note that from now on we will call the component that writes the file and
the component that reads it as the writer and the reader components, respec-
tively.
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2.1 Parallel NetCDF Semantics

Network Common Data Form [6] is a self-describing portable data format that
supports handling of array-oriented scientific data. The NetCDF library provides
users with an API that allows them to create files conforming to this data format
and to define, store and retrieve the data. Parallel NetCDF (PnetCDF) is, as
the name suggests, a parallel implementation of the NetCDF library. PnetCDF
utilizes the parallel MPI-IO under the hood which allows multiple processes to
share the file.

Before performing I/O, the user must first define the structure of the file, that
is, define variables, their attributes, variable dimensions and dimension lengths.

Once the structure of the file is defined, the user may call PnetCDF’s API
to read or write variables. In a typical PnetCDF call, the user must specify the
file id and variable id, which were assigned by PnetCDF during the definition
phase, specify the start coordinate and block size in each dimension for multi-
dimensional variables, and pass the input or output user buffer.

Similarly to MPI, PnetCDF has blocking and non-blocking API. In non-
blocking I/O, the user first posts I/O requests and then calls a wait function to
force the actual I/O. The purpose of non-blocking calls is to allow processes to
aggregate several smaller file I/O requests into a larger request to improve the
I/O throughput.

2.2 General Overview of DTF

DTF aims to provide users of multi-component workflows with a tool that would
allow them to quickly switch from file I/O to direct data transfer without needing
to cardinally change the source code of the components.

First, the user must provide a simple configuration file that describes the file
dependency in the workflow (example in Fig. 4). It only needs to list the files
that create a direct dependency between two components, i.e. if the components
are coupled through this file. The DTF intercepts PnetCDF calls in the program
and, if the file for which the call was made is listed in the configuration file as
subject to the data transfer, the DTF handles the call accordingly. Otherwise,
PnetCDF call is executed normally.

In order to transfer the data from one component to another, we treat every
PnetCDF read or write call as an I/O request. The data transfer is performed
via what we call the I/O request matching. First, designated processes, called
I/O request matchers, collect all read and write requests for a given file. Then,
each matcher finds out who holds the requested piece of data by matching each
read request against one or several write requests. Finally, the matcher instructs
the processes who have the data to send it to the corresponding process who
requested it. All the inter-process communication happens using MPI. We note
that here we differentiate between the PnetCDF non-blocking I/O requests and
the DTF I/O requests, and we always assume the latter unless stated otherwise.

The I/O patterns of the component that writes to the file and the component
that reads from it may be drastically different, however, dynamic I/O request
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matching makes DTF flexible and allows it to handle any kind of I/O patterns
transparently for the user.

2.3 I/O Request Matching

When the writer component creates a file, matchers that will be handling the
I/O request matching are chosen among its processes. The number of matchers
can be configured by the user or else a default value is set.

I/O reqs
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Fig. 2. I/O request matching. Request matchers are marked with a red shape outline.
For simplicity, only one reader process is showed to have read I/O requests. (Color
figure online)

When a process calls a read or write PnetCDF function for a file intended for
data transfer, the DTF intercepts this call and, instead of performing file I/O,
it internally creates an I/O request that stores the call metadata. Additionally,
the process may buffer the user data if the DTF is configured to do so. The
metadata consists of:

– varid - the PnetCDF variable id;
– rw flag - read or write request;
– datatype - in case this datatype does not match with the datatype used when

the variable was defined, type conversion will take place;
– start - corner coordinate of the array block;
– count - length of the block in each dimension;
– buffer - pointer to the user buffer.

The request matching process can be divided in four steps (Fig. 2). First, all
the processes of the reader and writer component send all their I/O requests
posted so far to corresponding matching processes (Step 1). Then, a matching
process takes the next read I/O request and, based on the corner coordinate
start of the requested array block and the block size count, searches for match-
ing write requests (Step 2). The I/O pattern of the reader and writer components
are not necessarily identical, therefore, one read request may be matched with
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several write requests, each of them - for a sub-block of the requested array
block. Once a match is found, the matcher sends a message to the writer process
holding the requested portion of data and asks it to send this data to the corre-
sponding reader process (Step 3). Finally, when a writer process receives a data
request from the matcher, it finds the requested data in the memory, copies it
to the send buffer along with the metadata and sends it to the reader (Step 4).
When the reader receives the message, it parses the metadata and unpacks the
data to the user buffer.

For better performance, the requests are distributed among the matching
processes and each matcher is in charge of matching requests for a particular
sub-block of a multi-dimensional variable. The size of the sub-block is determined
by dividing the length of the variable in the lowest (zeroth) dimension by the
number of matching processes. If there is a request that overlaps blocks handled
by different matchers, such a request will be split into several requests for sub-
blocks, and each matcher will match the corresponding part. There is a trade-off
in this approach: On one hand, the matching happens in a distributed fashion,
on the other hand, if there are too many matchers the request may end up
being split too many times resulting in more communication between readers
and writers. Therefore, it is recommended to do some test runs of the workflow
with different number of matchers to find a reasonable configuration for DTF.

3 Implementation

The Data Transfer Framework is implemented as a library providing API to
user programs. To let the DTF intercept PnetCDF calls, we also modified the
PnetCDF-1.7.0 library. The modifications were relatively small and consisted of
around 50 lines of code.

We use the MPI library to transfer the data. To establish the communication
between processes in the reader and writer components, we use the standard MPI
API for creating an inter-communicator during the DTF initialization stage in
both components. This implies that the two components coupled through a file
must run concurrently.

Current version of the DTF implements a synchronous data transfer, meaning
that all the processes in the two components stop their computations to perform
the data transfer and resume only when all the data requested by the reader has
been received. Generally, it is preferable to transfer the data to the reader as
soon as it becomes available on the writer’s side so that the reader could proceed
with computations. However, because the I/O patterns of the two components
may differ significantly, it is hard to automatically determine when it is safe to
start the matching process. Therefore, we require that the user signals to the
DTF when to perform a request matching for a given file by explicitly invoking
a special API function in both components.

To enable the data transfer, the user needs to modify the source code of
all the components of the workflow by adding API to initialize, finalize the
DTF, as well as explicitly invoke the data transfer. However, we believe that
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0th dim 
(k=0)

1st dim 
(k=1)

2nd dim
(k=2)

Fig. 3. An example layout of a
k-d tree to arrange sub-blocks of
a 3-dimensional variable.

[INFO]
ncomp=2 ! number of components
comp_name=“rdr“  ! component name
comp_name=“wrt" 
ioreq_distrib_mode="range“  !divide by dim length
buffer_data=0
[FILE]
filename="restart.nc” 
writer=“wrt“   !component that writes to the file
reader=“rdr“  !component that reads from the file
iomode=“memory" !enable direct transfer

Fig. 4. DTF configuration file

these modifications are rather minimal compared to what traditional coupling
software usually requires.

3.1 Handling of I/O Requests

Depending on the scale of the execution and the I/O pattern, matching processes
sometimes may have to handle thousands of I/O requests. Using a suitable data
structure to arrange the requests in such a way that matching read and write
requests can be found fast is important.

Unless the variable is a scalar, an I/O request is issued for a multi-dimensional
block of data. Such k-dimensional block can be represented as a set of k intervals.
We use an augmented k-dimensional interval tree [7] to arrange these blocks in
such a way that would allow us to find a block that overlaps with a quired block
(read I/O request) in a reasonable amount of time. Figure 3 shows an example
layout of a tree that stores write requests for a 3-dimensional variable. A tree on
each level (k = 0,1,2) arranges intervals of the variable sub-blocks for which a
write request was issued in the corresponding dimension. Each node of the tree
links to the tree in the k + 1 dimension.

Read requests are stored as a linked list sorted by the rank of the reader.
Every time new requests metadata arrives, the matcher updates the request
database and tries to match as many read requests for a given rank as possible.

3.2 User API

The three main API functions provided by the DTF are the following:

– dtf init(config file, component name) - initializes the DTF. The user
must specify the path to the DTF configuration file and state the name of
the current component which should match one of the component names in
the configuration file;

– dtf finalize() - finalizes the DTF;
– dtf transfer(filename) - invokes the data transfer for file filename;
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All the API functions are collective: dtf init() and dtf finalize() must
be invoked by all processes in both components, while dtf transfer() must be
invoked only by processes that share the file.

During the initialization, based on the DTF configuration file, each com-
ponent finds out all other components with whom it has an I/O dependency
and establishes a separate MPI inter-communicator for every such depen-
dency. All the further inter-component communication happens via this inter-
communicator.

A dtf transfer() call should be added after corresponding PnetCDF read-
/write calls in the source code of both, reader and writer components. The call
will not complete until the reader receives the data for all the read I/O requests
posted before dtf transfer() was invoked, therefore, it is user’s responsibility
to ensure that the components call the function in the correct place in the code,
that is, that the writer does not start matching I/O until all the write calls for
the data that will be requested in the current transfer phase have been posted
as well. dtf transfer() function can be invoked arbitrary number of times but
this number should be the same for both components. We note that, because
this function acts like a synchronizer between the reader and writer components,
the recommended practice is to invoke it just once after all the I/O calls and
before the file is closed.

By default, the DTF does not buffer the user data internally. Therefore, the
user should ensure that the content of the user buffer is not modified between the
moment the write PnetCDF call was made until the moment the data transfer
starts. Otherwise, data buffering can be enabled in the DTF configuration file.
In this case, all the data buffered on the writer’s side will be deleted when a
corresponding transfer function is completed.

3.3 Example Program

A simplified example of a writer and reader components is presented
Figs. 5a and b, as well as their common DTF configuration file (Fig. 4). To enable
the direct data transfer it was enough to add three lines of code to each compo-
nent — to initialize, finalize the library and to invoke the data transfer — and
provide a simple configuration file.

4 Evaluation

We first demonstrate the performance of DTF using the S3D-IO1 benchmark
program. Next, we show how the DTF performs with a real world workflow
application—SCALE-LETKF.

S3D-IO [8] is the I/O kernel of the S3D combustion simulation code devel-
oped at Sandia National Laboratory. In the benchmark, a checkpoint file is writ-
ten at regular intervals. The checkpoint consists of four variables—two three-
dimensional and two four-dimensional—representing mass, velocity, pressure,
1 Available at http://cucis.ece.northwestern.edu/projects/PnetCDF/#Benchmarks.

http://cucis.ece.northwestern.edu/projects/PnetCDF/#Benchmarks
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/∗ I n i t i a l i z e DTF∗/
d t f i n i t ( d t f i n i f i l e , ”wrt” ) ;
/∗Create f i l e ∗/
ncmpi create ( ” r e s t a r t . nc” , . . . ) ;
<...>
/∗Write some data ∗/

ncmp i put va ra f l oa t ( . . . ) ;
/∗Write some more data ∗/
ncmp i put va ra f l oa t ( . . . ) ;
/∗Perform I /O reque s t matching ∗/
d t f t r a n s f e r ( ” r e s t a r t . nc” ) ;
/∗Close the f i l e ∗/
ncmpi c lo se ( . . . ) ;
/∗ F ina l i z e DTF∗/
d t f f i n a l i z e ( ) ;

(a) Component writing to file

/∗ I n i t i a l i z e DTF∗/
d t f i n i t ( d t f i n i f i l e , ” rdr ” ) ;
/∗Open the f i l e ∗/
ncmpi open ( ” r e s t a r t . nc” , . . . ) ;
<...>
/∗Read a l l data at once∗/
ncmp i g e t va r a f l o a t ( . . . ) ;
/∗Perform I /O reque s t matching ∗/
d t f t r a n s f e r ( ” r e s t a r t . nc” ) ;
/∗Close the f i l e ∗/
ncmpi c lo se ( . . . ) ;
/∗ F ina l i z e DTF∗/
d t f f i n a l i z e ( ) ;

(b) Component reading from file

Fig. 5. Sample code using the DTF API

and temperature. All four variables share the lowest three spatial dimensions X,
Y and Z which are partitioned among the processes in block fashion. The value
of the fourth dimension is fixed.

We imitate a multi-component execution in S3D-IO by running concurrently
two instances of the benchmark: Processes of the first instance write to a shared
file, processes in the second instance read from it. Each test is executed at least
eight times and an average value of the measured parameter is computed. To
determine the number of matchers necessary to get the best performance for
data transfer, we first execute several tests of S3D-IO varying the number of
matching processes and use the result in the subsequent tests.

In the tests with the direct data transfer, the I/O time was measured in the
following manner. On the reader side, it is the time from the moment the reader
calls the data transfer function to the moment all its processes received all the
data they had requested. On the writer’s side, the I/O time is the time between
the data transfer function and the moment the writer receives a notification
from the reader indicating that it had got all the requested data. The I/O time
also includes the time to register the metadata of the PnetCDF I/O calls and
to buffer the data, if this option is enabled. In all our test cases it so happens
that the writer component always invokes the transfer function before the reader
and, therefore, sometimes it has to wait for the reader to catch up. Hence, by
data transfer time we hereafter assume the I/O time of the writer component
unless stated otherwise as it represents the lowest baseline. The runtime of the
workflow is measured from the moment two components create an MPI inter-
communicator inside the dtf init() function and the moment it is destroyed
in dtf finalize() as these two functions work as a synchronization mechanism
between the reader and writer components.

All the experiments were executed on K computer [9]. Each node has an
8-core 2.0 GHz SPARC64 VIIIfx CPU equipped with 16 GB of memory. Nodes
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are connected by a 6D mesh/torus network called Tofu [10] with 5 GB/s× 2
bandwidth in each link. Compute nodes in K computer have access to a local
per-node file system as well as a global shared file system based on Lustre file
system.

4.1 S3D-IO Benchmark

Choosing the Number of Matching Processes. To get the best perfor-
mance, it is recommended that the user chooses the number of matching pro-
cesses that will perform I/O matching instead of using the default configuration
of one matcher per 64 processes. This number is application-dependent. The
load on a matching process is determined by the number of read and write I/O
requests the process has to match. For example, if all reader and writer processes
perform I/O symmetrically and the size of the variable in the zeroth dimension
divides by the number of matchers, the number of I/O requests one matcher will
have to match roughly equals the number of I/O requests one process generates
multiplied by the number of processes in both components.

Fig. 6. Data transfer time for various
test sizes and number of matching pro-
cesses per component.

Fig. 7. DTF performance for various
file sizes.

Depending on the I/O pattern, increasing the number of matchers does
not always decrease the number of I/O requests per matcher, but it generally
improves the throughput of data transfer. The reason is that rather than waiting
for one matching process to match requests for one block of a multi-dimensional
array, multiple processes can match sub-blocks of it in parallel. Consequently,
the reader may start receiving the data earlier.

To find an optimal number of matchers, we run tests of different sizes—from
32 processes per component up to 1024—with a problem size such that each
process reads or writes 1 GB of data. In each test we then vary the number of
matchers and measure the time to transfer the data. The results in Fig. 6 show
that increasing the number of matchers up to some point improves the transfer
time and then the performance starts decreasing. The reason for this is that
an I/O request for a block of data may be split into several requests for sub-
blocks between multiple matchers and, if the number of matchers is too big, the
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request is over-split and it takes more smaller messages to deliver all the data to
the reader. Based on this result, for our further tests we use the following setting:
for tests with up to 256 processes in one component, each writer process functions
as a matcher, for tests with 512 processes per component—four processes in one
work-group, i.e. 128 matchers in total. Finally, for tests with 1024 processes per
component the work-group size is 16, i.e. there are 64 matchers in total.

Scalability. We first demonstrate how the DTF scales compared to file I/O
(PnetCDF) by measuring the read and write bandwidth for weak and strong
scaling tests. In this test, processes write to a shared file using non-blocking
PnetCDF calls. To measure the I/O bandwidth, we divide the total file size by
the respective read or write I/O time. The results for the strong and weak scaling
are presented on Figs. 8 and 9. The X axis denotes the number of processes in
one component. We point out that the Y-axis is logarithmic in these plots.
Figures 8a and 9a show the total execution time of the coupled workflow.

In all tests each process executes a PnetCDF read or write function four
times—one per variable, i.e. each process generates four I/O requests.

In the strong scaling test, we fix the file size to 256 GB and vary the number
of processes in one component. We note that, due to the node memory in K
computer limited to 16 GB, the results in Fig. 8 start from the test with 32
processes per component. In the weak scaling tests, we fix the size of the data
written or read by one process to 256 MB, thus, in the test with one process per
component the file size is 256 MB, in the test with 1024 processes—256GB.

As we see, DTF significantly outperforms file I/O in all tests. We also notice
that the read bandwidth in all tests with the direct data transfer is always higher
than the write bandwidth. We compute the bandwidth by dividing the size of
the transferred data by the measured transfer time in the respective component.
Thus, the reason for the different bandwidth is the timing when the matching
starts in the reader component relatively to the writer component and is specific
to our chosen test cases. As mentioned before, in our experiments the writer
always entered the data transfer phase before the reader, hence, it sometimes
had to wait for the reader. For this reason, from the writer’s point of view,
the transfer took longer than from the reader’s point of view, hence, the write
bandwidth is lower.

The bandwidth using the data transfer does flatten eventually in the strong
scaling test (Fig. 8b and c), because the size of the data sent by one process
decreases and the overhead of doing the request matching and issuing data
requests starts to dominate the transfer time. In the weak scaling tests in Fig. 9
the data transfer time grows slower as the amount of data to transfer by one
process stays the same and the overhead of the I/O request matching is rela-
tively small. Hence, the total I/O bandwidth increases faster than in the strong
scalability test.
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Fig. 8. Strong scaling of S3D-IO. Y-axis is in logarithmic scale in all plots.

Fig. 9. Weak scaling of S3D-IO. Y-axis is in logarithmic scale in all plots.

DTF Performance Under I/O Load. Other major factors that impact the
data transfer time apart from the number of matching processes are the size of
data to transfer and the total number of I/O requests to be matched. To measure
the former we perform data transfer for files of various sizes while the number of
I/O requests per matcher stays the same. To evaluate the impact of the number
of I/O requests, we fix the file size to 256 GB and increase the number of I/O
requests a matcher process matches by manipulating how the I/O requests are
distributed among matchers. By default, the size of the variable sub-block for
which a matcher process matches read and write requests is defined by dividing
the variable in the zeroth dimension by the number of matchers. An I/O request
is split in the zeroth dimension based on this stripe size and distributed among
the matchers in a round robin fashion. In this experiment, we vary the value of
the stripe size which effectively changes the number of I/O requests each matcher
has to handle.

In both experiments there are 1024 processes per component and there is one
matcher per 16 processes. We also note that two out of four variables in S3D-IO
have the zero dimension length fixed to 11 and 3, respectively. This is smaller
than the number of matchers (64) and results in asymmetrical distribution of
work among matchers. For this reason, in the two experiments, on top of the
average number of I/O requests per matcher, a small group of matchers has to
match approximately 4,000 more I/O requests.

Figure 7 shows the results of the first experiment. The file size was gradually
increased from 8 GB to 2 TB. Each matcher process matched on average 576
requests in every test. We measured the time for actual matching of read and
write requests—it took only around 2% of the whole data transfer time, thus,
we conclude that most of the time was spent on packing and sending the data
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to reader processes. Thanks to the fast torus network in K computer, sending
2 TB of data over network took less than 3 s.

In the second experiment (Table 1) the file size is fixed, i.e. in every test each
process transfers the same amount of data. The matching processes handled from
576 to 16,832 I/O requests, plus the additional requests for some matchers due
to the imbalance. We expect that in this experiment it is the request matching
process that will have the biggest impact on the data transfer time as the number
of requests grow. However, according to the Table 1, the actual request matching
took on average no more than 2–3% of the data transfer time and only in the
test with 16,832 requests per matcher the matching took around 5% of the data
transfer.

Table 1. DTF performance for different number of I/O requests

Average number of I/O
requests per matcher

Data transfer
time (s)

Time to match read and
write requests (s)

576 1.799 0.041

1,088 1.498 0.031

2,144 2.107 0.046

4,224 2.061 0.045

8,448 2.108 0.058

16,832 1.777 0.085

Moreover, we observe that despite the growing number of I/O requests per
matcher, the time to perform the data transfer actually decreases in some cases.
One explanation for this could be that, when we decrease the stripe size by
which the I/O requests are distributed, one matcher becomes in charge of sev-
eral smaller sub-blocks located at a distance from each other along the zeroth
dimension, rather than just one contiguous big sub-block. And this striping may
accidentally align better with the I/O pattern of the program, so the matcher
ends up matching requests for the data that was written by it. Then, instead of
having to forward a data request to another writer process, the matcher imme-
diately can send the data to the reader.

Overall, we conclude that the DTF shows stable performance under increased
load of the amount of data that needs to be transferred as well as the load on
the matching processes.

4.2 SCALE-LETKF

Finally, we demonstrate how DTF performs with a real-world multi-component
application—SCALE-LETKF.

First of all, we explain the I/O pattern of SCALE-LETKF. At the end of
one iteration, each ensemble in SCALE outputs the results to two files: a history
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file and a restart file. At the beginning of its cycle computation, each LETKF
ensemble reads the data from the respective history and restart files. LETKF
only requires a part of the data in the history file for its computations, i.e. it
does not read the whole file. The data transfer function is invoked once per each
of the two files. The tests are performed with one iteration because currently
SCALE-LETKF does not support the multi-cycle execution.

In the chosen test case LETKF assimilates the data from a Phased Array
Weather Radar [11] with a resolution of 500 m. The number of processes par-
ticipating in one ensemble simulation is fixed to nine processes in all tests, the
total number of processes per component is nine multiplied by the number of
ensembles. The DTF is configured so that every process in the ensemble acts as
a matcher. Additionally, the data buffering is enabled in DTF because the I/O
in SCALE happens in several stages and the user buffers are overwritten by the
time the data transfer function is called.

The size of the history and restart file in one ensemble is constant, we change
the total amount of I/O by varying the number of ensembles from 25 to 100.
Table 2 contains the information about the amount of data written and read in
each configuration. In all tests, every ensemble process in SCALE writes 363 MB
of data, out of which LETKF process requires only about one quarter. A SCALE
process generates 255 write requests, LETKF process—31 read request.

Table 2. Cumulative I/O amount in SCALE-LETKF

Number of ensembles Total write size (GB) Total read size (GB)

25 79.78 18.97

50 159.56 37.94

75 239.35 56.91

100 319.13 75.88

Per process 363 MB 86.3 MB

Figure 10 shows the execution results of all configurations. Because SCALE-
LETKF has a strict timeliness requirement, we focus on the time it took to
perform the I/O rather than bandwidth. Additionally, we plot the standard
deviation of I/O time between the processes because each ensemble performs
I/O independently from each other.

The results show that the DTF helps to improve the total execution time of
SCALE-LETKF (Fig. 10a) by cutting on the I/O time. In the largest execution
with 100 ensembles, the I/O time was improved by a factor of 3.7 for SCALE
and 10 for LETKF. This improvement is rather modest compared to what we
observed in tests with S3D-IO mostly because SCALE-LETKF, along with its
I/O kernel, is a much more complex application compared to the benchmark.

Apart from the I/O time, we also noticed that, when using the data trans-
fer, the standard deviation decreases significantly compared to when file I/O is
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Fig. 10. SCALE-LETKF performance with DTF and file I/O.

used. This has a positive effect on the overall execution, because after LETKF
has received all the data it performs global communication over all ensemble
processes and smaller deviation in I/O time means that there should be less
waiting for processes in other ensembles.

Finally, we note that SCALE-LETKF is still in the stage of development and
the most recent version does not meet the target time requirement of 30 s per
iteration as can be seen in Fig. 10a. However, we believe that our framework can
be of great use to SCALE-LETKF and similar applications and it can help them
achieve the execution goal by cutting on I/O time.

5 Related Work

A number of works has addressed the data movement problem, the file I/O bot-
tleneck in particular, in multi-component workflows. Different coupling toolkits
have been designed for such workflows [12], especially in Earth sciences [13–15]
applications. Such toolkits often provide not only the data movement feature
but also allow to perform various data processing during the coupling phase,
such as data interpolation or changing the grid size.

For example, DART [16] is a software layer for asynchronous data streaming,
it uses dedicated nodes for I/O offloading and asynchronously transferring the
data from compute nodes to I/O nodes, visualization software, coupling software,
etc. The ADIOS [17] I/O library is built on top of DART and provides additional
data processing functionality. However, both, DART and ADIOS require to use
a special API for I/O. In additional, ADIOS uses its own non-standard data
format for files.

Other coupling approaches include implementing a virtual shared address
space accessible by all the components [18], or using dedicated staging nodes
to transfer the data from compute job to post-process analysis software during
the runtime [19]. In [20], the authors propose a toolkit utilizing the type-based
publisher/subscriber paradigm to couple HPC applications with their analytics
services. The toolkit uses a somewhat similar concept to inter-component data
transferring as proposed in this work, however, they rely on the ADIOS library
underneath which the coupling toolkit was built which includes the description
of the I/O pattern of the components. Additionally, in our work the matching
process is simpler in a way that it takes fewer steps to perform the data transfer.
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Providing support to multi-component executions on a system-level is
another approach to facilitating the inter-component interaction [21,22]. Cur-
rent HPC systems usually do not allow overlapping of resources allocated for
one executable file. Thus, each component in a multi-component workflow ends
up executing on a separate set of nodes and, consequently, the problem of data
movement between the components arises. But, for example, in cloud computing,
several virtual machines can run on the same node and communicate with each
other via shared memory or virtual networking. It has been previously proposed
to use virtualization techniques in HPC as well. For example, in [21], the authors
show that such virtualization can be used in an HPC environment to allow more
efficient execution of multi-component workflows with minimal costs. However,
the virtualization is not yet widely adopted in HPC systems.

The main difference of our solution with the I/O library approaches like
ADIOS is that such libraries usually provide their own I/O API and underneath
that API they can switch between different standard I/O libraries or even per-
form direct data coupling at user’s will. It is assumed that the programmer of
the application used this special API during the development stage. In case the
application originally used a different I/O library, the I/O kernel must be rewrit-
ten. But this may sometimes require a lot of effort, especially when component
applications were developed by a third party. Our goal was to provide a simple
framework that would allow to switch from file I/O to data transfer with minimal
efforts and without having to rewrite the I/O kernels of the workflow compo-
nents. The DTF operates underneath the PnetCDF library which is a popular
I/O library. And while it does not provide as wide functionality as some more
advanced coupling libraries, for cases where a user wants to compose a work-
flow consisting of applications developed relatively independently but all using
PnetCDF for I/O, the DTF can work as a quick plug-in solution for faster cou-
pling. The closest solution that we are aware of is the I/O Arbitration Framework
(FARB) proposed in [23]. However, the framework was implemented for appli-
cations using NetCDF I/O library, that is, it assumes the file-per-process I/O
pattern and a process-to-process mapping of data movement. Moreover, during
the coupling stage in FARB, contents of the whole file were transferred to the
other component’s processes regardless of whether the process actually required
the whole data or not. In our work, we determine at runtime what data needs
to be transferred and only send this data.

6 Conclusion

Multi-component workflows that consist of tasks collaborating with each other
to perform computations are becoming a common type of applications running
in HPC environments. However, because the current HPC systems are often
designed with monolithic applications in mind, it is necessary to determine the
main obstacles that prevent multi-component workflows from running at maxi-
mum performance in these systems and find solutions. One of the most important
issues is the data movement between the components and a number of solutions
have been proposed to date.
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In this work we proposed one such solution—a data transfer framework called
DTF to speed up the data movement between the components in workflows
that use PnetCDF API for file I/O. The DTF intercepts the PnetCDF calls
and bypasses the file system by sending the data directly to the corresponding
processes that require it. It automatically detects what data should be sent
to which processes in the other component through a process of I/O request
matching.

The DTF requires minimal efforts to start using it in a workflow: There is no
need to modify the original PnetCDF calls, rewrite the code using some special
API or provide the description of the I/O pattern of the components. The DTF
only requires that the user compiles the components using our modified version
of the PnetCDF library, provides a simple configuration file listing the files that
need to be transferred and adds a few lines to the components’ source code in
order to enable the data transfer.

Through extensive testing we demonstrated that the DTF shows stable per-
formance under different conditions. However, we believe there is a room for
improving the load balancing of the I/O request matching, in particular, the
way I/O requests are distributed among the matching processes.

Additionally, due to the fact that the current version of SCALE-LETKF does
not support a multi-cycle execution, evaluation of the DTF in such an execution
setting is also left for the future work. However, the results we obtained so far
are promising and should help SCALE-LETKF to achieve its real-timeliness
requirement.
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