
Meta-data Management System for High-Performance
Large-Scale Scientific Data Access

Wei-keng Liao, Xaiohui Shen, and Alok Choudhary

Department of Electrical and Computer Engineering
Northwestern University

Abstract. Many scientific applications manipulate large amount of data and,
therefore, are parallelized on high-performance computing systems to take ad-
vantage of their computational power and memory space. The size of data pro-
cessed by these large-scale applications can easily overwhelm the disk capacity
of most systems. Thus, tertiary storage devices are used to store the data. The
parallelization of this type of applications requires understanding of not only the
data partition pattern among multiple processors but also the underlying storage
architectures and the data storage pattern. In this paper, we present a meta-data
management system which uses a database to record the information of datasets
and manage these meta data to provide suitable I/O interface. As a result, users
specify dataset names insteadof data physical location to access data using optimal
I/O callswithout knowing the underlying storage structure.Weuse an astrophysics
application to demonstrate that the management system can provide convenient
programming environment with negligible database access overhead.

1 Introduction

Inmanyscientificdomains largevolumesofdataareoftengeneratedoraccessedby large-
scale simulation programs. Current techniques dealing with such I/O intensive problem
use either high-performance parallel file systems or database management systems.
Parallel file systems have been built to exploit the parallel I/O capabilities provided by
modernarchitecturesandachieve thisgoalbyadoptingsmart I/Ooptimization techniques
such as prefetching [1], caching [2], and parallel I/O [3]. However, there are serious
obstacles preventing the file systems from becoming a real solution to the high-level data
management problem. First of all, user interfaces of the file systems are low-level which
forces the users to express details of access attributes for each I/O operation. Secondly,
every file systemcomeswith its own set of I/O interface,which renders ensuring program
portability a very difficult task. The third problem is that the file system policies and
related optimizations are in general hard-coded and are tuned to work well for a few
commonly occurring cases only.

At the other end of using database management systems, a database provides a layer
on top of file systems, which is portable, extensible, easy to use and maintain, and that
allows a clear and natural interaction with the applications by abstracting out the file
names and file offsets. However, their main target is to be general purpose and cannot
provide high-performance data access. In addition, the data consistence and integrity
semantics provided by almost all database management systems put an added obstacle

M. Valero, V.K. Prasanna, and S. Vajapeyam (Eds.): HiPC 2000, LNCS 1970, pp. 293–300, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

294 W.-k. Liao, X. Shen, and A. Choudhary

Access Pattern, History

Optimal I/O Hints

Applications
User

Simulation
Data Analysis
Visualization

native I/O calls
MPI-IO calls

Inquired Current Status

Data Associations

Storage HintFile Data

Parameters
Access Hints

File Data

Schedule, Prefetch, Cache

System Meta-data
File Data

Hierarchical
Storage Systems

Local, Remote Disks, Tapes
SRB, HPSS (interfaces ...)

MDMS

Database, Meta data

Fig. 1.The meta-data management system environment contains three key components. All three
components can exist in the same site or can be located distributedly.

to high performance. Applications that process large amounts ofread-onlydata suffer
unnecessarily as a result of these integrity constraints [4].

This paper presents preliminary results for our ongoing implementation of a meta-
data management system (MDMS) that manages meta data associated to the scientific
applications in order to provide optimal I/O performance. Our approach tries tocombine
the advantages of file systems and databases and provides a user-friendly programming
environment which allows easy application development, code reuse, and portability;
at the same time, it extracts high performance from the underlying I/O architecture. It
achieves these goals by using the management system that interacts with the parallel
application in question as well as with the underlying hierarchical storage environment.

The remainder of this paper is organized as follows. In Section 2 we present the
system architecture. The details of design and implementation is given in Section 3.
Section 4 presents preliminary performance numbers using an astrophysics application.
Section 5 concludes the paper.

2 System Architecture

Traditionally, the work of parallelization must deals with the problem of data structure
used in the applications and the file storage configuration in the storage system. The
fact that these two types of information are usually referred from the off-line docu-
ments increases the complexity and difficulty of application development. In this paper,
we present a meta-data management system (MDMS) which is designed as a active
middle-ware to connect users’ applications and storage systems. The management sys-
tem employs a database to store and manage all meta data associated to application’s
datasets and underlying storage devices. The programming environment of the dataman-
agement system architecture is depicted in Figure 1. These three components can exist
in the same site or can be fully distributed across distant sites.

Meta-data Management System for Large-Scale Scientific Data Access 295

MDMS provides a user-friendly programming environment which allows easy ap-
plication development, code reuse, and portability; at the same time, it extracts high
I/O performance from the underlying parallel I/O architecture by employing advanced
I/O optimization techniques like data sieving and collective I/O. Since the meta-data
management system stores information describing both application’s I/O activity and
the storage system, it can provide three easy-programming environments: data trans-
parency through the use of data set names rather than file names; resource transparency
through the use of the information about the abstract storage devices; and access function
transparency through the automatic invocation of high-level I/O optimization.

3 Design and Implementation

The design of the MDMS is aimed to determine and organize the meta data; to provide
a uniform programming interface for accessing data resources; to improve I/O perfor-
mance bymanipulating files within the hierarchical storage devices; to provide a graphic
user interface to query the meta data.

3.1 Meta-data Management

There are four levels of meta data considered in this work that can provide enough
information for designing better I/O strategies.

Application Level Two type of meta data exist in this level. The first describes
users’ applications which contains the algorithms, structure of datasets, compiling, and
execution environments. The second type is the historical meta data, for instance, the
time stamps, parameters, I/O activities, result summary, and performance numbers. The
former is important for understanding the the applications and the management system
can use it to provide browsing facility to help program development. The historical meta
data can be used to determine the optimal I/O operations for the data access of the future
runs.

Program Level This level of meta data mainly describes the attributes of datasets
used in the applications. The attributes of datasets includes data type and structure. Since
similar datasets may potentially perform the same operations and have the same access
pattern, the dataset association provides an opportunity for performance improvement
both on computation and I/O. The meta data with respect to I/O activity at this level
includes file location, file name, I/O mode, and file structure.

Storage System LevelFor hierarchical storage system, the storage and file system
configuration are considered as valuable meta data. In a distributed environment, since
the storage devicemaynot locate at the samesite as themachine that runs the application,
the meta data describing remote systems must be captured. The meta data at this level
mainly deal with the file attributes among different physical devices and can be used to
make a suitable I/O decision by moving files within the storage system aggressively.

Performance LevelBesides the historical performance results, other valuable meta
data includes I/O bandwidth of hierarchical storage system, bandwidth of remote con-
nection, and performance of programming interfaces. Themeta data that directly affects
the I/O performance of parallel applications is the dataset processor partition pattern and

296 W.-k. Liao, X. Shen, and A. Choudhary

run id nproc dimZ dimY dimX time

1 4 128 16 32 t1

performance

T1

astro3d RUN TABLE

1

id name

astro3d

host

aixdev int,int,int

parametersowner

my id/astro3d.exe

exe file
APPLICATION TABLE

patternname acc id

1 5

run id

pressure
rho

1
1 6

5
temperature

astro3d DATASET TABLE

/scratch/astro3d.001.002

acc id dimensionnum ndims

128 16 326 1

128 16 325 2 3

3

type

float

double

1

amode run id

B** append 1

BBB create 1

astro3d PARTITION PATTERN TABLE
association

nproc patternfilename

/scratch/astro3d.001.003

4

4

B**

B**

stg id

1

2

astro3d STORAGE PATTERN TABLE

temperature

1

1

1

run id

4

1

1

act

write

write

read

write

dataset iter #

temperature

02

2

6

-56.7

stg id

1

min

-11.2

2

89.1

offset

262144

524288

0

123.4

-2.3

max

-567.8

456.7

12.3

pressure

rho

astro3d EXECUTION TABLE

Fig. 2.The representation of meta-data in the database. The relationship of tables is depicted by
the connected keys. Dataset objects with the same access pattern are associated together.

data storage pattern within the files. These two patterns can be used to determined the
collective or non-collective I/O. In this work, we build the MDMS on top of MPI-IO
while the proper meta data is passed to MPI-IO as file hints for further I/O performance
improvement. For applications performing a sequence of file accesses, the historical
access trail is typically useful for the access prediction.

We use a relational database to store the meta data and organize them into relation
tables. Figure 2 shows several tables of our current implementation. For each registered
application, five tables are created. Run table records the used run-time parameters for
each specific run. The attributes of datasets used in the applications are stored in dataset
and access pattern tables. Multiple datasets with the same structure and I/O behavior
in terms of size, type, and partition pattern are associated together. In this example,
two datasets,temperatureandpressure, are associated together to the same row in the
access pattern table. For the same I/O operations performed on the associated datasets,
some resources can be re-used, eg. file view, derived data type, or even sharing the same
file. The execution table stores all I/O activities for each runs. The storage pattern table
contains the file locations and the storage patterns.

3.2 Application Programming Interface

The implementation of the meta-data management system uses a PostgreSQL database
[5] and its C programming interface to store and manage the collected meta data. User
applications communicate with MDMS through its application programming interface
(API) which is built on top of PostgreSQLC programming interface. Since all meta-data
queries to the database are carried out by using standardSQL, the overall implementation

Meta-data Management System for Large-Scale Scientific Data Access 297

Table 1.Some of the MDMS application programming interfaces.

Function name Argument list Description
initialization (appName, argc, argNames, Connect to database, register application, record a new run with

argValues) a new run id
createassociation(num, datasetNames, dims, sizesStore dataset attributes into database, create dataset association,

pattern, numProcs, eType, handel)return a handle to be used in following I/O functions
get association(appName, datasetName, Obtain the dataset metadata from the database, the return handle

numProcs, handle) will be used in the following I/O calls
saveinit (handle, ghosts, status, extraInfo)Determine file names, open files, decide optimal MPI-IO calls,

define file type, set proper file view, calculate file offset
load init (handle, pattern, ghosts, status)Find corresponding file names, open files, decide optimal calls,

set proper file view, set file type, find file offsets
save(handle, datasetName, buffer, Write datasets to files, update execution table in database

count, dataType, iterNum)
load (handle, datasetName, buffer, Read datasets from files

count, dataType, iterNum)
savefinal (handle) Close files
load final (handle) Close files
finalization () Commit transaction, disconnect from database

of the MDMS is portable to all relational databases. Table 1 describes several APIs
developed in this work.

MDMS APIs can be categorized into two groups: meta-data query APIs and I/O op-
eration APIs. The first group of APIs,initialization, createassociation, get association,
andfinalization, is used to retrieve, store, and update meta data in the database system.
Through this type of APIs, user application can convey information about its expected
I/O activity to the MDMS and can request useful meta data from the MDMS including
optimal I/O hints, data location, etc. Although user’s application can use the inquired
information to negotiate with the storage system directly, it may not be reasonable to
require users to understand the details of the storage system to perform suitable I/O op-
erations. Since the MDMS is designed to contain necessary information describing the
storage system, its I/O operation APIs can act as an I/O broker and with the resourceful
meta data inside the system this type of APIs can decide appropriate I/O optimizations.

Figure 3(a) shows a typical I/O application using the MDMS APIs. Through calling
createassociationor get association, user applications can store or retrieve meta data.
Functionssaveinit and load init set up proper file view according the access patterns
stored in the handle. Then, a sequence of I/O operations can be performed on the same
group of associated datasets usingsaveandload.

3.3 I/O Strategies

The design of I/O strategies focus on two levels of data access: I/O between memory
and disk and I/O between disk and tape. The definition of data movement within a
hierarchical storage system is given in Figure 3(b).

Data Access Between Memory and DiskFor the parallel applications, the I/O
costs is mainly determined by the partition pattern among processors and the file storage
pattern in the storage system.When the two patterns are matched, the non-collective I/O
performs best. Otherwise, non-collective I/O should be used. The MDMS I/O interface
is built on top of MPI-IO [6]. The fact that MPI-IO features provide its I/O calls for

298 W.-k. Liao, X. Shen, and A. Choudhary

(a) (b)

load_initial()

load()
load()

save_final()

save_initial()

load_final()

create_associate()

finalization()

get_associate()

initialization()

Main Memory

Tape

save()
Disk

save()

Write

MDMS API

SRB / HPSS Stage

Fetch

Migrate

MPI-IO
Behind

Processor

Fig. 3.(a) A typical execution flow of applications using themeta-datamanagement system’s APIs
to perform I/O operations. (b) Data movement in the hierarchical storage system.

different storage platforms leads the implementation of MDMS I/O API to focus on
I/O type determination. Other I/O strategies including data caching in the memory and
pre-fetching from the disk can also be used to reduce the I/O costs.

Data Access Between Disk and TapeFor data access of a single large file, the sub-
filing strategy [7] has been designedwhich divides the file into a number of small chunks,
called sub-files. These sub-files are maintained and transparent to the programmers. The
main advantage of doing so is that the data requests for relatively small portions of the
global array can be satisfied without transferring the entire global array from tape to
disk. For accessing a large number of smaller files, we have investigated the techniques
of native SRB container and proposed a strategy of super-filing [8].

3.4 Graphic User Interface

In order to provide users a convenient tool for understanding the meta data stored in the
MDMS, we have developed a graphic interface for users to interact with the system [9].
The goal of developing this tool is to help users program their applications by examining
the current status of underlying dataset configurations.

4 Experimental Results

We use the three-dimensional astrophysics application,astro3d[10], developed at Uni-
versity of Chicago as the testing program throughout the preliminary experiments. This
application employs six float type datasets for data analysis and seven unsigned char-
acter type datasets for data visualization. Theastro3dis performed in a simulation loop
where for every six iterations, the contents of those six float type datasets are written
into files for data analysis and checkpoint purposes and two of the seven unsigned char-
acter type datasets are dumped into files for every two iterations to represent the current
visualization status. Since all datasets are block partitioned in every dimension among
processors and have to be stored in files in row major, collective I/O is used. LetX, Y ,
andZ represent the size of datasets in dimension x, y and z, respectively, andN be the

Meta-data Management System for Large-Scale Scientific Data Access 299

Table 2.The amount of data written byastro3dwith respective to the parametersN (number of
iterations),X, Y , andZ(data sizes in three dimensions.)

X × Y × Z
N No. I/O 64 × 64 × 64 128 × 128 × 128 256 × 256 × 256
6 33 20.97 Mbytes 167.77 Mbytes 1.34 Gbytes
12 56 35.13 Mbytes 281.02 Mbytes 2.25 Gbytes
24 102 63.44 Mbytes 507.51 Mbytes 4.06 Gbytes
36 148 91.75 Mbytes 734.00 Mbytes 5.87 Gbytes
48 194 120.06 Mbytes 960.50 Mbytes 7.68 Gbytes

number of iterations. Table 2 gives the amount of I/O performed with different values of
parameters specified. The performance results were obtained on the IBM SP at Argonne
National Laboratory (ANL) while the PostgreSQL database system is installed on a
personal computer running Linux at Northwestern University. The parallel file system,
PIOFS [11], on the SP is used to store the data written byastro3d. The experiments
performed in this work employ 16 compute nodes.

Given different data size and iteration numbers, we compare the performance of
original astro3dand its implementation using MDMS APIs. The originalastro3dhas
already been implemented using optimal MPI I/O calls, that is, collective I/O calls.
Therefore, we shall not see any major difference between the two implementations.
However, our MDMSwill outperform on other applications if they do not optimize their
I/O. Figure 4 gives the performance results of overall execution time and the database
access time for two data sizes with five iteration numbers. For the case of using256 ×
256 × 256 data size, the total amount of I/O is from 1.34 to 7.68 Gbytes and the overall
execution time ranges from100s to 900s seconds. Since the connection between the IBM
SPand thedatabase is through the Internet, thedatabasequery timesshowvariancebutare
all within 3 seconds. Comparing to relatively larger amount of I/O time, the overhead of
database query time become negligible. Although using MDMS can result the overhead
of negotiation with database, the advantage of dataset association can save the time of
setting file views and defining buffer derived data types. For this particular application,
astro3d, this advantage of using MDMS over the original program can be seen from the
slight performance improvement shown in the Figure.

5 Conclusions

In this paper, we present a program development environment based on maintaining
performance-related system-level meta data. This environment consists of user’s ap-
plications, the meta-data management system, and a hierarchical storage system. The
MDMS provides a data management and manipulation facility for use by large-scale
scientific applications. Preliminary results obtained using an astrophysics application
show negligible overhead of database access time comparing to the same application
with I/Ooptimal implementation. The futureworkwill extend theMDMS functionalities
for hierarchical storage system including tape and remote file system.

300 W.-k. Liao, X. Shen, and A. Choudhary

x 128x128XYZ = 128XYZ = 128x 128x128

xx256XYZ = 256XYZ = 256 x x256 256256

astro3d execution time

2

0.5

2.5

3

1

483624126

T
im

e
in

 s
ec

on
ds

using MDMS

PostgreSQL database

3624

1000

800

600

400

Number of iterations

0

Number of iterations
6 12 24 36 48

T
im

e
in

 s
ec

on
ds

6 12 24 36 48

original

0

Number of iterations
48

T
im

e
in

 s
ec

on
ds

200

126

PostgreSQL database

120

100

80

60

40

20

0

using MDMS

original

1.5

execution timeastro3d Database access time

3

2.5

2

1.5

1

0.5

0

Number of iterations

T
im

e
in

 s
ec

on
ds

Database access time

Fig. 4. Execution time ofastro3dapplication and the database access time using MDMS. The
timing results was obtained by running on 16 processors.

Acknowledgments

This work was supported by DOE under the ASCI ASAP Level 2, under subcontract
No. W-7405-ENG-48. We acknowledge the use of the IBM SP at ANL.

References

1. C. Ellis andD. Kotz. Prefetching in File Systems forMIMDMultiprocessors. InInternational
Conference on Parallel Processing, volume 1, pages 306–314, August 1989.

2. P. Cao, E. Felten, and K. Li. Application-Controlled File Caching Policies. Inthe 1994
Summer USENIX Technical Conference, pages 171–182, June 1994.

3. J. del Rosario and A. Choudhary. High Performance I/O for Parallel Computers: Problems
and Prospects.IEEE Computer, March 1994.

4. J. Karpovich, A. Grimshaw, and J. French. Extensible File Systems (ELFS): An Object-
Oriented Approach to High Performance File I/O. InThe Ninth Annual Conference on
Object-Oriented Programming Systems, pages 191–204, October 1994.

5. The PostgreSQL Development Team.PostgreSQL User’s Guide, 1996.
6. W. Gropp, E. Lusk, and R. Thakur.UsingMPI-2: Advanced Features of the Message-Passing
Interface. The MIT Press, Cambridge, MA, 1999.

7. G. Memik et al. APRIL: A Run-Time Library for Tape Resident Data. InNASA Goddard
Conference on Mass Storage Systems and Technologies, March 2000.

8. X. Shen and A. Choudhary. I/O Optimization and Evaluation for Tertiary Storage Systems.
In submitted to International Conference on Parallel Processing, 2000.

9. X. Shen et al. A Novel Application Development Environment for Large-Scale Scientific
Computations. InInternational Conference on Supercomputing, May 2000.

10. A. Malagoli et al.A Portable and Efficient Parallel Code for Astrophysical Fluid Dynamics.
http://astro.uchicago.edu/Computing/OnLine/cfd95/camelse. html.

11. IBM. RS/6000 SP Software: Parallel I/O File System, 1996.

	Introduction
	System Architecture
	Design and Implementation
	Meta-data Management
	Application Programming Interface
	I/O Strategies
	Graphic User Interface

	Experimental Results
	Conclusions

