
A case study for scientific I/O: improving the FLASH astrophysics code

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Comput. Sci. Disc. 5 015001

(http://iopscience.iop.org/1749-4699/5/1/015001)

Download details:

IP Address: 129.105.5.160

The article was downloaded on 21/03/2012 at 20:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1749-4699/5/1
http://iopscience.iop.org/1749-4699
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

A case study for scientific I/O: improving the FLASH
astrophysics code

Rob Latham2, Chris Daley1, Wei-keng Liao3, Kui Gao3, Rob Ross2,
Anshu Dubey1 and Alok Choudhary3

1 DOE NNSA/ASCR Flash Center, Astronomy and Astrophysics, University of Chicago,
Chicago, IL, USA
2 Argonne National Laboratory, Mathematics and Computer Science Division, Argonne,
IL, USA
3 Center for Ultra-scale Computing and Information Security, Northwestern University,
Evanston, IL, USA
E-mail: robl@mcs.anl.gov, rross@mcs.anl.gov, cdaley@flash.uchicago.edu,
dubey@flash.uchicago.edu, wkliao@ece.northwestern.edu, kgao@ece.northwestern.edu
and choudhar@ece.northwestern.edu

Received 23 December 2010, in final form 7 February 2012
Published 20 March 2012
Computational Science & Discovery 5 (2012) 015001 (16pp)
doi:10.1088/1749-4699/5/1/015001

Abstract. The FLASH code is a computational science tool for simulating and studying
thermonuclear reactions. The program periodically outputs large checkpoint files (to resume
a calculation from a particular point in time) and smaller plot files (for visualization and
analysis). Initial experiments on BlueGene/P spent excessive time in input/output (I/O),
making it difficult to do actual science. Our investigation of time spent in I/O revealed
several locations in the I/O software stack where we could make improvements. Fixing
data corruption in the MPI-IO library allowed us to use collective I/O, yielding an order of
magnitude improvement. Restructuring the data layout provided a more efficient I/O access
pattern and yielded another doubling of performance, but broke format assumptions made
by other tools in the application workflow. Using new nonblocking APIs in the Parallel-
NetCDF library allowed us to keep high performance and maintain backward compatibility.
The I/O research community has studied a host of optimizations and strategies. Sometimes the
challenge for applications is knowing how to apply these new techniques to production codes.
In this case study, we offer a demonstration of how computational scientists, with a detailed
understanding of their application, and the I/O community, with a wide array of approaches
from which to choose, can magnify each other’s efforts and achieve tremendous application
productivity gains.

Computational Science & Discovery 5 (2012) 015001 www.iop.org/journals/csd
© 2012 IOP Publishing Ltd 1749-4699/12/015001+16$33.00

mailto:robl@mcs.anl.gov
mailto:rross@mcs.anl.gov
mailto:cdaley@flash.uchicago.edu
mailto:dubey@flash.uchicago.edu
mailto:wkliao@ece.northwestern.edu
mailto:kgao@ece.northwestern.edu
mailto:choudhar@ece.northwestern.edu
http://dx.doi.org/10.1088/1749-4699/5/1/015001
http://www.iop.org/journals/csd

Computational Science & Discovery 5 (2012) 015001 R Latham et al

Contents

1. Introduction 2

2. FLASH memory and file layout 3
2.1. Memory layout . 4
2.2. File layout . 4

3. Input/Output (I/O) experiments 5

4. Enabling collective I/O optimizations 7

5. Changing the FLASH file layout 8

6. Nonblocking I/O with the Standard File Layout 11

7. Related work and future directions 13

8. Conclusions 14

Acknowledgments 14

References 14

1. Introduction

The time spent performing input/output (I/O) on today’s leadership-class machines is recognized as a common
bottleneck in many existing HPC applications. This is not expected to change soon, as the push to simulate
larger scientific problems often means production of larger volumes of data for checkpointing and analysis
purposes. In addition, there is also the hardware consideration that the rate at which future storage can accept
data is being outpaced by the rate at which results can be calculated. It is critical therefore that application I/O
interacts well with storage for the application to scale well at large processor counts.

Computational science applications represent physical phenomena with models and abstractions. Storage
systems and file systems, however, operate on bytes and files with minimal structure. In order to bridge that
‘interface gap’, computer scientists have created an I/O software stack, depicted in figure 1. Our work to
optimize FLASH I/O behavior required an understanding of all layers of this stack.

FLASH [1, 2] is a publicly available code originally designed to solve problems with compressible,
reactive flows. It has evolved into a huge collection of components to solve a wide range of astrophysical, CFD
and plasma physics problems. The full FLASH application provides both an adaptive mesh refinement (AMR)
grid and a uniform grid (UG) to store Eulerian data (the configurations in this work use the AMR grid). FLASH
also contains implementations of parallel I/O using either HDF5 [3] or Parallel netCDF (PNetCDF) [4] high-
level I/O libraries.

In the spring of 2009 we faced an application challenge. Applications running on Leadership Class
Facilities are allocated a fixed amount of ‘CPU hours’ to run simulations. The FLASH code spent such a
large portion of that allocated time outputting data that insufficient CPU hours remained to compute useful
scientific results. In this paper we discuss the three main improvements made to FLASH and the I/O stack to
reduce the time spent in I/O.

• We fixed a defect in the MPI-IO library, allowing us to enable collective MPI-IO optimizations.

• We altered the output file format, allowing for an ideal access pattern at the expense of breaking
compatibility with existing analysis and visualization tools.

• Finally, we examined a ‘best of both worlds’ solution via recent extensions to the Parallel-NetCDF high-
level I/O library, yielding performance as good as altering the file format while maintaining backwards
compatibility.

The FLASH I/O implementations can be tested (independently of science) through an I/O unit test
application that has been used as a benchmark in machine acceptance tests and to aid the development of
various layers of the I/O software stack. The benchmark has been used consistently for nearly a decade to
help evaluate the performance of components of the I/O stack, including HDF5 hyperslab processing [5],

2

Computational Science & Discovery 5 (2012) 015001 R Latham et al

Figure 1. The I/O software stack presents numerous opportunities for optimization.

the Parallel Virtual File System (PVFS) [6, 7], experimental MPI-IO implementations [8] and MPI datatype
processing [9, 10]. In fact, download figures from 2007 show that 28% of FLASH downloads are for parallel
I/O related studies [11]. With this decade-long attention to parallel I/O, it came as a surprise when early runs
on Argonne’s BlueGene/P spent exceptionally long times to produce checkpoint files.

This paper describes our analysis and performance tuning approach and provides a model of attack for
other applications exhibiting low I/O performance on a new system or as a consequence of scaling. Two broad
lessons emerge from this work. Firstly, real scientific codes can achieve high I/O rates with today’s I/O stack.
Secondly, when I/O experts and application experts collaborate closely, the two groups bring backgrounds
which not only complement each other, but in fact amplify the impact of modifications.

One notable aspect of this work is the willingness of the FLASH developers to experiment with altering
the file format. Occasionally, computational scientists have an opportunity to design file formats with I/O in
mind [12]. More commonly, the file format is fixed and optimizations and improvements must happen at other
layers in the software stack [5, 13, 14]. Thus, while the FLASH application has been around for over a decade,
we were given nearly a clean slate when it came to evaluating approaches for improving I/O performance. We
were able to re-work the file format to provide an ideal I/O workload. Next, we applied recent I/O research to
match that upper bound of performance while still maintaining support for the existing workflow. Furthermore,
we were able to evaluate several research ideas at scales not yet published in the context of an actual science
application.

The paper is organized as follows. We describe the core FLASH mesh data structure, the standard and
experimental output file layouts and creation of memory-derived datatypes in section 2. These application-
specific details will play an important role when in later sections we discuss some of the more advanced
optimizations we applied. We introduce the target BlueGene/P platform and the chosen FLASH test application
in section 3. Sections 4–6 cover the performance improvement techniques we applied and their benefits. The
optimizations presented have been discussed elsewhere but this work collects these optimizations and evaluates
them at higher levels of scalability than studied previously. Finally, we summarize the work and discuss lessons
learned during this I/O project in section 8. In short, I/O performance plays too important a role in scientific
computing for individual groups to tackle the problem on their own.

2. FLASH memory and file layout

Before discussing I/O experiments and results, we provide some background on the FLASH data model.
FLASH simulations evolve physical quantities such as density, pressure and temperature over time on a

Cartesian, structured mesh. The mesh consists of cells that contain the value of physical quantities (also known
as mesh variables) at different locations in the computational domain. Each cell is assigned to a block, where
a block is a self-contained grid that contains a fixed number of cells and several layers of guard cells. There
can be a huge number of blocks in a simulation, and different blocks may be assigned to different processors
because the guard cells contain the required neighboring block data or boundary condition data.

3

Computational Science & Discovery 5 (2012) 015001 R Latham et al

2.1. Memory layout

The cell-centered data for cells of blocks assigned to the current processor are stored in a five-dimensional (5D)
array of double-precision typed data, named unk. It is allocated once at the start of the FLASH run and has the
same size in each MPI process. The array contains a dimension for mesh variables, cells in each coordinate
direction and blocks. For example, the data for the density mesh variable (DENS VAR) in cell (i,j,k) of block
(lb) can be accessed using unk(DENS VAR,i,j,k,lb). The 5D array has the following dimensions:

unk(NUNK VARS,

NXB + K1D ∗ 2 ∗ NGUARD,

NYB + K2D ∗ 2 ∗ NGUARD,

NZB + K3D ∗ 2 ∗ NGUARD, MAXBLOCKS).

(1)

Here, NUNK VARS is the number of cell-centered mesh variables, e.g. density, pressure and temperature.
NXB, NYB, NZB are the number of x ,y,z internal cells, and NGUARD is the number of guard cells. The
variables (K1D, K2D, K3D) are integer values that take the values (1,0,0), (1,1,0) and (1,1,1) for 1D, 2D and
3D applications, respectively. These integer values allow the same data structure to be used for different
dimensionality simulations without wasting guard cell space in unused dimensions. Finally, MAXBLOCKS is
the maximum number of blocks that can reside in a single MPI process. The array is presented in Fortran
column major ordering, i.e. the dimension NUNK VARS varies most rapidly.

There is no reallocation of the mesh data structure during the application run, so new blocks must fit in the
1:MAXBLOCKS space in the process that they are placed. This presents a challenge for computational scientists
as they must select a value for MAXBLOCKS that enables unk to fit in memory but also provide sufficient free
space for new blocks.

2.2. File layout

Only actual blocks are stored in file (nblocks of the entire MAXBLOCKS dataspace); guard cells are excluded.
The standard file layout used by FLASH places each of the NUNK VARSmesh variables into its own 4D variable
in the file (one application variable corresponds to one in-file variable). In section 5, we will discuss an
experimental file layout that uses a single 5D dataset, or variable, to hold all NUNK VARSmesh variables in file.
Henceforth, we refer to file layouts as either standard or experimental. We will discuss later the performance
implications of the standard and experimental file layouts.

The existing I/O strategy for transferring data from memory to file, implemented on top of both HDF5
and PNetCDF, has been used in FLASH over the last several years and is well studied. It involves copying
internal cell data for a single mesh variable into a temporary contiguous buffer and then passing a pointer
to this temporary buffer to the I/O library write function. This leads to a straightforward data transfer for
MPI-IO as there is a contiguous data layout in memory and file. The process is repeated for each of the
mesh variables, meaning that the test application we will discuss in section 3 will need to make ten write
calls for checkpoint files and three write calls for plot files. This approach works well on most architectures,
especially if the application requests collective I/O. Copying into a temporary buffer also maps well to the
programming interfaces provided by high-level I/O libraries—one variable per function call. This approach
has two drawbacks. The application must make multiple calls to the I/O subsystem, potentially incurring a
latency cost with each request. Secondly, using a temporary memory buffer may not be desirable on future
architectures where the memory per core is expected to be lower than that on the present systems [15].

In this work, we evaluate a second strategy (new to FLASH) in which we select the data in unk directly
by selecting relevant areas in memory using MPI-derived datatypes (PNetCDF library) or hyperslabs (HDF5
library). Previous experiments have studied HDF5 hyperslab behavior [5, 16], but in those studies hyperslabs
selected the file region each process would write. In that previous work the FLASH application would still copy
the variable from the unk buffer into a temporary (contiguous) memory region before calling the I/O library
routine. Our new strategy makes two changes: firstly, bypassing the temporary buffer by selecting memory
regions directly and, secondly, altering the file format so that all application variables reside in a single large

4

Computational Science & Discovery 5 (2012) 015001 R Latham et al

Figure 2. Data extracted from a single block in a 1D simulation with NUNK VARS = 10 (ten mesh
variables), nPlotVar = 3 (three mesh variables for visualization), NXB = 8 (eight internal cells) and
NGUARD = 4 (four guard cells).

Table 1. MPI / HDF5-derived datatypes for unk.

Type Selected mesh variables File layout File type

A 1 Standard Checkpoint/plot
B NUNK VARS (10) Experimental Checkpoint
C nPlotVar (3) Experimental Plot

and contiguous region on disk. By having the application use one large variable or dataset in the high-level I/O
library to represent all application variables, we can then make a single library call to write out the variable.

Often, additional memory copies raise performance concerns. In contexts dominated by I/O time, such
as checkpoint I/O, applications spend negligible time in memory copies. We wish to point out to the reader
that the performance benefits from these approaches result entirely from changes to the I/O access pattern.

Figure 2 shows the exact data that must be extracted from memory into checkpoint and plot files for a
simplified 1D simulation. The figure shows selected cells in gray and ignored cells in white. In total, we use
three different datatypes to select data for standard and experimental layouts for both checkpoint and plot files.
The first datatype, type A, selects all memory locations containing the same single-mesh variable. It is used
to produce files that are laid out in the standard FLASH file format and is applicable to checkpoint and plot
files. Type A is re-used for each mesh variable in turn by simply adjusting the start memory position. The next
datatypes, type B and type C, select all memory locations for all mesh variables for checkpoint and plot files,
respectively. A brief summary of the datatype properties is shown in table 1.

All three derived datatypes incorporate the same pattern of guardcell exclusion. Since this
is a simple, regular pattern, it is described using an MPI Type create subarray (PNetCDF) and
H5Sselect hyperslab (HDF5). These API calls are all that is needed to create type A and type B;
the only difference between these types is the extent of the subarray in the first dimension. It is more
complicated to create type C because the selection is not a simple subarray of a primitive type. The required
extra step for PNetCDF is to first create an intermediate MPI datatype that selects the mesh variables at
indices 1,6,7 (see figure 2). This involves using MPI Type indexed and then MPI Type create resized
to adjust the memory space extent to NUNK VARS. Finally, the intermediate derived datatype is passed to
MPI Type create subarray to exclude guardcells as before. The required extra step for HDF5 is to take
type A and then accumulate the mesh variables at indices 1,6,7 using H5S SELECT OR. All block data can be
selected by repeating the derived datatypes nblock times because all blocks have the same size over this grid.

Note that the construction of these memory descriptions provides a good example of collaboration.
The I/O experts can educate domain scientists about the optimizations provided by the I/O libraries. The
application developers possess the familiarity with the application data model to make full use of the provided
optimizations.

3. Input/Output (I/O) experiments

All experiments are performed on the IBM Blue Gene/P, Intrepid, at Argonne National Laboratory (ANL) [17].
This Blue Gene installation has 160K cores, each operating at 850 MHz with four cores per compute node. It

5

Computational Science & Discovery 5 (2012) 015001 R Latham et al

is configured with one I/O node per 64 compute nodes, and can deliver approximately 300 MiB per second
of I/O bandwidth per I/O node. Earlier hardware studies using IOR, a synthetic benchmark, achieved 40 GiB
per second with large block I/O at 65536 cores [18]. The Intrepid hardware configuration has changed since
that earlier study: some caches have been disabled, trading some performance for additional durability of data.
Furthermore, the workloads in these application experiments are not like the large, block-aligned requests
generated by IOR. We only used the production GPFS file system. All experiments are submitted as Virtual
Node (VN) jobs, which means that all four cores in a processor run an independent MPI process, and each
core has access to a private 512 MiB memory region.

The test application is the standard Sedov simulation that is included in the FLASH distribution. Sedov
evolves a blast wave from a delta-function initial pressure perturbation (for further details see [19]). The Sedov
problem exercises the infrastructure (AMR and I/O) of FLASH with minimal use of physics solvers. It can,
therefore, produce representative I/O behavior of FLASH without spending too much time in computations.
Each block consists of ten mesh variables, and the problem size is controlled by adjusting the global number
of blocks. Because our interest is focused on I/O behavior, we choose to advance only four timesteps and
to produce I/O output every single step so that most application runtime is spent performing I/O rather than
computation.

In these experiments we switch off adaptivity, again to focus on I/O behavior, by setting the minimum
mesh refinement level equal to the maximum mesh refinement level using parameter values of lrefine min
= lrefine max = 5. As a result, all blocks will recursively bisect the same number of times to the same
fully refined level and then remain at that level. A single block at the base level mesh produces (2D)L−1 leaf
and

∑L
n=1(2

D)n−1 total blocks, where D is the dimensionality and L is the finest fully refined level. In our
case of L = 5 and D = 3, a single block at the base level mesh creates an oct-tree mesh with 4096 leaf blocks
and 4681 total blocks. We can easily control the total block count by adjusting the number of base level blocks
in each coordinate direction using the configuration parameters nblockx, nblocky and nblockz. Adaptivity
and refinement costs can be a source of runtime overhead in FLASH science runs, but the FLASH timing
infrastructure records that cost separately. The FLASH application stores mesh data in a canonical (array)
format before conducting I/O, as discussed in section 2.1. Thus, the underlying I/O libraries see essentially
the same workload regardless of adaptivity at the application level.

In our studies quantifying the benefits of collective I/O (section 4) and examining the performance
implications of altering the on-disk format (section 5), we adjust the parameters to provide approximately
32 leaf blocks per core. This problem size, on a per core basis, is representative of current simulations this
application group runs on Intrepid.

Our study of the Parallel-NetCDF nonblocking optimizations (section 6) uses about 11 blocks per core—
the smallest number of data per core the FLASH team would ever consider using in a production run. We
use a smaller number of data per core for several reasons: as a pragmatic matter, I/O research groups have
only limited CPU hours on leadership class machines; as we scale our experiments to larger core counts we
need to constrain the total number of CPU hours consumed for I/O benchmarking. Furthermore, increasing
the per-core working set is too easy a way to achieve higher I/O rates. This smaller working set draws into
greater focus the overheads of the I/O library and MPI-IO middleware layers. In experiments with much larger
working sets, the time spent transferring bytes to storage dominates any other overheads. Scalability studies
with small per-core working sets also help us prepare for future machine designs: the International Exascale
Software Roadmap [15] suggests that future architectures may have orders of magnitude lower memory per
core than present architectures. Applications will thus not be able to merely increase the problem size to
achieve higher I/O rates, and will instead require I/O strategies and novel programming APIs and models that
can successfully deal with small numbers of data per processor.

The I/O in each step consists of checkpoint files for restart purposes and plot files for analysis.
A checkpoint file is a dump of the complete state of a running application, including mesh data in double
precision and, if included, particles. A plot file is a user-selected subset of mesh variables stored in single
precision. In these experiments checkpoint I/O writes all ten mesh variables. Plot file I/O writes only selected
variables of interest (in these experiments, the first, sixth and seventh variables). In both the checkpoint
and plotfile cases, for post-processing convenience, the application creates a single file containing all output
variables, a layout we call the standard file layout.

6

Computational Science & Discovery 5 (2012) 015001 R Latham et al

The FLASH log file records timings for an initial setup phase and a subsequent simulation phase. We
configured FLASH to write one checkpoint and one plot file after each of four timesteps. Graphs of these
experiments report the time spent in checkpoint or plot file I/O averaged over the four iterations.

4. Enabling collective I/O optimizations

As mentioned earlier, FLASH can make use of either the HDF5 or Parallel-NetCDF high-level I/O libraries.
Both APIs support collective I/O. Collective I/O interfaces were first enabled in FLASH 3.1; repeated
experiments have demonstrated the benefits of collective I/O to the FLASH access pattern [20, 21]. However, it
was not initially possible to use the collective mode on Intrepid because the output data were silently corrupted
in a non-deterministic fashion. Additionally, the error could not be reproduced on any other platform.

To truly appreciate the challenge of this corruption issue, we need to provide some additional details
of the MPI-IO implementation on Intrepid. It was our good fortune to have access to the source code to the
BlueGene MPI library. We also had FLASH developers providing ROMIO experts simplified test cases.

We eventually found the problem in the datatype processing part of the MPI-IO library. MPI-IO uses
MPI datatypes to describe non-contiguous accesses in memory and in file. Such non-contiguous accesses arise
naturally when dealing with scientific data (e.g. a sub-cube of a multi-dimensional array) or when dealing with
an I/O library’s file format (e.g. describing lists of data blocks stored in an HDF5 file).

The MPI-IO implementation on Intrepid is based on the portable ROMIO MPI-IO library [22] (as are
nearly all MPI-IO implementations). ROMIO processes MPI datatypes by ‘flattening’ them, or constructing
a list of offset-length pairs. These flattened representations are in turn stored inside the library so as to avoid
paying the cost of generating the representation should a type be used again.

We found that the ROMIO MPI-IO library was assigning the wrong flattened representation to one of
these MPI datatypes, re-using a flattened representation from a prior I/O request. This mismatch between
datatype and representation resulted in HDF5 files containing corrupted data. Earlier testing failed to find this
problem as those tests did not repeatedly set a different file view. The high-level I/O library (HDF5 in this case)
does set multiple file views each time a different variable is accessed in the file. While identifying the problem
took a great deal of time, the eventual fix was quite simple: fix ROMIO to clean up datatype representations
once they are no longer used. We used our own patched version of the MPI-IO library containing this fix until
the Intrepid library was upgraded to V1R4.

With collective I/O data corruption fixed, the FLASH team could once again complete simulations
in a reasonable amount of time. We present a comparison between collective I/O and independent I/O
to emphasize the importance of this optimization for high I/O rates. Furthermore, MPI-IO collective I/O
provides the foundation for the other optimizations we investigated: the lack of a correct and efficient MPI-IO
implementation hindered our ability to achieve high I/O performance until the collective I/O bug was fixed.

FLASH3 can use the HDF5 library in collective or independent mode through a runtime parameter
useCollectiveHDF5 in the flash.par parameter file [19]. This parameter is varied in figure 3 to show
the impact of collective I/O optimizations during weak scaling experiments. Note that FLASH3 only uses the
PNetCDF library in collective mode and so we choose to show PNetCDF performance measurements in later
sections.

The results in figure 3 clearly show that collective I/O optimizations improve write performance and that
the improvement is more significant at higher core counts. The collective I/O optimization involves merging
I/O requests from multiple processes into fewer larger requests from a subset of processes. The underlying file
system delivers higher performance with larger, contiguous request sizes. Consolidating I/O traffic down to
a subset of ‘I/O aggregators’ also reduces the number of processes simultaneously writing to the file system.
Further, the MPI-IO library will align writes to file system block boundaries, reducing lock contention [23].
These factors all contribute towards collective I/O taking one tenth the time of the independent I/O case at
8192 MPI processes. At larger process counts, the discussion for this workload is not about improving I/O
rates but rather allowing I/O to complete in anything resembling an acceptable amount of time.

These observations are consistent with a recent study on Jaguar at Oak Ridge National Laboratory (a
Cray XT4 (at the time of the paper) with a Lustre parallel file system) which also investigated collective I/O

7

Computational Science & Discovery 5 (2012) 015001 R Latham et al

checkpoint file (independent)

 0

 1
00

0

 2
00

0

plot file (independent)

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

checkpoint file (collective)

 8
00

0

plot file (collective)

 9
00

0

 (lrefine_min=lrefine_max=5 fixed and nblock[xyz] varied).

Time for one checkpoint / one plot file during Sedov weak scaling experiments
Average of 32 leaf blocks (16^3 cells) / process − used HDF5 I/O library

Number of cores

T
im

e
(s

ec
on

ds
)

 0

 50

 100

 150

 200

 250

 300

 350

 400

Figure 3. Impact of collective I/O optimizations on the time to write checkpoint files and plot files
when using the HDF5 library. Independent I/O exhibits poor scalability, even at scales representing
a fraction of the entire machine. Collective I/O reduces the time for these operations by an order of
magnitude.

optimizations with FLASH using the HDF5 library [24]. Here, the authors found that a FLASH application
run on 8192 cores produced a checkpoint file 2.5 times faster with collective I/O, and 4.6 times faster when the
collective I/O was combined with striping the file across all 144 I/O servers (Object Storage Targets (OSTs)).
Similar studies also show performance improvement from using collective I/O with FLASH applications on
NCAR Bluesky and uP [25] and ASCI White Frost [20].

To generalize this scenario somewhat, as applications ran on petascale systems they frequently
encountered difficulty in achieving performance through collective I/O. Not unreasonably, these groups took
the pragmatic approach of abandoning collective I/O and adopting alternate approaches (Carns et al [26]
show the prevalence of file-per-process on a production machine; Bent et al [27] describe how to implement
file-per-process while presenting a single shared file to the application). However, the involvement of the I/O
community frequently results in improvements benefiting all applications [28]. Beyond improvements specific
to FLASH, we hope from this and other recent works that applications re-consider the benefits of collective
I/O and high-level I/O libraries.

Even with the large performance gains collective I/O provides for standard FLASH, other storage
performance studies [18] suggest that the standard FLASH I/O approaches achieve only half of the theoretical
peak. We hypothesize that we can attribute some portion of this missing performance to the fact that we make
one high-level I/O call per variable, and that if we could perform all I/O in a single write we would get back
some of the missing performance. The next two sections document the tricks we applied to further improve
I/O performance, and the trade-offs those approaches offer us.

5. Changing the FLASH file layout

When determining the file layout a scientific application will use, a developer will consider several factors.
The high-level I/O libraries that FLASH uses offer an API tailored for single-variable access. For example,
the parameters to HDF5’s H5DWrite function describe a memory region and a file region associated with

8

Computational Science & Discovery 5 (2012) 015001 R Latham et al

PnetCDF (standard)

 8
00

0

PnetCDF (experimental)

Sedov weak scaling experiments: average of 32 leaf blocks (16^3 cells) / process
(lrefine_min=lrefine_max=5 fixed and nblock[xyz] varied).

 9
00

0

T
im

e
(s

ec
on

ds
)

(b) Time to write one plot file

Number of cores

 0

 20

 40

 60

 80

 100

 0

 1
00

0

 0

 10

 20

 30

 40

 50

 60

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

T
im

e
(s

ec
on

ds
)

(a) Time to write one checkpoint file

Number of cores

HDF5 (standard)

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

HDF5 (experimental)

Figure 4. (a) Impact of file layout on the time to write a checkpoint file (a) and a plot file (b).

a single HDF5 variable or dataset. The Parallel-NetCDF ncmpi put vara double all function likewise
writes (subarray) data into a specific variable. Separating application data into individual variables on disk
offers a straightforward implementation. Furthermore, other tools in the scientific workflow, such as those for
visualization or analysis, might find a file layout where each application variable is stored as a separate object
easier to manage, and potentially more self-descriptive.

The standard file layout approach (storing application data in multiple library objects), however, offers
a slight performance trade-off. Each function call represents a relatively expensive I/O operation. All other
factors aside, if the goal is to achieve the highest I/O performance a better approach would describe the entire
application I/O pattern and then execute a single call [29]. If the application places all mesh variables into a
single I/O library object, as in the experimental file layout approach, then a single I/O library call could be
issued to service all application variables instead of N separate calls. Experiments confirm that this approach
does improve performance.

Figure 4 shows the average time to write a file for the standard and experimental file layouts for checkpoint
and plot files. In this figure, the standard file layout measurements are obtained using the traditional FLASH
approach of copying data into a temporary buffer. The experimental file layout measurements are obtained
using a datatype memory selection (as described in table 1).

The results generally show that the experimental file layout reduces the time to write checkpoint files
and plot files by half (HDF5) to one-third (PNetCDF). This is because the single library call transfers a larger
quantity of data and thus gives further opportunity for the MPI-IO library to optimize the file accesses.

One notable exception is the time to write plot files with HDF5 library. When writing plot files,
FLASH writes double-precision floating point data out as single precision. The HDF5 library detects this
type conversion from double precision in memory to single precision in file and disables collective I/O
optimizations, falling back to independent I/O. This type difference does not affect the approach using
PNetCDF because PNetCDF allocates extra buffers internally, casts all data to the destination type and then
passes that intermediate buffer to the MPI-IO library to transfer data to the file (background in [10]). At these
scales and with this amount of I/O being written to disk, the additional memory copies in the PNetCDF library
add no measurable overhead.

It is possible to quantify how the file accesses change by using the Darshan tool [30] developed at ANL.
Darshan is a library that captures information about the usage of MPI-IO and POSIX functions. It uses the MPI

9

Computational Science & Discovery 5 (2012) 015001 R Latham et al

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0-100
101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G+

C
ou

nt
 (

T
ot

al
, A

ll
P

ro
cs

)

I/O Sizes

Read Write

Most Common Access Sizes
access size count
16777216 1886
4194304 763
1072 512

8388608 120

Figure 5. Selected Darshan high-level statistics for the standard file layout. The 512 1072-byte reads
should be ignored as they stem from initially reading a configuration file.

 0

 500

 1000

 1500

 2000

 2500

0-100
101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G+

C
ou

nt
 (

T
ot

al
, A

ll
P

ro
cs

)

I/O Sizes

Read Write

Most Common Access Sizes
access size count
16777216 2094
1072 512

8388608 66
74896 44

Figure 6. Selected Darshan high-level statistics for experimental file layout. The 512 1072-byte reads
should be ignored as they stem from initially reading a configuration file.

profiling interface to monitor MPI-IO functions and wrapper functions inserted using GNU linker to monitor
POSIX functions. We show the most relevant statistics when using the PNetCDF library for standard file layout
in figure 5 and experimental file layout in figure 6. The improvement in average I/O operation size is most
apparent in the histogram, showing that while there are write operations less than 10 MB in size, they account
for a small portion of the total. We record an additional 208 16 MiB-sized accesses for the experimental file
layout, which appear to replace some of the 763 4 MiB accesses from the standard file layout. We know that
the MPI-IO library on BlueGene uses a two-phase collective buffering optimization which by default uses a
16 MiB intermediate buffer. Seeing a large number of 16 MiB access sizes strongly suggests that the two-phase
optimization is operating efficiently.

The small file accesses stem from reading the FLASH parameter file and the PARAMESH parameter file
and also writing to the FLASH log file. These small operations have a negligible impact on performance at

10

Computational Science & Discovery 5 (2012) 015001 R Latham et al

this scale and so have not been scrutinized. The Darshan summaries do suggest that a more scalable approach
for reading in this parameter information might be needed for future levels of scalability.

To summarize, the organization of data in a file can have surprising implications for computational
scientists. We were able to reduce the time to produce a checkpoint or plot-file from one-half to one-third
of the original time. The Darshan tool confirmed our hypothesis that this reduction in time came from a more
favorable I/O workload—a larger number of requests for large blocks and a smaller number of short blocks.
These improvements come at the cost of a significant change to the FLASH science workflow: a new file
format would require updating a host of analysis and visualization tools. In the next section we consider an
alternate approach providing all the performance benefits of the alternate file format without actually needing
to change the file format.

6. Nonblocking I/O with the Standard File Layout

The experimental layout in section 5 is less convenient for postprocessing tools because all mesh data are
stored in the same array. This means that the tools must perform strided reads to extract data for a single
mesh variable, e.g. density. This represents a significant trade-off between the write performance and read
performance. In addition to the performance trade-off, the Flash Center already has a huge quantity of data
laid out in the standard file format and many tools expecting this file format. Examples of such tools include
quickflash [31], Visit [32] and custom applications that create simulation movies of galaxy cluster mergers and
buoyancy-driven turbulent nuclear combustion.

Ideally, there would be a mechanism that would allow us to combine write operations and give us
improved write performance while maintaining the established file layout. A recent extension to the Parallel-
netCDF API allows exactly that [33]. The nonblocking Parallel-NetCDF API offers similar semantics as that of
MPI nonblocking routines. A caller posts one or more nonblocking operations, passing in a buffer that cannot
be modified until a subsequent test for completion indicates that the operation has completed. Typically, these
interfaces are used to overlap computation with I/O or communication, but in this case, Parallel-NetCDF uses
the interface to combine all posted operations into one larger, more efficient operation in a model similar to
that used by Bulk Synchronous Parallel [34]. The write-combining optimization in Parallel-NetCDF provides
all of the benefits of the experimental file layout (describing the entire operation with a single request), while
retaining the established file layout for compatibility and convenience.

To demonstrate the performance impact of our new approaches, we performed weak scaling experiments
up to 65 536 cores on Intrepid. Each experiment wrote out four checkpoint files containing ten double-
precision variables and associated annotations and four plot files containing three single-precision variables
and associated annotations. The same FLASH binary is used for all experiments and is configured to select
grid data using type A for the write-combining tests and types B and C for the experimental file layout tests.

These experiments run at eight times more MPI processors than the experiments presented earlier in
this paper. The larger scale necessitated a smaller per-process working size so as to limit overall CPU-hour
consumption to a manageable size. Even with the smaller per-process size of 11 blocks per core, at the largest
scales we are producing checkpoint files of 229 GiB and plot files of 35 GiB.

As discussed in earlier sections, these two approaches to improving I/O performance—altering the
FLASH file layout or using the Parallel-netCDF write-combining optimization—should have the same
I/O characteristics. In both cases, the high-level I/O library can issue a single I/O operation to the file
system encompassing data from multiple application variables at once. In figures 7 and 8, the experimental
format approach and the nonblocking interface to the standard format approach do have essentially identical
performance. Larger requests and fewer syncronization points yield three to four times better performance,
even at these much larger scales. The unexpected performance drop-off for checkpoint writes at 64 K cores
warrants further study.

Why does the standard, one-variable-at-a-time approach fail to scale? Consider the checkpoint case. In
this weak scaling study, each processor contributes 374 480 bytes per variable. The MPI-IO layer will apply an
optimization called ‘I/O aggregation’, where the library designates a subset of MPI processes to perform I/O
on behalf of all processors. The default setting on BlueGene has one aggregator for every 32 MPI processes.

11

Computational Science & Discovery 5 (2012) 015001 R Latham et al

 4096

 2

 3

 4

 5

 6

 7

 8

D
at

a
ou

tp
ut

 r
at

e
(G

B
/s

ec
)

 4096 8192 16384 32768 65536

Number of MPI processes

 8192 16384 32768 65536

Number of MPI processes

(b) FLASH Plotfile I/O Bandwidth

Experimental formatStandard format, nonblockingStandard format, blocking

(a) FLASH Checkpoint I/O Bandwidth

 0

 1

 2

 3

 4

 5

 6

 7

 8

D
at

a
ou

tp
ut

 r
at

e
(G

B
/s

ec
)

 1

Figure 7. (a) Weak scaling bandwidth results for FLASH checkpoint writes. Aggregating multiple
operations, either by changing file layout or by using the PNetCDF nonblocking interface, greatly
enhances the scaling ability. (b) Weak scaling results for FLASH plotfile writes. The small amount of
I/O per process at these scales prevents high bandwidth rates, but even so, operation aggregation offers
a 40% gain in bandwidth.

 300

 50

 100

 150

 200

 250

 300

D
at

a
ou

tp
ut

 ti
m

e
(s

ec
)

 4096 8192 16384 32768 65536

Number of MPI processes

D
at

a
ou

tp
ut

 ti
m

e
(s

ec
)

 4096 8192 16384 32768 65536

Number of MPI processes

(b) FLASH Plotfile I/O Time

Experimental formatStandard format, nonblockingStandard format, blocking

(a) FLASH Checkpoint I/O Time

 0

 50

 100

 150

 200

 250

 0

Figure 8. Scaling results of time spent in I/O for the checkpoint (a) and plot file (b).

Thus the I/O aggregators make requests of about 11 MiB. Because checkpoint I/O under the nonblocking I/O
approach and the experimental file layout combines ten application variables, the average request size increases
by ten times. These two approaches also result in less synchronization. Instead of ten rounds of collective I/O,
the alternate approaches perform only a single round.

Plot file I/O only further exacerbates the ‘data per process’ problem. The plot file case writes fewer
variables (three, in this case) and those variables are stored in a smaller 4-byte floating point type, instead of
the full 8-byte precision used in the checkpoint case. For these plot file runs, each process contributes only 187
KiB of data per variable. MPI-IO’s I/O aggregation optimization brings the average request per variable up to
just under 6 MiB. Three plot file variables will result in each I/O aggregator writing 17 MiB.

The MPI-IO library uses a temporary buffer to stage I/O as part of its two-phase optimization. If an
aggregator has to process more I/O than this buffer, it breaks the I/O into pieces big enough to store into the
scratch buffer and issues multiple writes. The default buffer size on BlueGene is 16 MiB. If we re-run the

12

Computational Science & Discovery 5 (2012) 015001 R Latham et al

experiment with a 64 MiB intermediate buffer (big enough to hold all checkpoint and plot file data) we can
further improve performance. We did not have enough time to conduct this experiment, however.

The storage system on Intrepid performs best with large I/O requests—of the order of megabytes. These
alternate approaches yield plot file I/O performance short of the I/O rates achieved by checkpoint I/O.
However, by increasing the average size of the I/O operation seen by the storage system, these approaches
boost I/O rates by about 40% over the one-variable-at-a-time technique.

Regardless of the approach, reducing the number of collective operations sees benefits from two sources:
increasing the request size and reducing the amount of syncronization. While we can use tools such as the
Darshan statistics tool to demonstrate the change in I/O request size, we would also like to be able to quantify
the overhead of the two-phase collective I/O optimizations, specifically the portion of time spent in I/O versus
the amount of time spent re-arranging the data into a more I/O friendly workload. Darshan provides a good
first step; however, it overstates the cost of the communication phase in some configurations, especially the
ones like BlueGene where the ratio of compute nodes to I/O aggregators is so high. We have engaged the
Darshan developers to come up with a new metric to accurately capture this cost.

7. Related work and future directions

In this work, we applied and evaluated MPI collective I/O and Parallel-NetCDF non-blocking optimizations,
at which point we deemed I/O performance sufficiently addressed as far as the FLASH application was
concerned. However, the parallel I/O research community has developed many techniques for improving
application I/O performance. Even though we did not apply these techniques to FLASH, application groups
looking for improved I/O performance should consider these approaches.

At the lowest levels of the I/O software stack research has shown benefits from interfaces allowing a
richer description of the I/O workload. The NCIO benchmark is developed and derived from the I/O pattern
of earlier FLASH development that produces a high degree of non-contiguity in file access pattern [35].
The optimizations proposed in this work include the list I/O and datatype I/O. Both approaches use concise
representations for a large number of non-contiguous requests to reduce the data transfer between file system
clients and servers. In this work, the optimizations were implemented in the PVFS2 file system. While PVFS2
is available on the Intrepid machine, the BlueGene I/O forwarding layer unfortunately does not expose the list
I/O and Datatype I/O interfaces.

In addition to the MPI-IO optimizations discussed in this work, the MPI-IO layer has been host to further
optimizations. Collaborative client-side file caching, a user-space distributed caching layer in MPI-IO, was
proposed in [36]. It enables small request aggregation in the cache buffers so that they are later flushed to the
file system in order to achieve higher bandwidths.

Various file domain partitioning methodologies in MPI-IO implementation were studied and proposed to
align I/O requests with the file system locking and striping configurations in order to minimize the possible
lock conflicts [37]. Significant performance improvements have been reported on parallel computers with
Lustre and GPFS parallel file systems. The BlueGene MPI-IO library does already implement the GPFS-
favorable ‘block aligned’ optimization. Any BlueGene systems running the Lustre file system, however, will
need to modify their MPI-IO library.

I/O delegation is proposed as an optimization for MPI-independent I/O [38]. It employs separate
MPI processes to perform I/O for the application processes. This dedicated caching process can aggregate
small requests, in some ways achieving the benefits of collective I/O without as much communication
or synchronization overhead. Large applications like FLASH using MPI-independent I/O can in some
configurations outperform collective I/O. This and other research suggests that a ‘set aside process’ facility
would be helpful on systems of BlueGene’s scale, but such a facility has not been developed or deployed at
this time.

One additional Parallel-NetCDF optimization we did not evaluate was subfiling, proposed in [39]. This
approach divides large arrays into smaller ones and saves each subarray to a separate file. Since PnetCDF stores
data in the self-describing netCDF file format, subfiling can operate transparently to the users. In addition,
dividing write requests among more files reduces the number of processes competing the file system locks

13

Computational Science & Discovery 5 (2012) 015001 R Latham et al

and hence can achieve higher performance. In the FLASH case, we were able to optimize this workload fairly
closely to peak performance (given the per-client working set sizes) and decided we would face diminishing
returns if we were to pursue additional optimizations.

8. Conclusions

This work demonstrates the potential for improving I/O rates in computational science applications through
several means. A detailed understanding of the I/O software stack and the storage architecture of the Intrepid
machine coupled with an equal level of familiarity with the FLASH data model allowed this collaboration to
quickly experiment with altering file formats and novel programming interfaces to reduce checkpoint times
for FLASH.

In this paper we show that collective I/O optimizations are important to the write performance of FLASH
checkpoint files and plot files. However, using collective I/O optimizations alone may not be enough for the
increasing I/O demands of FLASH where the scientists want to use finer-resolution grids, larger numbers of
particles and more frequent file output. We demonstrate that further optimization is possible by changing the
file layout, and we show that writing all mesh variables to the same dataset can improve write performance
significantly. Here, many I/O library writes are replaced with a single I/O library write which gives the MPI-
IO library more opportunity for optimization. The low-level impact of this change is monitored using the
Darshan library and we find that a larger portion of file accesses involve big data transfers.

The file layout change yields higher performance during the simulation phase, but will require updating
other tools in the analysis workflow to understand this new file format. The new format would also turn reads
of a single mesh variable into a strided read, potentially slowing down read performance significantly. This
leads us to experiment with the nonblocking write feature of PNetCDF, which allows us to retain the standard
FLASH file layout. We find that this approach gives us performance similar to the experimental FLASH file
layout, while maintaining compatibility with existing analysis applications.

We have demonstrated that collaboration between application developers and I/O consultants is essential,
especially when there are bugs below the application layer. There are many layers of abstraction in the I/O
software stack, and application developers do not have the time or expertise to resolve these problems. In
this case study, the collective I/O bug remained an open problem for over a year and prevented running
certain science problems at larger scales. Since the fix, collective I/O has been used in all FLASH production
simulations on BlueGene/P. In a recent simulation of the ‘Deflagration to Detonation Transition’ (DDT) model
of a Type Ia supernova, approximately 7% of total wallclock time was spent in I/O. This simulation was run
on 65 536 cores for just under 12 h and produced five checkpoint files, 17 plot files and 74 particle files at a
total size of 7.4 TiB. The additional optimization approaches we have discussed reduce the further time spent
in I/O and will become more important on future architectures.

Acknowledgments

We thank all the past contributors to the FLASH code. The software described in this work was in part
developed by the DOE-supported ASC/Alliance ASC/Flash Center at the University of Chicago under grant
B523820. This research used the resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DE-
AC02-06CH11357. This work was supported in part by the US Department of Energy under contract DE-
AC02-06CH11357, SCIDAC SDM Center grant numbers DE-FC02-07ER25808 and DE-SC0001283, ASCR
DE-SC0005309 and ASCR DE-SC0005340, the US National Science Foundation: HECURA CCF-0621443,
CCF-0938000, SDCI OCI-0724599, ST-HEC CCF-0444405, CNS-0551639 and IIS-0536994.

References

[1] Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W and
Tufo H 2000 FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
Astrophys. J. Suppl. Ser. 131 273–334

14

http://dx.doi.org/10.1086/apjs.2000.131.issue-1

Computational Science & Discovery 5 (2012) 015001 R Latham et al

[2] Antypas K, Calder A C, Dubey A, Fisher R, Ganapathy M K, Gallagher J B, Reid L B, Riley K, Sheeler D and
Taylor N 2006 Scientific applications on the massively parallel bg/l machine Proc. 2006 Int. Conf. Parallel and
Distributed Processing Techniques and Applications & Conf. on Real-Time Computing Systems & Applications
ed H R Arabnia pp 292–8

[3] HDF5 http://hdf.ncsa.uiuc.edu/HDF5/
[4] Parallel netCDF http://www.mcs.anl.gov/parallel-netcdf/
[5] Ross R, Nurmi D, Cheng A and Zingale M 2001 A case study in application I/O on linux clusters Proc. SC2001

pp 1–17
[6] Ching A, Choudhary A, Liao W-K, Ross R and Gropp W 2002 Noncontiguous I/O through PVFS Proc. IEEE

Cluster ed W Gropp, R Pennington, D Reed, M Baker, M Brown and R Buyya (IEEE Computer Society)
pp 405–14

[7] Ching A, Choudhary A, Liao W K and Pundit N 2006 Evaluating i/o characteristics and methods for storing
structured scientific data Proc. Int. Parallel Distributed Processing Symp. doi: 10.1109/IPDPS.2006.1639306

[8] Yu W and Vetter J S 2008 Parcoll: partitioned collective I/O on the Cray Xt ICPP pp 562–9
[9] Ross R, Miller N and Gropp W 2003 Implementing fast and reusable datatype processing EuroPVM/MPI Conf.

(Berlin: Springer) pp 404–13
[10] Ross R, Latham R, Gropp W, Lusk E and Thakur R 2009 Processing MPI datatypes outside MPI Lecture Notes in

Computer Science 42–53
[11] Dubey A, Reid L B, Weide K, Antypas K, Ganapathy M K, Riley K, Sheeler D J and Siegal A 2009 Extensible

component based architecture for flash, a massively parallel, multiphysics simulation code CoRR abs/0903.4875
[12] Palmer B, Koontz A, Schuchardt K, Heikes R and Randall D 2011 Efficient data IO for a parallel global cloud

resolving model Environ. Model. Softw. 26 1725–35
[13] Chen J H et al 2009 Terascale direct numerical simulations of turbulent combustion using s3d Comput. Sci. Dis.

2 015001
[14] Fu J, Min M, Latham R and Carothers C D 2011 Parallel I/O performance for application-level checkpointing on

the blue gene/p system Cluster Computing (CLUSTER), 2011 IEEE Int. Conf. pp 465–73
[15] Dongarra J et al 2011 The International exascale software project roadmap Int. J. High Perform. Comput. Appl.

25 3–60
[16] FLASH I/O Benchmark http://flash.uchicago.edu/∼zingale/flash benchmark io/
[17] ALCF Computing Resources http://www.alcf.anl.gov/resources/storage.php
[18] Lang S, Carns P, Latham R, Ross R, Harms K and Allcock W 2009 I/O performance challenges at leadership scale

Proc. of the Conf. on High Performance Comp. Networking, Storage and Analysis 40:1–40:12
[19] FLASH3.2 User Guide http://flash.uchicago.edu/website/codesupport/flash3 ug 3p2.pdf
[20] Li J, Liao W K, Choudhary A, Ross R, Thakur R, Gropp W, Latham R, Siegel A, Gallagher B and Zingale M 2003

Parallel netCDF: a high-performance scientific I/O interface Proc. SC2003 39
[21] Yang M and Koziol Q 2006 Using collective IO inside a high performance IO software package—HDF5 Technical

Report National Center of Supercomputing Applications
[22] Thakur R, Gropp W and Lusk E 1999 On implementing MPI-IO portably and with high performance Proc. 6th

Workshop on I/O in Parallel and Distributed Systems (New York: ACM) pp 23–32
[23] Yu H et al 2006 High performance file I/O for the BlueGene/L supercomputer Proc. 12th Int. Symp. on High-

Performance Computer Architecture (HPCA-12) 187–96
[24] Jagode H, Knüpfer A, Dongarra J, Jurenz M, Müller M S and Nagel W E 2009 Trace-based performance analysis

for the petascale simulation code FLASH 428–39
[25] Chilan C M, Yang M, Cheng A and Arber L 2006 Parallel I/O performance study with HDF5, a scientific data

package
[26] Carns P, Harms K, Allcock W, Bacon C, Lang S, Latham R and Ross R 2011 Understanding and

improving computational science storage access through continuous characterization Mass Storage Systems and
Technologies, IEEE/NASA Goddard Conf. pp 1–14

[27] Bent J, Gibson G, Grider G, McClelland B, Nowoczynski P, Nunez J, Polte M and Wingate M 2009 PLFS:
a checkpoint filesystem for parallel applications Proc. Conf. on High Performance Computing Networking,
Storage and Analysis, SC ’09 (New York: ACM) pp 21:1–21:12

[28] Howison M, Koziol Q, Knaak D, Mainzer J and Shalf J 2010 Tuning HDF5 for lustre file systems Workshop on
Interfaces and Architectures for Scientific Data Storage (IASDS)

[29] Thakur R, Gropp W and Lusk E 1998 Data sieving and collective I/O in ROMIO Proc. Seventh Symp. on the
Frontiers of Massively Parallel Computation (Los Alamitos, CA: IEEE Computer Society Press) pp 182–9

15

http://hdf.ncsa.uiuc.edu/HDF5/
http://www.mcs.anl.gov/parallel-netcdf/
http://dx.doi.org/10.1109/IPDPS.2006.1639306
http://dx.doi.org/10.1007/978-3-642-03770-2_11
http://dx.doi.org/10.1016/j.envsoft.2011.08.007
http://dx.doi.org/10.1088/1749-4699/2/1/015001
http://dx.doi.org/10.1177/1094342010391989
http://flash.uchicago.edu/~zingale/flash benchmark io/
http://www.alcf.anl.gov/resources/storage.php
http://dx.doi.org/10.1145/1654059.1654100
http://flash.uchicago.edu/website/codesupport/flash3 ug 3p2.pdf
http://dx.doi.org/10.1145/1048935.1050189
http://dx.doi.org/10.1109/HPCA.2006.1598125
http://dx.doi.org/10.1177/1094342010387806

Computational Science & Discovery 5 (2012) 015001 R Latham et al

[30] Carns P, Latham R, Ross R, Iskra K, Lang S and Riley K 2009 24/7 Characterization of petascale I/O workloads
Proc. First Workshop on Interfaces and Abstractions for Scientific Data Storage (IASDS) (New Orleans, LA,
September 2009.)

[31] Quickflash http://quickflash.sourceforge.net
[32] VisIt https://wci.llnl.gov/codes/visit/
[33] Gao K, Liao W K, Choudhary A, Ross R and Latham R 2009 Combining I/O operations for multiple array

variables in parallel NetCDF Proc. Workshop on Interfaces and Architectures for Scientific Data Storage, held in
conjunction with the IEEE Cluster Conf. (New Orleans, Louisiana)

[34] Valiant L G 1990 A bridging model for parallel computation Commun. ACM 33 103–11
[35] Ching A, Choudhary A, Liao W K, Ward L and Pundit N 2006 Evaluating I/O characteristics and methods

for storing structured scientific data Proc. 20th Int. Conf. on Parallel and Distributed Processing, IPDPS’06
(Washington, DC: IEEE Computer Society) p 69

[36] Liao W K, Coloma K, Choudhary A and Ward L 2007 Cooperative client-side file caching for MPI applications Int.
J. High Perform. Comput. Appl. 21 144–54

[37] Liao W K and Choudhary A 2008 Dynamically adapting file domain partitioning methods for collective I/O based
on underlying parallel file system locking protocols Proc. 2008 ACM/IEEE Conf. on Supercomputing, SC ’08
(Piscataway, NJ: IEEE Press) pp 3:1–3:12

[38] Nisar A, Liao W K and Choudhary A 2008 Scaling parallel I/O performance through I/O delegate and caching
system Proc. 2008 ACM/IEEE Conf. on Supercomputing, SC ’08 (Piscataway, NJ: IEEE Press) pp 9:1–9:12

[39] Gao K, Liao W-K, Nisar A, Choudhary A, Ross R and Latham R 2009 Using subfiling to improve programming
flexibility and performance of parallel shared-file I/O Proc. 2009 Int. Conf. on Parallel Processing, ICPP ’09
(Washington, DC: IEEE Computer Society) pp 470–7

16

http://quickflash.sourceforge.net
https://wci.llnl.gov/codes/visit/
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1177/1094342007077857

	1. Introduction
	2. FLASH memory and file layout
	2.1. Memory layout
	2.2. File layout

	3. Input/Output (I/O) experiments
	4. Enabling collective I/O optimizations
	5. Changing the FLASH file layout
	6. Nonblocking I/O with the Standard File Layout
	7. Related work and future directions
	8. Conclusions
	Acknowledgments
	References

