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Abstract

This paper presents performance results for the multi-
threaded design and implementation of a parallel pipelined
Space-Time Adaptive Processing (STAP) algorithm on
parallel computers with Symmetrical Multiple Processor
(SMP) nodes. In particular, the paper describes our ap-
proach to parallelization and multi-threaded implementa-
tion on an Intel Paragon MP system. Our goal is to deter-
mine how much more performance can be enhanced using
small SMPs on each node of a large parallel computer for
such an application. The paper also discusses the process
of developing software for such an application on parallel
computers when latency and throughput are both consid-
ered together and presents their tradeoffs. The results show
that not only scalable performance was achieved for indi-
vidual component tasks of STAP but linear speedups were
obtained for the integrated task performance, both for la-
tency as well as throughput.

1. Introduction

Space-time adaptive processing (STAP) is a well known
technique in the area of airborne surveillance radars, which
is used to detect weak target returns embedded in strong
ground clutter, interference, and receiver noise. Most STAP
applications consume great amounts of computational re-
sources and are also required to operate in real time. High
performance computers are becoming mainstream due to
the progress made in hardware as well as software support
in the last few years. They can satisfy the STAP computa-
tional requirements of real-time applications while increas-
ing the flexibility, affordability, and scalability of radar sig-
nal processing systems. However, efficient parallelization
of a STAP algorithm which has embedded in it different al-
gorithms, is challenging and requires several optimizations.

In our previous work [3], we described the parallel

pipelined implementation of a PRI-staggered post-Doppler
STAP algorithm. In this paper, we focus on the multi-
threaded design and implementation on the parallel com-
puters with SMP nodes. This STAP algorithm consists of
five steps: 1)Doppler filter processing, 2)weight compu-
tation, 3)beamforming, 4)pulse compression, and 5)CFAR
processing. For our implementation of this real applica-
tion we designed a model of the parallel pipeline system
where each pipeline is a collection of tasks and each task
itself is parallelized. This parallel pipeline model was ap-
plied to the STAP algorithm with each step as a task in a
pipeline. This permits us to significantly improve latency
as well as throughput. Performance results presented in this
paper were obtained on the Intel Paragon at the Air Force
Research Laboratory (AFRL), Rome, New York.

The Intel Paragon at the AFRL is an MP system which
has three processors on each compute node board. In this
paper, we focus on the design of the parallel pipeline sys-
tem and its implementation using multi-threading on this
system. We demonstrate the performance and scalability
on different numbers of compute nodes for both threaded
and non-threaded implementations. The improvement of
threaded implementation over non-threaded implementa-
tion is provided.

The rest of the paper is organized as follows: in Section
2, we present the parallel pipeline system model and discuss
some parallelization issues. Section 3 describes the multi-
threaded programming environment on the Intel Paragon
MP system. Section 4 presents the implementation. Per-
formance results and conclusions are given in Section 5 and
Section 6 respectively.

2. Model of the parallel pipeline system

The system model for the type of STAP applications con-
sidered in this work is shown in Figure 1. This model is
suitable for the computational characteristics found in these
applications. A pipeline is a collection of tasks which are
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Figure 1. Model of the parallel pipeline sys-
tem. The set of pipelines indicates that the
same pipeline is repeated on subsequent in-
put data sets. Each task for all input in-
stances is executed on the same number of
compute nodes.

executed sequentially. The input to the first task is obtained
normally from sensors or other input devices and the inputs
to the rest of the tasks in the pipeline are the outputs of their
previous tasks. The set of pipelines shown in the figure indi-
cates that the same pipeline is repeated on subsequent input
data sets. Each block in a pipeline represents one parallel
task, which itself is parallelized on multiple (different num-
ber of) compute nodes.

From a single task point of view, the execution flow con-
sists of three phases: receive, compute, and send phases. In
the receive and send phases, communication involves data
transfer between two different groups of compute nodes. In
the compute phase, work load is evenly partitioned among
all compute nodes assigned in each task to achieve the max-
imum efficiency. For the parallel systems with SMP nodes,
multi-threading technique can be employed to further im-
prove the computation performance.

2.1. Data dependency

In such a parallel pipeline system, there exist both spa-
tial and temporal parallelism that result in two types of data
dependencies, namely, spatial data dependency and tempo-
ral data dependency [2, 5]. Spatial data dependency can
be classified into inter-task data dependency and intra-task
data dependency. Intra-task data dependencies arise when a
set of subtasks needs to exchange intermediate results dur-
ing the execution of a parallel task in a pipeline. Inter-task

data dependency is due to the transfer and reorganization of
data passed onto the next parallel task in the pipeline. Tem-
poral data dependency occurs when some form of output
generated by the tasks executed on the previous data set are
needed by tasks executing the current data set. We will later
see that STAP has both types of data dependencies.

2.2. Compute node assignment

Optimal use of resources is particularly important in
high-performance embedded applications due to limited re-
sources and other constraints such as desired latency or
throughput [4]. When several parallel tasks need to be ex-
ecuted in a pipelined fashion, tradeoffs exist between the
assignment of processors for the maximization of overall
throughput as opposed to the minimization of a single data
set’s response time (or latency.) The throughput require-
ment says that when allocating processors to tasks, it should
be guaranteed that all the input data sets will be handled in
a timely manner. That is, the processing rate should not fall
behind the input data rate. The response time criteria, on the
other hand, require minimizing the latency of computation
on a particular set of data input.

3. Multi-threads on Paragon

We implemented our parallel pipeline model of the STAP
algorithm on the Intel Paragon XP/S parallel computer lo-
cated at AFRL. The compute partition of this machine con-
sists of 232 MP nodes, each has three i860 processors on its
compute node board. By running UNIX OSF/1 operating
system, the three processors are configured with two pro-
cessors as general application processors and one processor
as message coprocessor which is dedicated to message pass-
ing. Multi-threaded programming environment is supported
on a Paragon system and the threads are implemented as
POSIX threads[6].

4. Design and implementation

The STAP algorithm we implemented is a PRI-staggered
post-Doppler STAP algorithm [1, 7]. The design of the par-
allel pipelined STAP algorithm is shown in Figure 2. The
parallel pipeline system consists of seven tasks. Both the
weight computation and the beamforming tasks are divided
into two parts, namely, ”easy” and ”hard” Doppler bins.
The hard Doppler bins are those in which significant ground
clutter is expected and the remaining bins are easy Doppler
bins. The main difference between the two is the amount
of data used and the amount of computation required. The
input data set for the pipeline is obtained from a phased ar-
ray radar and is formed in terms of a coherent processing
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Figure 2. Implementation of parallel pipelined
STAP. Arrows connecting task blocks repre-
sent data transfer between tasks.

interval (CPI). Each CPI data set is a 3-dimensional com-
plex data cube. The output of the pipeline is a report on
the detection of possible targets. Each taski, 0 � i < 7,
is parallelized by evenly partitioning its work load among
Pi compute nodes. The execution time associated with task
i is Ti. For the computation of the weight vectors for the
current CPI data cube, data cubes from previous CPIs are
used as input data. This introduces temporal data depen-
dency. Temporal data dependencies are represented by ar-
rows with dashed lines in Figure 2 whereTDi;j represents
temporal data dependency of taskj on data from taski. In
a similar manner, spatial data dependenciesSDi;j can be
defined and are indicated by arrows with solid lines.

Throughput and latency are two important measures for
performance evaluation on a pipeline system.

throughput =
1

max
0�i�6

Ti

: (1)

latency = T0 + max
i=3;4

Ti + T5 + T6: (2)

The temporal data dependency does not affect the latency
because weight computation tasks use data from the previ-
ous time instance rather than the current CPI. The filtered
CPI data cube sent to the beamforming task does not wait
for the completion of its weight computation. This explains
why equation (2) does not containT1 andT2. A detailed
description of the STAP algorithm we used can be found in
[1, 7].

4.1. Threads in compute phases

In the Intel Paragon MP system, two out of the three pro-
cessors in one compute node are configured as general pro-
cessors to run application code while the third as a mes-
sage coprocessor which is dedicated to message passing.

receive wait finalize

compute

compute

signalwait

sendsignalinitialize

main thread loops

second thread loops

Figure 3. Implementation of two threads in
the compute phase. The main thread signals
the second thread to perform its computation.
After completion of its computation, the sec-
ond thread signals back to the main thread.

With this configuration, only compute phase for each task
in our parallel pipeline system is implemented with threads.
The reason for not implementing threads in communication
phases is that the Paragon message-passing library is not
thread-safe. Since there are only two application proces-
sors in each compute node, each compute phase in every
task will have two threads implemented. Figure 3 gives the
execution flows of two threads in the compute phase.

5. Performance results

The implementation of the STAP application based on
our parallel pipeline system model was done on the Intel
Paragon at AFRL. Each CPI complex data cube is a512�

16� 128 three-dimensional array. A total of 27 CPIs were
generated as inputs to the parallel pipeline system.

5.1. Compute time

For each task in the STAP algorithm, parallelization was
done by evenly dividing computational load across compute
nodes assigned to the task. Figure 4 gives the performance
results of compute phases for different tasks. For each task,
we obtained linear speedups on both implementations using
two threads as well as using single thread.

Assuming that the execution time of a non-threaded im-
plementation of a task ist1 and the execution time of
its threaded implementation ist2, we define the threading
speedup for threaded over non-threaded implementation as
s = t1

t2
. Since two processors are employed in the threaded

implementation, we havet1
2
� t2 � t1 and, therefore,

1 � s � 2. The threading speedups for compute phases of
all tasks are also given in Figure 4. By running on two pro-
cessors at the same time, the two-threaded STAP code ide-
ally can have a threading speedup of 2. However, in most
cases, the actual threading speedups do not approach this
ideal value. This may be caused by the limitation of imple-
mentation of operating system, OSF/1, and the implemen-
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Figure 4. Performance of compute phases as a function of number of compute nodes.
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Figure 5. Integrated performance results for
threaded and non-threaded implementations.

tation of linked thread-safe libraries. On an Intel Paragon
MP system, scheduling of threads is handled by the oper-
ating system kernel. Users cannot have control over or get
information about which processor runs which thread.

5.2. Integrated system performance evaluation

Integrated system performance evaluation refers to the
evaluation of performance when all the tasks in the pipeline
are considered together. Throughput (number of CPIs per
second) and latency (seconds per CPI) are the two most im-
portant measures for performance evaluation on the parallel
pipeline system. Figure 5 shows the speedups and threading
speedups achieved by the threaded implementation for both
latency and throughput for three cases of different compute
node assignments with 51, 102 and 176 nodes. From these
experiments, it is clear that for latency and throughput mea-
sures we obtain linear speedups for both threaded and non-
threaded implementations. Given that this scale up is up
to 176 compute nodes (we were limited to this number of
nodes due to the size of the machine), we believe these are
very good results.

5.3. Tradeoff between throughput and latency

Using an example, we illustrate how further performance
improvements may (or may not) be achieved if a few addi-
tional compute nodes are available. We now take the case
with 102 nodes from Figure 5 as an example and add some
nodes to the pipeline to analyze its effect on the throughput
and latency. Compute nodes were added to each task in in-
crements of two nodes at a time. The resulting throughput
and latency are plotted in Figure 6.

When nodes were added to the Doppler filter processing
task, the throughput increased and latency reduced. From
Equations (1) and (2), this improvement was obtained be-
cause the execution time,T0, is reduced. However, when
the number of nodes added is more than 8, both throughput
and latency degrade. This is because the Doppler filter pro-
cessing task finishes its computation on the new CPI so fast
that the actual send operations for the previous CPI have not
been carried out yet. The waiting time increases Doppler fil-
ter processing task’s execution time,T0, and therefore de-
grades the throughput and latency.

When compute nodes are added to easy and hard weight
computation tasks, the resulting throughput and latency
have no significant changes. This is because the latency
does not contain the execution time of weight computations,
as indicated in Equation (2). However, when extra com-
pute nodes are added to either the beamforming or the pulse
compression task, we observe that the latency is reduced.
This is because the execution timesT3, T4, andT5 reduce
in Equation (2). The throughput, on the other hand, is not
improved because the Doppler filter processing task is the
task with the maximum execution time among all tasks.

Figure 6 presents the tradeoffs between increasing the
throughput and reducing the latency, when assigning nodes
to the tasks in the pipeline. We observed that only the addi-
tion of nodes to the Doppler filter processing task can in-
crease the throughput. Similarly, only beamforming and
pulse compression tasks are candidates for the addition of
more compute nodes to reduce the latency.

Compute node assignment can also be made in such a
way that both throughput and latency are improved simul-
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Figure 6. Throughput and latency results by adding 2 compute nodes at a time to each task.

Table 1. Performance results when 4 nodes to
the Doppler processing task and 4 nodes to
the pulse compression task are added to the
implementation with 102 nodes.

non-threaded threaded
# nodes 102 110 102 110

throughput 3.8677 4.8368 4.6916 5.6137
latency 0.7767 0.6650 0.6108 0.5458

throughput: CPIs/sec latency: sec/CPI

taneously. We now add 4 nodes to the Doppler filter pro-
cessing task and 4 nodes to the pulse compression task.
By increasing the number of compute nodes by 7.8%, the
improvement in throughput is 25.1% and in latency it is
14.4% for the non-threaded implementation. Meanwhile,
the threaded implementation shows 19.7% improvement in
throughput and 10.6% improvement in latency. From these
experimented results, we can draw the following conclu-
sions. Extra compute nodes can be assigned to the task that
has the maximum execution time among all tasks. In this
way, the execution time of this task is reduced and accord-
ing to Equation (1), the throughput is increased. Extra com-
pute nodes can be added to those tasks which benefit the
most, that is, the tasks with greatest reduced execution time
when more nodes are assigned. The sum of these tasks can
be reduced the most and therefore it minimizes the latency.

6. Conclusions

In this paper we presented performance results for a
PRI-staggered post-Doppler STAP algorithm implementa-
tion on the Intel Paragon machine at Air Force Research
Laboratory, Rome, New York. This Paragon machine has
three processors on each compute node board. By taking
advantage of the SMP architecture, a multi-threaded im-

plementation is was designed and compared to the non-
threaded implementation. Performance results indicate that
our approach of parallel pipelined implementation scales
well both in terms of throughput and latency whether the
multi-threaded technique is used or not. Our design and
implementation not only shows tradeoffs in parallelization,
compute node assignment, and various overheads in inter-
task communication etc., but it also shows that accurate per-
formance measurement of these systems is very important.
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