
Parallel netCDF: A High-Performance Scientific I/O Interface

Jianwei Li Wei-keng Liao Alok Choudhary
ECE Department, Northwestern University�

jianwei, wkliao, choudhar � @ece.northwestern.edu

Robert Ross Rajeev Thakur William Gropp Rob Latham Andrew Siegel
MCS Division, Argonne National Laboratory�

rross, thakur, gropp, robl, siegela � @mcs.anl.gov

Brad Gallagher Michael Zingale
ASCI Flash Center UCO/Lick Observatory

University of Chicago University of California, Santa Cruz
jbgallag@flash.uchicago.edu zingale@ucolick.org

Abstract

Dataset storage, exchange, and access play a critical
role in scientific applications. For such purposes netCDF
serves as a portable, efficient file format and programming
interface, which is popular in numerous scientific applica-
tion domains. However, the original interface does not pro-
vide an efficient mechanism for parallel data storage and
access.

In this work, we present a new parallel interface for writ-
ing and reading netCDF datasets. This interface is de-
rived with minimal changes from the serial netCDF inter-
face but defines semantics for parallel access and is tai-
lored for high performance. The underlying parallel I/O is
achieved through MPI-IO, allowing for substantial perfor-
mance gains through the use of collective I/O optimizations.
We compare the implementation strategies and performance
with HDF5. Our tests indicate programming convenience
and significant I/O performance improvement with this par-
allel netCDF (PnetCDF) interface.

(c) 2003 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate of
the [U.S.] Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

SC’03, November 15-21, 2003, Phoenix, Arizona, USA Copyright
2003 ACM 1-58113-695-1/03/0011...$5.00

1. Introduction

Scientists have recognized the importance of portable
and efficient mechanisms for storing large datasets that are
created and used by their applications. The Network Com-
mon Data Form (netCDF) [10, 9] is one such mechanism
used by a number of applications.

The netCDF design consists of both a portable file for-
mat and an easy-to-use application programming interface
(API) for storing and retrieving netCDF files across multi-
ple platforms. NetCDF provides applications with a com-
mon data access method for storage of structured datasets.
Atmospheric science applications, for example, use netCDF
to store a variety of data types that encompass single-point
observations, time series, regularly spaced grids, and satel-
lite or radar images [9]. Many organizations, including
much of the climate community, rely on the netCDF data
access standard [21] for data storage.

Unfortunately, the original design of the netCDF inter-
face is proving inadequate for parallel applications because
of its lack of a parallel access mechanism. Because there is
no support for concurrently writing to a netCDF file, paral-
lel applications writing netCDF files must serialize access.
This serialization is usually performed by passing all data
to a single process that then writes all data to netCDF files.
The serial I/O access is both slow and cumbersome to the
application programmer.

To provide the broad community of netCDF users with a
high-performance, parallel interface for accessing netCDF
files, we have defined an alternative parallel API for con-
currently accessing netCDF files. This interface maintains

1

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

the look and feel of the serial netCDF interface while pro-
viding flexibility under the implementation to incorporate
well-known parallel I/O techniques, such as collective I/O,
to allow high-performance data access. We implement this
work on top of MPI-IO, which is specified by the MPI-2
standard [3, 7, 2]. Because MPI has become the de facto
parallel mechanism for communication and I/O on most
parallel environments, this approach provides portability
across most platforms. More important, our use of MPI-
IO allows us to benefit from the optimizations built into the
MPI-IO implementations, such as data shipping in the IBM
implementation [13] and data sieving and two-phase I/O in
ROMIO [17], which we would otherwise need to implement
ourselves or simply do without.

Hierarchical Data Format version 5 (HDF5) [5] is the
other widely used portable file format and programming in-
terfaces for storing multidimensional arrays together with
ancillary data in a single file. It already supports par-
allel I/O, and its implementation is also built on top of
MPI-IO. Similar to HDF5, our goal in designing a parallel
netCDF API is to make the programming interface a data
access standard for parallel scientific applications and pro-
vide more optimization opportunities for I/O performance
enhancement.

In this paper we describe the design of our paral-
lel netCDF (PnetCDF) interface and discuss preliminary
benchmarking results using both a synthetic benchmark ac-
cessing a multidimensional dataset and the I/O kernel from
the FLASH astrophysics application [20]. This simulation
of the FLASH checkpoint and visualization data generation
process is now available for both PnetCDF and HDF5.

The rest of this paper is organized as follows. Section 2
reviews some related work. Section 3 presents the design
background of netCDF and points out its potential usage
in parallel scientific applications. Section 4 describes the
design and implementation of our PnetCDF. Section 5 gives
experimental performance results. Section 6 concludes the
paper with some ideas for future research.

2. Related Work

Considerable research has been done on data access
for scientific applications. The work has focused on data
I/O performance and data management convenience. Two
projects, MPI-IO and HDF, are most closely related to our
research.

MPI-IO is a parallel I/O interface specified in the MPI-2
standard. It is implemented and used on a wide range of
platforms. The most popular implementation, ROMIO [19]
is implemented portably on top of an abstract I/O device
layer [16, 18] that enables portability to new underlying I/O
systems. One of the most important features in ROMIO
is collective I/O operations, which adopt a two-phase I/O

strategy [12, 14, 15, 17] and improve the parallel I/O perfor-
mance by significantly reducing the number of I/O requests
that would otherwise result in many small, noncontiguous
I/O requests. However, MPI-IO reads and writes data in
a raw format without providing any functionality to effec-
tively manage the associated metadata, nor does it guarantee
data portability, thereby making it inconvenient for scien-
tists to organize, transfer, and share their application data.

HDF is a file format and software, developed at NCSA,
for storing, retrieving, analyzing, visualizing, and convert-
ing scientific data. The most popular versions of HDF are
HDF4 [4] and HDF5 [5]. Both versions store multidimen-
sional arrays together with ancillary data in portable, self-
describing file formats. HDF4 was designed with serial data
access in mind, much like the current netCDF interface.
HDF5 is a major revision in which its API is completely re-
designed and now includes parallel I/O access. The support
for parallel data access in HDF5 is built on top of MPI-IO,
which ensures its portability. This move undoubtedly in-
convenienced users of HDF4, but it was a necessary step in
providing parallel access semantics. HDF5 also adds sev-
eral new features, such as a hierarchical file structure, that
provide application programmers with a host of options for
organizing how data is stored in HDF5 files. Unfortunately
this high degree of flexibility can sometimes come at the
cost of high performance, as seen in previous studies [6, 11].

3. NetCDF Background

NetCDF is an abstraction that supports a view of data
as a collection of self-describing, portable, array-oriented
objects that can be accessed through a simple interface. It
defines a file format as well as a set of programming inter-
faces for storing and retrieving data in the form of arrays
in netCDF files. We first describe the netCDF file format
and its serial API and then consider various approaches to
access netCDF files in parallel computing environments.

3.1. File Format

NetCDF stores data in an array-oriented dataset, which
contains dimensions, variables, and attributes. Physically,
the dataset file is divided into two parts: file header and ar-
ray data. The header contains all information (or metadata)
about dimensions, attributes, and variables except for the
variable data itself, while the data part contains arrays of
variable values (or raw data).

The netCDF file header first defines a number of dimen-
sions, each with a name and a length. These dimensions
are used to define the shapes of variables in the dataset.
One dimension can be unlimited and is used as the most
significant dimension (record dimension) for variables of
growing-size.

2

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

ndst

nd

th

st nd th

st

va
ri

ab
le

-s
iz

e
ar

ra
ys

fi
xe

d-
si

ze
 a

rr
ay

s

Interleaved records grow in the UNLIMITED

r record variables in order

n non-record variable

nd

1 record for 1 record variable

dimension for 1 , 2 , ... , r variables

nd

th

netCDF Header

2 non-record variable

st

1 non-record variablest

1 record for 2 record variable

1 record for r record variablest

st

2 records for 1 , 2 , ... ,
th

Figure 1. NetCDF file structure: A file header
contains metadata of the stored arrays; then
the fixed-size arrays are laid out in the fol-
lowing contiguous file space in a linear or-
der, with variable-sized arrays appended at
the end of the file in an interleaved pattern.

Following the dimensions, a list of named attributes are
used to describe the properties of the dataset (e.g., data
range, purpose, associated applications). These are called
global attributes and are separate from attributes associated
with individual variables.

The basic units of named data in a netCDF dataset are
variables, which are multidimensional arrays. The header
part describes each variable by its name, shape, named at-
tributes, data type, array size, and data offset, while the data
part stores the array values for one variable after another, in
their defined order.

To support variable-sized arrays (e.g., data growing with
time stamps), netCDF introduces record variables and uses
a special technique to store such data. All record variables
share the same unlimited dimension as their most signif-
icant dimension and are expected to grow together along
that dimension. The other, less significant dimensions all
together define the shape for one record of the variable. For
fixed-size arrays, each array is stored in a contiguous file
space starting from a given offset. For variable-sized arrays,
netCDF first defines a record of an array as a subarray com-
prising all fixed dimensions; the records of all such arrays
are stored interleaved in the arrays’ defined order. Figure 1
illustrates the storage layouts for fixed-sized and variable-
sized arrays in a netCDF file.

In order to achieve network transparency (machine in-
dependence), both the header and data parts of the file are
represented in a well-defined format similar to XDR (eXter-
nal Data Representation) but extended to support efficient
storage of arrays of nonbyte data.

3.2. Serial NetCDF API

The original netCDF API was designed for serial codes
to perform netCDF operations through a single process. In
the serial netCDF library, a typical sequence of operations
to write a new netCDF dataset is to create the dataset; de-
fine the dimensions, variables, and attributes; write variable
data; and close the dataset. Reading an existing netCDF
dataset involves first opening the dataset; inquiring about
dimensions, variables, and attributes; reading variable data;
and closing the dataset.

These netCDF operations can be divided into the follow-
ing five categories. Refer to [9] for details of each function
in the netCDF library.

(1) Dataset Functions: create/open/close/abort a
dataset, set the dataset to define/data mode, and
synchronize dataset changes to storage

(2) Define Mode Functions: define dataset dimen-
sions and variables

(3) Attribute Functions: manage adding, changing,
and reading attributes of datasets

(4) Inquiry Functions: return dataset metadata:
dim(id, name, len), var(id, name, ndims, shape,
datatype), number of dims/vars/attributes, unlim-
ited dimension, etc.

(5) Data Access Functions: provide the ability to
read/write variable data in one of the five access
methods: single element, whole array, subarray,
subsampled array (strided subarray) and mapped
strided subarray

The I/O implementation of the serial netCDF API is built
on the native I/O system calls and has its own buffering
mechanism in user space. Its design and optimization tech-
niques are suitable for serial access but are not efficient
or even not possible for parallel access, nor do they allow
further performance gains provided by modern parallel I/O
techniques.

3.3. Using NetCDF in Parallel Environments

Today most scientific applications are programmed to
run in parallel environments because of the increasing re-
quirements on data amount and computational resources. It

3

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

netCDF

(a) (c)(b)

netCDF netCDF netCDFnetCDF

Parallel File System

P2 P3 P1P0 P2 P0 P1 P2 P3

Parallel File System Parallel File System

Parallel netCDF

P3P0 P1

Figure 2. Using netCDF in parallel programs: (a) use serial netCDF API to access single files through
a single process; (b) use serial netCDF API to access multiple files concurrently and independently;
(c) use new parallel netCDF API to access single files cooperatively or collectively.

is highly desirable to develop a set of parallel APIs for ac-
cessing netCDF files that employs appropriate parallel I/O
techniques. In the meantime, programming convenience is
also important, since scientific users may desire to spend
minimal effort on dealing with I/O operations. Before pre-
senting our PnetCDF design, we discuss current approaches
for using netCDF in parallel programs in a message-passing
environment.

The first and most straightforward approach is described
in the scenario of Figure 2(a) in which one process is in
charge of collecting/distributing data and performing I/O to
a single netCDF file using the serial netCDF API. The I/O
requests from other processes are carried out by shipping all
the data through this single process. The drawback of this
approach is that collecting all I/O data on a single process
can easily cause an I/O performance bottleneck and may
overwhelm its memory capacity.

In order to avoid unnecessary data shipping, an alterna-
tive approach is to have all processes perform their I/O in-
dependently using the serial netCDF API, as shown in Fig-
ure 2(b). In this case, all netCDF operations can proceed
concurrently, but over multiple files, one for each process.
However, managing a netCDF dataset is more difficult when
it is spread across multiple files. This approach also violates
the netCDF design goal of easy data integration and man-
agement.

A third approach introduces a new set of APIs with par-
allel access semantics and optimized parallel I/O implemen-
tation such that all processes perform I/O operations coop-
eratively or collectively through the parallel netCDF library
to access a single netCDF file. This approach, as shown in
Figure 2(c), both frees the users from dealing with details of
parallel I/O and provides more opportunities for employing
various parallel I/O optimizations in order to obtain higher
performance. We discuss the details of this parallel netCDF
design and implementation in the next section.

4. Parallel NetCDF

To facilitate convenient and high-performance parallel
access to netCDF files, we define a new parallel inter-
face and provide a prototype implementation. Since a
large number of existing users are running their applica-
tions over netCDF, our parallel netCDF design retains the
original netCDF file format (version 3) and introduces min-
imal changes from the original interface. We distinguish the
parallel API from the original serial API by prefixing the C
function calls with “ncmpi ” and the Fortran function calls
with “nfmpi ”.

4.1. Interface Design

Our PnetCDF API is built on top of MPI-IO, allowing
users to benefit from several well-known optimizations al-
ready used in existing MPI-IO implementations, such as
data sieving and two-phase I/O strategies [12, 14, 15, 17]
in ROMIO. Figure 3 describes the overall architecture for
our design.

In PnetCDF a file is opened, operated, and closed by the
participating processes in a communication group. In order
for these processes to operate on the same file space, es-
pecially on the structural information contained in the file
header, a number of changes have been made to the original
serial netCDF API.

For the function calls that create/open a netCDF file, an
MPI communicator is added in the argument list to define
the participating I/O processes within the file’s open and
close scope. By describing the collection of processes with
a communicator, we provide the underlying implementation
with information that can be used to ensure file consistency
during parallel access. An MPI Info object is also added to
pass user access hints to the implementation for further opti-
mizations. Using hints is not mandatory (MPI INFO NULL

4

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Parallel netCDF
User Space

Space

Communication Network

File System

Server
I/O

Server
I/O

Server
I/O

Node
Compute

Node
Compute

Node
Compute

Node
Compute

MPI-IO

Figure 3. Design of parallel netCDF on a par-
allel I/O architecture. Parallel netCDF runs as
a library between user space and file system
space. It processes parallel netCDF requests
from user compute nodes and, after optimiza-
tion, passes the parallel I/O requests down to
MPI-IO library, and then the I/O servers re-
ceive the MPI-IO requests and perform I/O
over the end storage on behalf of the user.

can be passed in, indicating no hints). However, hints pro-
vide users the ability to deliver the high-level access in-
formation to PnetCDF and MPI-IO libraries. Traditional
MPI-IO hints tune the MPI-IO implementation to the spe-
cific platform and expected low-level access pattern, such as
enabling or disabling certain algorithms or adjusting inter-
nal buffer sizes and policies. These are passed through the
PnetCDF layer to the MPI-IO implementation. PnetCDF
hints can be used to describe expected access patterns at
the netCDF level of abstraction, in terms of variables and
records. These hints can be interpreted by the PnetCDF im-
plementation and either used internally or converted into ap-
propriate MPI-IO hints. For example, given a hint indicat-
ing that only a certain small set of variables were going to be
read an aggressive PnetCDF implementation might initiate
a nonblocking read of those variables at open time so that
the values were available locally at read time. For applica-
tions that pull a small amount of data from a large number
of separate netCDF files, this type of optimization could be
a big win, but is only possible with this additional informa-
tion.

We keep the same syntax and semantics for the PnetCDF
define mode functions, attribute functions, and inquiry
functions as the original ones. These functions are also
made collective to guarantee consistency of dataset struc-
ture among the participating processes in the same MPI

communication group. For instance, all processes must call
the define mode functions with the same values to get con-
sistent dataset definitions.

The major effort of this work is the parallelization of
the data access functions. We provide two sets of data ac-
cess APIs. The high-level API closely follows the origi-
nal netCDF data access functions and serves an easy path
for original netCDF users to migrate to the parallel inter-
face. These calls take a single pointer for a contiguous re-
gion in memory, just as the original netCDF calls, and allow
for the description of single elements (var1), whole arrays
(vara), strided arrays (vars), and multiple noncontiguous
regions (varm) in file.

One drawback of the original netCDF interface, and our
high-level one, is that only contiguous memory regions may
be described to the API. The flexible API provides a more
MPI-like style of access and relaxes this constraint. Specif-
ically, the flexible API provides the user with the ability to
describe noncontiguous regions in memory, which is miss-
ing from the original interface. These regions are described
using MPI datatypes. For application programmers that
are already using MPI for message passing, this approach
should be natural. The file regions are still described by us-
ing the original parameters. All our high-level data access
routines are actually written using this interface.

The most important change from the original netCDF in-
terface with respect to data access functions is the split of
data mode into two distinct modes: collective and noncol-
lective data modes. In order to make it obvious that the
functions involve all processes, collective function names
end with “ all”. Similar to MPI-IO, the collective functions
must be called by all the processes in the communicator as-
sociated to the opened netCDF file, while the noncollec-
tive functions do not have this constraint. Using collective
operations provides the underlying PnetCDF implementa-
tion an opportunity to further optimize access to the netCDF
file. While users can choose whether to use collective I/O,
these optimizations are performed without further interven-
tion by the application programmer and have been proven to
provide dramatic performance improvement in multidimen-
sional dataset access [17]. Figure 4 shows example code of
using our PnetCDF API to write and read a dataset by using
collective I/O.

4.2. Parallel Implementation

Based on our parallel interface design, we provide an im-
plementation for a major subset of this new parallel API.
The implementation is discussed in two parts: header I/O
and parallel data I/O. We first describe our implementa-
tion strategies for dataset functions, define mode functions,
attribute functions, and inquiry functions that access the
netCDF file header.

5

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

1 &file_id);ncmpi_create(mpi_comm, filename, 0, mpi_info,
ncmpi_def_var(file_id, ...);
ncmpi_enddef(file_id);

2

ncmpi_put_vara_all(file_id, var_id,
start[], count[],
buffer, bufcount,
mpi_datatype);

3

ncmpi_close(file_id);4

1 ncmpi_open(mpi_comm, filename, 0, mpi_info, &file_id);
(b) READ:

2 ncmpi_inq(file_id, ...);

3 ncmpi_get_vars_all(file_id, var_id,

4

buffer, bufcount,
start[], count[], stride[],

ncmpi_close(file_id);
mpi_datatype);

(a) WRITE:

Figure 4. Example of using PnetCDF. Typically
there are 4 main steps: 1. collectively cre-
ate/open the dataset; 2. collectively define
the dataset by adding dimensions, variables
and attributes in WRITE, or inquiry about the
dataset to get metadata associated with the
dataset in READ; 3. access the data arrays
(collective or noncollective); 4. collectively
close the dataset.

4.2.1. Access to File Header

Internally, the header is read/written only by a single pro-
cess, although a copy is cached in local memory on each
process. The define mode functions, attribute functions,
and inquiry functions all work on the local copy of the file
header. Since they are all in-memory operations not in-
volved in any file I/O, they bear few changes from the serial
netCDF API. They are made collective, but this feature does
not necessarily imply interprocess synchronization. In some
cases, however, when the header definition is changed, syn-
chronization is needed to verify that the values passed in by
all processes match.

The dataset functions, unlike the other functions cited,
need to be completely reimplemented because they are in
charge of collectively opening/creating datasets, perform-
ing header I/O and file synchronization for all processes,
and managing interprocess communication. We build these
functions over MPI-IO so that they have better portability
and provide more optimization opportunities. The basic
idea is to let the root process fetch the file header, broad-
cast it to all processes when opening a file, and write the
file header at the end of define mode if any modification oc-
curs in the header part. Since all define mode and attribute
functions are collective and require all processes in the com-
municator to provide the same arguments when adding, re-

moving, or changing definitions, the local copies of the file
header are guaranteed to be the same across all processes
once the file is collectively opened and until it is closed.

4.2.2. Parallel I/O for Array Data

Since the majority of time spent accessing a netCDF file
is in data access, the data I/O must be efficient. By imple-
menting the data access functions above MPI-IO, we enable
a number of advantages and optimizations.

For each of the five data access methods in the flexible
data access functions, we represent the data access pattern
as an MPI file view (a set of data visible and accessible
from an open file [7]), which is constructed from the vari-
able metadata (shape, size, offset, etc.) in the netCDF file
header and start[], count[], stride[], imap[], mpi datatype ar-
guments provided by users. For parallel access, particularly
for collective access, each process has a different file view.
All processes in combination can make a single MPI-IO re-
quest to transfer large contiguous data as a whole, thereby
preserving useful semantic information that would other-
wise be lost if the transfer were expressed as per process
noncontiguous requests.

In some cases (for instance, in record variable access) the
data is stored interleaved by record, and the contiguity in-
formation is lost, so the existing MPI-IO collective I/O opti-
mization may not help. In such cases, more optimization in-
formation from users can be beneficial, such as the number,
order, and record indices of the record variables they will
access consecutively. With such information we can col-
lect multiple I/O requests over a number of record variables
and optimize the file I/O over a large pool of data trans-
fers, thereby producing more contiguous and larger trans-
fers. This kind of information is passed in as an MPI Info
hint when a user opens or creates a netCDF dataset. We im-
plement our user hints in PnetCDF as extensions to the MPI
hint mechanism, while a number of standard hints may still
be passed down to MPI-IO to control optimal parallel I/O
behaviors at that level. Thus experienced users have the op-
portunity to tune their applications for further performance
gains.

4.3. Advantages and Disadvantages

Our design and implementation of PnetCDF offers a
number of advantages, as compared with related work, such
as HDF5.

First, the PnetCDF design and implementation are opti-
mized for the netCDF file format so that the data I/O per-
formance is as good as the underlying MPI-IO implementa-
tion. The netCDF file chooses linear data layout, in which
the data arrays are either stored in contiguous space and
in a predefined order or interleaved in a regular pattern.

6

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

This regular and highly predictable data layout enables the
PnetCDF data I/O implementation to simply pass the data
buffer, metadata (file view, MPI Datatype, etc.), and other
optimization information to MPI-IO, and all parallel I/O op-
erations are carried out in the same manner as when MPI-
IO alone is used. Thus, there is very little overhead, and the
PnetCDF performance should be nearly the same as MPI-
IO if only raw data I/O performance is compared.

On the other hand, parallel HDF5 uses a tree-like file
structure that is similar to the UNIX file system: the data is
irregularly laid out using super block, header blocks, data
blocks, extended header blocks, and extended data blocks.
This is a very flexible system and might have advantages for
some applications and access patterns. However, this irreg-
ular layout pattern can make it difficult to pass user access
patterns directly to MPI-IO, especially for variable-sized ar-
rays. Instead, parallel HDF5 uses dataspace and hyperslabs
to define the data organization, map and transfer data be-
tween memory space and the file space, and does buffer
packing/unpacking in a recursive way. MPI-IO is used un-
der this, but this additional overhead can result in significant
performance loss.

Second, the PnetCDF implementation manages to keep
the overhead involved in header I/O as low as possible. In
the netCDF file, only one header contains all necessary in-
formation for direct access of each data array, and each ar-
ray is associated with a predefined, numerical ID that can
be efficiently inquired when it is needed to access the array.
By maintaining a local copy of the header on each process,
our implementation saves a lot of interprocess synchroniza-
tion as well as avoids repeated access of the file header each
time the header information is needed to access a single
array. All header information can be accessed directly in
local memory and interprocess synchronization is needed
only during the definition of the dataset. Once the defini-
tion of the dataset is created, each array can be identified by
its permanent ID and accessed at any time by any process,
without any collective open/close operation.

On the other hand, in HDF5 the header metadata is dis-
persed in separate header blocks for each object, and, in
order to operate on an object, it has to iterate through the
entire namespace to get the header information of that ob-
ject before accessing it. This kind of access method may be
inefficient for parallel access, particularly because parallel
HDF5 defines the open/close of each object to be a collec-
tive operation, which forces all participating processes to
communicate when accessing a single object, not to men-
tion the cost of file access to locate and fetch the header
information of that object. Further, HDF5 metadata is up-
dated during data writes in some cases. Thus additional
synchronization is necessary at write time in order to main-
tain synchronized views of file metadata.

However, PnetCDF also has limitations. Unlike HDF5,

netCDF does not support hierarchical group based organi-
zation of data objects. Since it lays out the data in a linear
order, adding a fixed-sized array or extending the file header
may be very costly once the file is created and has existing
data stored, though moving the existing data to the extended
area is performed in parallel. Also, PnetCDF does not pro-
vide functionality to combine two or more files in mem-
ory through software mounting, as HDF5 does. Nor does
netCDF support data compression within its file format (al-
though compressed writes must be serialized in HDF5, lim-
iting their usefulness). Fortunately, these features can all
be achieved by external software such as netCDF Opera-
tors [8], with some sacrifice of manageability of the files.

5. Performance Evaluation

To evaluate the performance and scalability of our
PnetCDF with that of serial netCDF, we compared the two
with a synthetic benchmark. We also compared the perfor-
mance of PnetCDF with that of parallel HDF5, using the
FLASH I/O benchmark.

Both sets of experiments were run on IBM SP-2 ma-
chines. The system on which the serial/parallel comparison
was run is a teraflop-scale clustered SMP with 144 compute
nodes at the San Diego Supercomputer Center. Each com-
pute node has 4 GB of memory shared among its eight 375
MHz Power3 processors. All the compute nodes are inter-
connected by switches and also connected via switches to
the multiple I/O nodes running the GPFS parallel file sys-
tem. There are 12 I/O nodes, each with dual 222 MHz pro-
cesses. The aggregate disk space is 5 TB and the peak I/O
bandwidth is 1.5 GB/s.

The FLASH I/O comparison of HDF5 and PnetCDF was
performed on ASCI White Frost, a 68 compute node sys-
tem with 16 Power3 processors per node. This system is
attached to a 2-node I/O system running GPFS. Results in
these tests are the average of 20 runs.

Version 0.8.4 of the PnetCDF package was used, as
was version 1.4.5-post2 of HDF5. No hints were passed
to PnetCDF. HDF5 runs were executed both without hints
and with sieve buf size and alignment hints; these
have been helpful in some previous runs on this system but
did not appear to be useful in this particular case.

5.1. Scalability Analysis

We wrote a test code (in C) to evaluate the perfor-
mance of the current implementation of PnetCDF. This
test code was originally developed in Fortran by Woo-sun
Yang and Chris Ding at Lawrence Berkeley National Lab-
oratory. Basically it reads/writes a three-dimensional ar-
ray field tt(Z,Y,X) from/into a single netCDF file, where
Z=level is the most significant dimension and X=longitude

7

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Z

Y

ZYX Partition

Processor 0

Y PartitionZ Partition X Partition

YX PartitionZY Partition ZX Partition

Processor 7

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

X

Figure 5. Various 3-D array partitions on 8 pro-
cessors

is the least significant dimension. The test code partitions
the three-dimensional array along Z, Y, X, ZY, ZX, YX, and
ZYX axes, respectively, as illustrated in Figure 5. All data
I/O operations in these tests used collective I/O. For com-
parison purpose, we prepared the same test using the origi-
nal serial netCDF API and ran it in serial mode, in which a
single processor reads/writes the whole array.

Figure 6 shows the performance results for reading and
writing 64 MB and 1 GB netCDF datasets. Generally,
PnetCDF performance scales with the number of processes.
Because of collective I/O optimization, the performance dif-
ference made by various access patterns is small, although
partitioning in the Z dimension generally performs better
than in the X dimension because of the different access con-
tiguity. The overhead involved is interprocess communica-
tion, which is negligible compared with the disk I/O when
using a large file size. The I/O bandwidth does not scale
in direct proportion because the number of I/O nodes (and
disks) is fixed so that the dominating disk access time at
I/O nodes is almost fixed. As expected, PnetCDF outper-
forms the original serial netCDF as the number of processes
increases. The difference between serial netCDF perfor-
mance and PnetCDF performance with one processor is be-
cause of their different I/O implementations and different
I/O caching/buffering strategies. In the serial netCDF case,
if, as in Figure 2(a), multi-processors were used and the

root processor needed to collect partitioned data and then
perform the serial netCDF I/O, the performance would be
much worse and decrease with the number of processors
because of the additional communication cost and division
of a single large I/O request into a series of small requests.

5.2. FLASH I/O Performance

The FLASH code [1] is an adaptive mesh, parallel hy-
drodynamics code developed to simulate astrophysical ther-
monuclear flashes in two or three dimensions, such as Type
Ia supernovae, Type I X-ray bursts, and classical novae.
It solves the compressible Euler equations on a block-
structured adaptive mesh and incorporates the necessary
physics to describe the environment, including the equation
of state, reaction network, and diffusion.

FLASH is primarilty written in Fortran 90 and uses MPI
for interprocess communication. The target platforms are
the ASCI machines (Frost and Blue Pacific at LLNL, QSC
and Red at SNL, and Nirvana at LANL) and Linux clusters
(Jazz and Chiba City at ANL and C-plant at SNL). The code
scales well up to thousands of processors, has been ported
to over a dozen platforms, and has been used for numerous
production runs.

The FLASH I/O benchmark simulates the I/O pattern of
FLASH [20]. It recreates the primary data structures in the
FLASH code and produces a checkpoint file, a plotfile with
centered data, and a plotfile with corner data, using parallel
HDF5. The in-memory data structures are 3D AMR sub-
blocks of size 8x8x8 or 16x16x16 with a perimeter of four
guard cells that are left out of the data written to file. In the
simulation 80 of these blocks are held by each processor.
Basically, these three output files contain a series of multi-
dimensional arrays, and the access pattern is simple (Block,
*, ...), which is similar to the Z partition in Figure 5. In
each of the files, the benchmark writes the related arrays
in a fixed order from contiguous user buffers, respectively.
The I/O routines in the benchmark are identical to the rou-
tines used by FLASH, so any performance improvements
made to the benchmark program will be shared by FLASH.
In our experiments, in order to focus on the data I/O perfor-
mance, we modified this benchmark, removed the part of
code writing attributes, ported it to PnetCDF, and observed
the effect of our new parallel I/O approach.

Figure 7 shows the performance results of the FLASH
I/O benchmark using PnetCDF and parallel HDF5. Check-
point files are the largest of the three output data sets. In the
8x8x8 case each processor outputs approximately 8 MB and
in the 16x16x16 case approximately 60 MB. In the plotfile
cases processors write approximately 1 MB in the 8x8x8
case and 6 MB in the 16x16x16 cases.

Although both I/O libraries are built above MPI-IO,
PnetCDF has much less overhead and outperforms paral-

8

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Parallel netCDF

Parallel netCDFParallel netCDF

Parallel netCDF

XZ
Y ZY

ZX
YX

YX
ZX

ZYY
Z X ZYX

netCDF
Serial

netCDF
Serial

netCDF
Serial

YX
ZX

ZYY
Z X ZYX

YX
ZX

ZYY
Z X ZYX

ZYX

Read 1 GB

Write 64 MBRead 64 MB

Number of processors Number of processors

Number of processorsNumber of processors
B

an
dw

id
th

 (
M

B
/s

ec
)

B
an

dw
id

th
 (

M
B

/s
ec

)

B
an

dw
id

th
 (

M
B

/s
ec

)

B
an

dw
id

th
 (

M
B

/s
ec

)

Write 1 GB

Serial
netCDF

2

700

32
0

50

164

200

600

500

400

300

200

8

100

150

250

100

4

1 1642

300

250

200

150

100

50

0

1

16

0

8421

200

150

100

0

1

16

50

821

8 321

1 1

Figure 6. Serial and parallel netCDF performance for 64 MB and 1 GB datasets. The first column of
each chart shows the I/O performance of reading/writing the whole array through a single processor
using serial netCDF; the rest of the columns show the results using PnetCDF.

lel HDF5 in every case, more than doubling the overall I/O
rate in many cases. The extra overhead involved in par-
allel HDF5 includes interprocess synchronizations and file
header access performed internally in parallel open/close
of every dataset (analogous to a netCDF variable) and re-
cursive handling of the hyperslab used for parallel access,
which makes the packing of the hyperslabs into contiguous
buffers take a relatively long time.

6. Conclusion and Future Work

In this work we extend the serial netCDF interface to
facilitate parallel access, and we provide an implemen-
tation for a subset of this new parallel netCDF inter-
face. By building on top of MPI-IO, we gain a num-
ber of interface advantages and performance optimiza-
tions. Preliminary test results show that the somewhat
simpler netCDF file format coupled with our parallel API
combine to provide a very high-performance solution to
the problem of portable, structured data storage. So far,
we have released our PnetCDF library at the website
http://www.mcs.anl.gov/parallel-netcdf/, and a number of
users from Argonne National Laboratory, Lawrence Berke-
ley National Laboratory, Oak Ridge National Laboratory,
and the University of Chicago are using our PnetCDF li-

brary.
Future work involves completing the production-quality

parallel netCDF API (for C, C++, Fortran, and other pro-
gramming languages) and making it freely available to the
high-performance computing community. Testing on alter-
native platforms and with additional benchmarks is also on-
going. In particular we are interested in seeing how read
performance compares between PnetCDF and HDF5; per-
haps without the additional synchronization of writes the
performance is more comparable. We also need to develop
a mechanism for matching the file organization to access
patterns, and we need to develop cross-file optimizations
for addressing common data access patterns.

Acknowledgments

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Re-
search, Office of Science, SciDAC Program, U.S. Depart-
ment of Energy, under Contract W-31-109-ENG-38. Also it
was supported in part by NSF cooperative agreement ACI-
9619020 through computing resources provided by the Na-
tional Partnership for Advanced Computational Infrastruc-
ture at the San Diego Supercomputer Center.

9

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

0

10

20

30

40

50

60

70

16 32 64 128 256 512A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

�

Number of processors

Flash I/O Benchmark (Checkpoint, 8x8x8)

PnetCDF
HDF5

0

20

40

60

80

100

120

16 32 64 128 256A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

�

Number of processors

Flash I/O Benchmark (Checkpoint, 16x16x16)

PnetCDF
HDF5

5

10

15

20

25

30

35

40

16 32 64 128 256 512A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

�

Number of processors

Flash I/O Benchmark (Plotfiles, 8x8x8)

PnetCDF
HDF5

10
20
30
40
50
60
70
80
90

100

16 32 64 128 256A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

�

Number of processors

Flash I/O Benchmark (Plotfiles, 16x16x16)

PnetCDF
HDF5

5

10

15

20

25

30

16 32 64 128 256 512A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

�

Number of processors

Flash I/O Benchmark (Plotfiles w/corners, 8x8x8)

PnetCDF
HDF5

0

10

20

30

40

50

60

70

16 32 64 128 256A
gg

re
ga

te
 b

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

�

Number of processors

Flash I/O Benchmark (Plotfiles w/corners, 16x16x16)

PnetCDF
HDF5

Figure 7. Performance of the FLASH I/O benchmark on the ASCI White Frost platform.

10

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

We thank Woo-Sun Yang from LBL for providing us the
test code for performance evaluation and Nagiza F. Sama-
tova and David Bauer at ORNL for using our library and for
giving us feedback and valuable suggestions.

References

[1] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo. “FLASH:
An Adaptive Mesh Hydrodynamics Code For Modelling As-
trophysical Thermonuclear Flashes,” Astrophysical Journal
Suppliment, 2000, pp. 131-273.

[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. “A High-
Performance, Portable Implementation of the MPI Message-
Passing Interface Standard,” Parallel Computing, 22(6):789-
828, 1996.

[3] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced
Features of the Message Passing Interface, MIT Press, Cam-
bridge, MA, 1999.

[4] HDF4 Home Page. The National Center for Supercomputing
Applications. http:// hdf.ncsa.uiuc.edu/hdf4.html.

[5] HDF5 Home Page. The National Center for Supercomputing
Applications. http:// hdf.ncsa.uiuc.edu/HDF5/.

[6] J. Li, W. Liao, A. Choudhary, and V. Taylor. “I/O Analy-
sis and Optimization for an AMR Cosmology Application,”
in Proceedings of IEEE Cluster 2002, Chicago, September
2002.

[7] Message Passing Interface Forum. “MPI-2: Extensions to
the Message-Passing Interface”, July 1997. http://www.mpi-
forum.org/docs/docs.html.

[8] C. Zender. The NetCDF Operators (NCO). http://
nco.sourceforge.net/.

[9] R. Rew, G. Davis, S. Emmerson, and H. Davies, “NetCDF
User’s Guide for C,” Unidata Program Center, June 1997.
http://www.unidata.ucar.edu/packages/netcdf/guidec/.

[10] R. Rew and G. Davis, “The Unidata netCDF: Software
for Scientific Data Access,” Sixth International Conference
on Interactive Information and Processing Systems for Me-
teorology, Oceanography and Hydrology, Anaheim, CA,
February 1990.

[11] R. Ross, D. Nurmi, A. Cheng, and M. Zingale, “A Case
Study in Application I/O on Linux Clusters”, in Proceedings
of SC2001, Denver, November 2001.

[12] J.M. Rosario, R. Bordawekar, and A. Choudhary. “Improved
Parallel I/O via a Two-Phase Run-time Access Strategy,”
IPPS ’93 Parallel I/O Workshop, February 9, 1993.

[13] F. Schmuck and R. Haskin. “GPFS: A Shared-Disk File
System for Large Computing Clusters,” in Proceedings of
FAST’02, January 2002.

[14] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy,
and T. Singh. “PASSION Runtime Library for Parallel I/O”,
Scalable Parallel Libraries Conference, Oct. 1994.

[15] R. Thakur and A. Choudhary. “An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays,” Sci-
entific Programming, 5(4):301-317, Winter 1996.

[16] R. Thakur, W. Gropp, and E. Lusk. “An Abstract-Device
interface for Implementing Portable Parallel-I/O Inter-
faces”(ADIO), in Proceedings of the 6th Symposium on the
Frontiers of Massively Parallel Computation, October 1996,
pp. 180-187.

[17] R. Thakur, W. Gropp, and E. Lusk. “Data Sieving and Col-
lective I/O in ROMIO,” in Proceeding of the 7th Symposium
on the Frontiers of Massively Parallel Computation, Febru-
ary 1999, pp. 182-189.

[18] R. Thakur, W. Gropp, and E. Lusk. “On Implementing MPI-
IO Portably and with High Performance,” in Proceedings
of the Sixth Workshop on Input/Output in Parallel and Dis-
tributed Systems, May 1999, pp. 23-32.

[19] R. Thakur, R. Ross, E. Lusk, and W. Gropp, “Users Guide
for ROMIO: A High-Performance, Portable MPI-IO Imple-
mentation,” Technical Memorandum No. 234, Mathematics
and Computer Science Division, Argonne National Labora-
tory, Revised January 2002.

[20] M. Zingale. FLASH I/O benchmark. http://flash.uchicago.
edu/˜zingale/flash benchmark io/.

[21] Where is NetCDF Used? Unidata Program Center. http://
www.unidata.ucar.edu/packages/netcdf/usage.html.

11

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

