
I/O Analysis and Optimization for an AMR Cosmology Application

Jianwei Li Wei-keng Liao Alok Choudhary Valerie Taylor
ECE Department, Northwestern University

{jianwei, wkliao, choudhar, taylor}@ece.northwestern.edu

Abstract

In this paper, we investigate the data access patterns and
file I/O behaviors of a production cosmology application
that uses the adaptive mesh refinement (AMR) technique for
its domain decomposition. This application was originally
developed using Hierarchical Data Format (HDF version 4)
I/O library and since HDF4 does not provide parallel I/O
facilities, the global file I/O operations were carried out by
one of the allocated processors. When the number of pro-
cessors becomes large, the I/O performance of this design
degrades significantly due to the high communication cost
and sequential file access. In this work, we present two ad-
ditional I/O implementations, using MPI-IO and parallel
HDF version 5, and analyze their impacts to the I/O perfor-
mance for this typical AMR application. Based on the I/O
patterns discovered in this application, we also discuss the
interaction between user level parallel I/O operations and
different parallel file systems and point out the advantages
and disadvantages. The performance results presented in
this work are obtained from an SGI Origin2000 using XFS,
an IBM SP using GPFS, and a Linux cluster using PVFS.

1. Introduction

Scientific applications like Adaptive Mesh Refinement
(AMR) [1] simulations usually are not only computation in-
tensive but also I/O intensive. Parallel computing and load
balancing optimizations have greatly improved the com-
putation performance by evenly partitioning the workload
among a large number of processors. However, the I/O part
does not usually fit well into this parallel computing envi-
ronment, either due to the lack of parallel I/O libraries that
can provide good performance or due to the complexity of
the parallel I/O operations themselves.

ROMIO [15], an implementation of MPI-IO in MPI stan-
dard 2 [19] developed at Argonne National Laboratory, is
one such library that can be used in the parallel computing
environment. It provides a high-level interface supporting
partition of file data among processors and an optimal I/O

interface supporting complete transfers of global data struc-
tures between processor memories and files.

While the MPI-IO can significantly improve the perfor-
mance of I/O operations in regular data access patterns, the
irregular access patterns still need further consideration in
order to achieve full efficiency, which is usually not directly
provided by the parallel I/O library. In such case, it is nec-
essary to review the data access patterns at the application
level as well as the data storage patterns at the file system
level. These metadata can be used to improve the overall
I/O performance.

In this work, we examine the I/O access patterns of a
production astrophysics application, named the ENZO cos-
mology simulation [2, 8]. ENZO was designed using AMR
technique [1] and originally implemented using HDF ver-
sion 4 [17] library to carry out its I/O operations. Since
HDF4 does not provide parallel I/O facility, two alterna-
tives were implemented and discussed in this paper: using
MPI-IO and HDF version 5 [18]. The MPI-IO approach
uses explicit file offsets and data sizes when accessing the
files. HDF5 is a complete new work from HDF project
that incorporated the parallel I/O interfaces. The underlying
implementation of parallel HDF5 uses MPI-IO framework.
We evaluate these two alternatives on several parallel file
systems, discuss the interaction between the user-level I/O
patterns and different parallel file systems and point out the
advantages and disadvantages, which is beneficial for future
research in parallel I/O systems as well as the I/O designs
for AMR applications.

The rest of this paper is organized as follows. Section 2
gives an overview of AMR and the ENZO application. Sec-
tion 3 examines ENZO’s I/O structure and describes two
alternative I/O approaches, using MPI-IO and HDF5. Sec-
tion 4 presents the experimental performance results and the
evaluation of different I/O optimizations. Finally, Section 5
draws conclusions and identifies the future work.

2. Application Overview

ENZO is a parallel, three-dimensional cosmology hy-
drodynamics application that simulates the formation of a



Figure 1. A 2-D AMR Grid Hierarchy.

cluster of galaxies consisting of gas and stars [2, 8]. The
simulation starts near the beginning of the universe, a few
hundred million years after the big bang, and normally con-
tinues until the present day. It is used to test theories of how
galaxy and clusters of galaxies form by comparing the re-
sults with what is really observed in the sky today. Due to
the nature that cosmic fluids, such as starts and dark mat-
ter, interact with each other mainly under the gravitational
influence, the spatial distribution of the cosmic objects is
usually highly irregular. If a static uniform mesh is used in
the domain decomposition, the tradeoff will exist between
increasing the resolution using finer mesh and reducing the
computation costs using more coarse mesh. Adaptive mesh
refinement (AMR) [1] has become a well-known technique
that can properly address the problems that require high spa-
tial resolution in localized regions of multidimensional nu-
merical simulations. In the implementation of the ENZO
cosmology simulation, AMR is used throughout the evolu-
tion process so that the high resolution grids can be adap-
tively placed where the condense stars and gas locate.

2.1. Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) is a type of multi-
scale algorithm that achieves high spatial resolution in lo-
calized regions of dynamic, multidimensional numerical
simulations [2, 8]. At the start of a simulation, a uniform
mesh (root grid or top-grid) covers the entire computational
domain, and in regions that require higher resolution, a finer
subgrid is added. If more resolution is needed in a subgrid,

Figure 2. ENZO Cosmology Simulation Flow.

an even finer mesh is added in a deeper level. That way,
the AMR algorithm produces a deep, dynamic hierarchy of
increasingly refined grid patches, which are organized in a
tree-like grid hierarchy structure as shown in Figure 1. Each
grid in this hierarchy has various sizes, shapes and spatial
resolutions. The parent grids combine the results from the
child grids at each refine level and the root grid represents
the simulation results of the entire computational domain.

2.2. Simulation Flow and Data Structure

ENZO simulates the formation of the star, galaxy, and
galaxy cluster by evolving the initial grid and taking “slap-
shots” — data dump of intermediate state of grids — during
each cycle of evolutions until it reaches some end state. Fig-
ure 2 shows the structure of the code. In ENZO, the AMR
grid contains two major types of data: the baryon field data
that uniformly samples the grid domain for various kinds
of cosmological properties, and particle data that represents
the properties of a set of particles within the grid domain.

In ENZO’s implementation, the parallelism is achieved
by partitioning the problem domain (the root grid) among
processors and each processor starts from a sub-domain of
the root grid and comes out with many subgrids in differ-
ent refinement levels. Due to the implementations of AMR
and load balance optimization [5, 6], the subgrids can be
refined and redistributed among processors. An example of
resulted hierarchy and distribution of the grids is illustrated
in Figure 3.

The original ENZO application uses sequential HDF4
I/O library to perform file I/O. To start a new simulation, the



Figure 3. Example of Grid Hierarchy and Grid
Distribution using 8 processors. The hierar-
chy data structure is maintained on all pro-
cessors and contains grids metadata. Each
node of this structure points to the real data of
the grid. The grids themselves are distributed
among processors.

application reads in some initial grids(root grid and some
initial pre-refined subgrids) and partitions them among pro-
cessors. During the evolution of the grid hierarchy, the ap-
plication periodically writes out the intermediate grid data
(a checkpoint data dump). The output files from the check-
point data dump are used either for restarting a resumed
simulation or for visualization.

3. I/O Analysis and Optimizations

In this section, we first examine the file I/O behaviors
in the ENZO code and, then, analyze its data partition and
access patterns. Useful metadata that can be used to po-
tentially improve the I/O performance is also studied. Fur-
thermore, different I/O approaches, including MPI-IO and
parallel HDF5, are presented and investigated for their po-
tential benefits to the overall I/O performance.

3.1. Application I/O Analysis

The file I/O operations in ENZO cosmology simula-
tion are grid based. Reading/Writing a grid includes the
read/write of the baryon field data containing a number of
3-D arrays (density, energy, velocity X, velocity Y, veloc-
ity Z, temperature, dark matter, etc.) and the particle data
containing a number of 1-D arrays (particle ID, particle po-
sitions, particle velocities, particle mass, and other particle
attributes).

There are three categories of I/O operations: reading the
initial grids in a new simulation, writing grids during each

Figure 4. ENZO Data Partition Patterns on 8
processors. Baryon field datasets are 3-D ar-
rays and partitioned in a (Block, Block, Block)
manner. Particle datasets are 1-D arrays and
partitioned in an irregular pattern (by particle
position).

cycle of grid hierarchy evolution and at the end of a simula-
tion, and reading grids in a restart simulation.

In a new simulation, processor 0 reads in all initial grids
including the top-grid and some pre-refined subgrids. Each
grid is, then, evenly partitioned among all processors based
on the spatial domain boundaries in each dimension by hav-
ing processor 0 redistributing the grid data to all other pro-
cessors. The data partition pattern of the 3-D baryon fields
is in (Block, Block, Block) according to the partition of the
grid domain. The 1-D particle arrays are partitioned based
on which grid sub-domain the particle position falls within
and, therefore, the particle access pattern can be highly ir-
regular. Figure 4 illustrates the partition patterns of differ-
ent data arrays. When reading a grid, a processor follows a
fixed order of accessing the various data arrays of the grid.

When performing the checkpoint data dump, the parti-
tioned top-grids are collected by processor 0 and combined
into a single top-grid that is written to a single file by pro-
cessor 0. During the top-grid combination, the particles and
their associated data arrays are sorted in the original order
in which the particles were initially read. When performing
the data dump for subgrids, each processor writes its own
subgrids into individual grid files. In this case, the write
operations can be performed in parallel without communi-
cation.

The restart read is pretty much like the new simulation
read, except that every processor reads the subgrids in a
round-robin manner. Similarly, the access of a grid follows
a fixed order in the series of arrays.

When analyzing the I/O characteristics of the ENZO
simulation, several useful metadata are discovered: the rank



Figure 5. Reading (Block, Block, Block)-
distributed subarrays from a 3-D array by us-
ing collective I/O. The 3-D array is stored in
the file such that x-dimension is the most
quickly varying dimension and z-dimension
is the most slowly varying dimension. The
write operation is similar except that the first
phase of the two-phase operation is commu-
nication and the second phase is I/O.

and dimensions of data arrays, the access patterns of arrays,
and the data access order. With the help of these metadata,
the proper optimal I/O strategies can be determined for the
AMR type of applications and the high performance paral-
lel I/O can be achieved.

3.2. Parallel I/O Implementation Using MPI-IO

MPI-IO is part of MPI Standard 2 [19], a message pass-
ing interface specification implemented and used on a wide
range of platforms. In this work, ROMIO [15], the most
popular MPI-IO implementation is used in our I/O imple-
mentation. It is implemented portably on top of an abstract
I/O device (ADIO) layer [13] that enables ROMIO to be
ported to new underlying I/O systems. ROMIO is freely
available for a wide range of systems including IBM SP,
Intel Paragon, HP Exemplar, SGI Origin2000, NEC SX-4,
and clusters of workstations or PC Linux.

One of the most important features in ROMIO is the col-
lective I/O operations which adopts the two-phase I/O strat-
egy [9, 11, 12, 14]. Figure 5 illustrates the idea of collective
I/O. The collective I/O operations are decomposed into two
phases, the I/O phase and communication phase. Taking the
collective read as an example, processors, in the I/O phase,
read data that is conformed to the distribution patterns in the
file, which results in each processor making a single, large,
contiguous access. In the communication phase, processors
redistribute data among themselves towards the desired data
distribution patterns in processor memories. This approach
improves the I/O performance by significantly reducing the
number of I/O requests that would otherwise result in many
small non-contiguous I/O requests.

3.2.1. Optimizations by Access Pattern

As we have seen, the file I/O for the top-grid in the
ENZO application involves two categories of access pat-
terns, regular and irregular access patterns.

When accessing the 3-D arrays of the baryon field data
in (Block, Block, Block) partition pattern, each processor
needs to access a large number of non-contiguous blocks
of data from the array. By using the collective I/O features
of the MPI-IO along with the MPI derived datatypes, we
can view the file data as a 3-D array, and the requested part
of dataset as its subarray defined by the offsets and lengths
in each dimension. After setting the file view for the re-
quested subarray in each processor, all processors perform
a collective I/O in which internally each processor accesses
a contiguous data region in the file and the desired pattern
is achieved by inter-communication among the processors
participating the collective I/O, as described in Figure 5.

In the irregular access pattern presented in the ENZO im-
plementation, the 1-D particle arrays can be accessed by
using block-wise I/O followed by data redistribution based
on the grid location. The read access is done by first per-
forming contiguous read in a block-wise manner, check-
ing the particle position and grid edges to determine which
processor each particle belongs to, and then performing
inter-processor communication to redistribute the particles
to their destination processors. The write access is a lit-
tle bit different since the particle arrays need to be globally
sorted by the particle ID. To perform a parallel write for
particle data, all processors perform a parallel sort accord-
ing to the particle ID and then all processors independently
perform block-wise MPI write. The MPI-IO operation here
is non-collective because the block-wise pattern for 1-D ar-
rays always results in contiguous access in each processor.

3.2.2. Making Use of Other Metadata

Note that each grid access involves the data arrays one by
one in a fixed order. We can further optimize the I/O per-
formance by letting all processors write their subgrids into
a single shared file. Writing all grids into a single file can
benefit the read performance when the simulation restarts.
When data size becomes very large and needs to migrate
to a tape device, writing grids into a single file can result a
contiguous storage space in a hierarchical file system which
will generate an optimal performance for data retrieval. In
this work, we consider writing all grids into a single file for
our parallel I/O implementations.

3.3. Parallel I/O Implementation Using HDF5

Since HDF5 provides parallel I/O interfaces, we expect
performance improvement by changing the original HDF4



I/O in the ENZO code into parallel HDF5 I/O. In our im-
plementation, we set the HDF5 to use MPI-IO for parallel
I/O access. Similar to our previous implementation directly
using MPI-IO, we also make use of the data access patterns
and let all processors read/write the top-grid in parallel (col-
lective I/O for regular partitioned baryon field data and non-
collective I/O for irregular partitioned particle data). Simi-
larly, the initial subgrid is read in the same way as the top-
grid, and all subgrids are written to a single file shared by all
allocated processor in parallel. However, the parallel access
of a data array (dataset) is achieved by selecting a hyper-
slab from the file dataspace of that dataset, instead of using
fileview and subarray.

4. Performance Evaluation

In this work, we run our experiments on different paral-
lel systems, each with a different parallel file system. We
vary the numbers of processors and the problem sizes to
see how well the I/O performance can benefit from the op-
timizations when using MPI-IO and HDF5. It is also inter-
esting to see how the optimized parallel I/O operations in-
teract with different parallel file systems. We use three dif-
ferent problem sizes: AMR64 with grid dimensionality of
32×32×32, AMR128 with 64×64×64 and AMR256 with
128×128×128. Table 1 gives the amount of I/O performed
with respect to the three problem sizes.

Table 1. Amount of data read/written by ENZO
application with three problem sizes.

AMR64 AMR128 AMR256
Read 2.78 MB 22.15 MB 177.21 MB
Write 13.12 MB 66.42 MB 525.27 MB

4.1. HDF4 I/O vs MPI-IO

4.1.1. Timing Results on SGI Origin2000

Our first experiment is run on SGI Origin2000 using
XFS. This system has 48 processors with 12 Gbytes mem-
ory and 1290 Gbytes scratch disk space. In this experi-
ment, we use problem size AMR64 and AMR128 and run
the original HDF4 I/O application and our MPI-IO version
on different number of processors.

As SGI Origin2000 uses cach-coherent non-uniform
memory access (ccNUMA) distributed shared memory ar-
chitecture that employs bristled fat hypercube network for
high bisection bandwidth, low-latency interconnect and be-

Figure 6. I/O Performance of the ENZO appli-
cation on SGI Origin2000 with XFS.

cause of its optimizations in remote and local memory la-
tency as well as in data locality, the communication over-
head is relatively low for MPI-IO, especially for those ac-
cess patterns that involve many small non-contiguous data
access and hence a lot of communication implied. In such
case, our optimization using MPI-IO does get much benefit.
The I/O performance improvement of MPI-IO over HDF4
I/O is shown in Figure 6.

4.1.2. Timing Results on IBM SP-2

The second experiment is done on an IBM SP-2 us-
ing GPFS. This system is a teraflop-scale Power3 based
clustered SMP system from IBM with 144 compute nodes.
Each compute node has SMP architecture with 4 GBytes of
memory shared among its 8 - 375 MHz Power3 processors.
All the compute nodes are inter-connected by switches. The
compute nodes are also connected via switches to the mul-
tiple I/O nodes of GPFS.

We run the experiments with two different problem sizes
(AMR64 and AMR128) on 32 processors and 64 proces-
sors. As is shown in Figure 7, the performance of our paral-
lel I/O using MPI-IO is worse than the original HDF4 I/O.
This happens because the data access pattern in this appli-
cation does not fit in well with the disk file striping and dis-
tribution pattern in the parallel file system. Each processor
may access small chunks of data while the physical distri-
bution of the file on the disks is based on very large, fixed
striping size. The chunks of data requested by one proces-
sor may span on multiple I/O nodes, or multiple processors



Figure 7. I/O Performance of the ENZO appli-
cation on IBM SP-2 with GPFS.

Figure 8. I/O Performance of the ENZO ap-
plication on Linux cluster with PVFS (8 com-
pute nodes and 8 I/O nodes inter-connected
through fast Ethernet)

may try to access the data on a single I/O node. Another
reason for the parallel I/O performs worse on this system
is that, in IBM SP, when too many processors on a single
SMP node try parallel I/O access, the actual I/O may suf-
fer from a long I/O request queue. But for larger problem
size with proper more number of processors, as we see in
the AMR128 case, this situation can be meliorated in some
degree.

4.1.3. Timing Results on Linux Cluster

4.1.3.1. Using PVFS

The third experiment is obtained on the Linux cluster at
Argonne National Laboratory, Chiba City [16], using PVFS
[21]. Each of the compute nodes used in the experiment
is equipped with two 500 MHz Pentium III processors, 512
Mbytes of RAM, 9 Gbytes of local disk, and 100 Mbps Eth-
ernet connection with one another. This experiment is run
on 8 compute nodes each with one process, and the PVFS
is accordingly configured using 8 I/O nodes.

Like GPFS, the PVFS for MPI-IO uses fixed striping
scheme specified by the striping parameters at setup time
and the physical data partition pattern is also fixed, hence
not tailored for specific parallel I/O applications. More
importantly, the striping and partition patterns are uniform
across multiple I/O nodes, which provides efficient utiliza-

Figure 9. I/O Performance of the ENZO appli-
cation on Linux cluster with each compute
node accessing its local disk using PVFS in-
terface.

tion of disk space. For various types of access patterns,
especially those in which each processor accesses a large
number of small strided data chunks, there may be signifi-
cant mismatch between the application partitioning patterns
in memory and physical storage patterns in file. Due to
the large communication overhead resulting from using the
fast Ethernet in the current system configuration, the perfor-
mance results shown in Figure 8 present the performance
degradation of this overhead. However, the MPI read per-
formance is a little better than HDF4 read because of the
caching and ROMIO data-sieving techniques that overcome
the communication overhead. From this figure, we discov-
ered that the performance results tend to be better for larger
size of problem, which is more unlikely having repeatedly
accesses for small chunks of data.

4.1.3.2. Using Local Disk

Having noticed the significant performance degradation
due to the high communication overhead between the I/O
nodes and the compute nodes using fast Ethernet, we run
the fourth experiment on the Chiba City using the disk local
to the compute nodes. The I/O operations are performed
through internally calling PVFS I/O interface. The only
overhead of MPI-IO is the user-level inter-communication
among compute nodes. The performance results are shown
in Figure 9. As expected, the MPI-IO has much better over-



Figure 10. Comparison of I/O write perfor-
mance for HDF5 I/O vs MPI-IO (on SGI Ori-
gin2000).

all performance than the HDF4 sequential I/O and it scales
well with the number of processors.

However, unlike using the real PVFS which generates
integrated files, the file system used in this experiment does
not keep any metadata of the partitioned file and it requires
additional efforts to integrate the distributed output files in
order for other applications to use.

4.2. Evaluation of HDF5 I/O Performance

To evaluate the performance of HDF5 I/O for ENZO, we
run our application on SGI Origin2000 with problem sizes
AMR64 and AMR128, and compare the timing results for
write operations with those of MPI-IO. At the time of our
experiment, we use the official release version 5-1.4.3 of
HDF5 from NCSA.

As seen in Figure 10, the performance of HDF5 I/O is
much worse than we expected. Although it uses MPI-IO for
its parallel I/O access and has optimizations based on access
patterns and other metadata, the overhead in current release
of HDF5 is very significant. First of all, synchronizations
are performed internally in parallel creation/close of every
dataset. Secondly, the HDF5 stores array data as well as
the metadata in the same file, which can result in the real
data ill alignment on appropriate boundaries. This design

yields in a high variance in access time between processors.
Thirdly, the hyperslab used for parallel access is handled as
recursive operations in HDF5, which makes the packing of
the hyperslab into a contiguous buffer relatively a long time.
Finally, attributes (meta data) can only be created/written
by processor 0, which also limits the parallel performance
on writing real data. All these overheads lead to the worse
performance of using parallel HDF5 I/O than using MPI-
IO.

5. Conclusions and Future Work

This paper analyzes the file I/O patterns of an AMR ap-
plication, and collects useful metadata that is used to ef-
fectively improve the I/O performance. These metadata in-
cludes the rank of arrays, the access pattern (regular and
irregular), the access order of arrays. By taking advantages
of two-phase I/O and other I/O optimization techniques, we
develop useful I/O optimization methods for AMR simu-
lations and show improvement of the I/O performance for
such applications.

In the meanwhile, by testing different I/O approaches on
different parallel file systems, we also find that the perfor-
mance may not improved as much as we expected, due to
the mismatch between the access patterns and the disk file
striping and distribution patterns. There are other architec-
tural reasons. On the IBM SP, the SMP configuration may
result in I/O contentions and, on the Linux cluster, the over-
head is due to the use of the slow communication network
between compute and I/O nodes.

Our future work, on application level, includes using
Meta-Data Management System (MDMS) [7] on AMR ap-
plications to develop a powerful I/O system with the help
of the collected metadata. On lower level, this paper raises
some important design issues of parallel file system, and
the future work may be to improve the parallel file system
so that it has flexible, application-specific disk file striping
and distribution patterns that is convenient and efficient for
MPI-IO applications.

Acknowledgements

This work is supported by National Computational Sci-
ence Alliance under contract ACI-9619019 and by Depart-
ment of Energy under the Accelerated Strategic Comput-
ing Initiative (ASCI) Academic Strategic Alliance Program
(ASAP) Level 2, under subcontract No. W-7405-ENG-48
from Lawrence Livermore National Laboratories. We also
acknowledge the use of SGI Origin2000 at NCSA, IBM SP-
2 at SDSC and Linux cluster at ANL.

This work has been influenced by a number of people.
First we are thankful to Greg Bryan for providing us the
ENZO code and many helpful discussions on its I/O be-



haviors. We also thank Zhilin Lan and Xiaohui Shen for
collaborations in the beginning part of this work.

References

[1] M. Berger and P. Colella, “Local Adaptive Mesh Refine-
ment for Shock Hydodynamics”,Journal of Computational
Physics, Vol. 82, No. 1, pp. 64-84, May 1989

[2] G. Bryan. “Fluid in the universe: Adaptive mesh refinement
in cosmology”. InComputing in Science and Engineering,
1(2):46-53, March/April, 1999.

[3] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R.
Ponnusamy, T. Singh, and R. Thakur. “PASSION: Parallel
And Scalable Software for Input-Output”,Technical Report
SCCS-636, NPAC, Syracuse University, September 1994

[4] W. Gropp, E. Lusk, and R. Thakur.Using MPI-2: Advanced
Features of the Message Passing Interface, MIT Press, Cam-
bridge, MA, 1999

[5] Z. Lan, V. Taylor, and G. Bryan. “Dynamic Load Balancing
For Structured Adaptive Mesh Refinement Applications”, in
Proceeding of ICPP’2001, Valencia, Spain, 2001.

[6] Z. Lan, V. Taylor, and G. Bryan, “Dynamic Load Balanc-
ing of SAMR applications on Distributed Systems”, inPro-
ceeding of SC’2001 (formerly known as Supercomputing),
Denver, CO, November, 2001.

[7] W. Liao, X. Shen, and A. Choudhary. “Meta-Data Manage-
ment System for High-Performance Large-Scale Scientific
Data Access”, in the7th International Conference on High
Performance Computing, Bangalore, India, December 17-
20, 2000

[8] M.L. Norman, J. Shalf, S. Levy, and G. Daues. “Diving
deep: Data management and visualization strategies for
adaptive mesh refinement simulations”,Computing in Sci-
ence and Engineering, 1(4):36-47, July/August 1999

[9] J.M. Rosario, R. Bordawekar, and A. Choudhary. “Improved
Parallel I/O via a Two-phase Run-time Access Strategy”,
IPPS ’93 Parallel I/O Workshop, February 9, 1993

[10] H. Taki and G. Utard. “MPI-IO on a parallel file system for
cluster of workstations”, inProceeding of the First IEEE In-
ternational Workshop on Cluster Computing, 1999

[11] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy,
and T. Singh. “PASSION Runtime Library for Parallel I/O”,
Scalable Parallel Libraries Conference, Oct. 1994

[12] R. Thakur and A. Choudhary. “An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays”,Sci-
entific Programming, 5(4):301-317, Winter 1996

[13] R. Thakur, W. Gropp, and E. Lusk. “An Abstract-Device
interface for Implementing Portable Parallel-I/O Inter-
faces”(ADIO), inProceeding of the 6th Symposium on the
Frontiers of Massively Parallel Computation, October 1996,
pp. 180-187

[14] R. Thakur, W. Gropp, and E. Lusk. “Data Sieving and Col-
lective I/O in ROMIO”, inProceeding of the 7th Symposium
on the Frontiers of Massively Parallel Computation, Febru-
ary 1999, pp. 182-189

[15] Rajeev Thakur, Ewing Lusk, and William Gropp, “Users
Guide for ROMIO: A High-Performance, Portable MPI-IO

Implementation”, Technical Memorandum ANL/MCS-TM-
234, Mathematics and Computer Science Division, Argonne
National Laboratory, Revised July 1998.

[16] Chiba City, the Argonne National Laboratory scalable clus-
ter.http://www.mcs.anl.gov/chiba.

[17] HDF4 Home Page. The National Center for Supercomputing
Applications.http://hdf.ncsa.uiuc.edu/hdf4.html.

[18] HDF5 Home Page. The National Center for Supercomputing
Applications.http://hdf.ncsa.uiuc.edu/HDF5/.

[19] Message Passing Interface Forum. “MPI-2: Extensions to
the message-passing interface”, July 1997.http://www.mpi-
forum.org/docs/docs.html

[20] Pablo Research Group. “Analysis of I/O Activ-
ity of the ENZO Code”, University of Illinois
at Urbana-Champaign, July 2000. http://www-
pablo.cs.uiuc.edu/Data/enzo/enzoData.htm

[21] The Parallel Virtual File System Project.
http://parlweb.parl.clemson.edu/pvfs/


