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Abstract—As scientific data is reaching exascale, scalable and
energy efficient data analytics is quickly becoming a top notch
priority. Yet, a sustainable solution to this problem is hampered
by a number of technical challenges that get exacerbated with
the emerging hardware and software technology trends. In
this paper, we present a number of recently created “secret
sauces” that promise to address some of these challenges. We
discuss transformative approaches to efficient data reduction,
analytics-driven query processing, scalable analytical kernels,
approximate analytics, among others. We propose a number
of future directions that could be pursued on the path to
sustainable data analytics at scale.

I. INTRODUCTION

The projected energy costs of scaling machines to ex-
ascale forms a nontrivial barrier to realization. Currently,
the energy bills from system operation and hardware cool-
ing exceed the cost of hardware ownership within just a
few years of operation [9]. In fact, this trend of rising
energy costs is expected to continue over the next decade
[1], [2], [7]. Furthermore, uncontrolled energy generation
negatively affects hardware reliability. Therefore, increasing
energy efficiency is a top notch priority for extreme-scale
computing, in general, and data-intensive computing, in par-
ticular. Creating a sustainable path to exascale is challenged
by emerging trends related to data, hardware, and energy
issues. These issues call for the next breed of data analysis
algorithms and software libraries to be designed to achieve
high operational efficiency on datasets growing in size and
complexity and on computational resources increasing in
their heterogeneity.

A. Data Trend: Scientific data sets grow not only in size but
in complexity.

Scientific data sizes are expected to reach hundreds of
petabytes and beyond. But the algorithmic and energy chal-
lenges of handling this data due not just to the data size
alone, but also to its complexity, i.e., high-dimensional, non-
stationary, multi-scale, multi-variate, spatio-temporal nature.

Naturally, analysis algorithms on these sets are becoming
increasingly sophisticated, requiring an increasing number
of power-demanding computational and memory resources.

Arguably, traditional approaches to developing scalable
algorithms and software for data analytics and mining are not
suitable at exascale, and a paradigm shift may be necessary
to address the challenge. Current algorithms often assume
that data sizes can fit in the memory of small-scale systems.
This could be true for local context mining that constrains
the data to a single time step or a single variable over a
few time steps. However, simulations that are driven by
local space-time relationships are largely performed with the
purpose of discovering or explaining non-local, large-scale,
multi-variate, space-time relationships through interactive
“what-if” data exploration that often requires the full context
of the available data. An analytics algorithm restricted to
work on a smaller working set to minimize I/O and finish in
a reasonable time may miss important relationships or may
not even be suitable for finding particular phenomena in
large-scale data. In the end, although spatio-temporal data
sets can be mined at various scales, many phenomena of
interest become accessible only at a finer scale. Thus, the
fundamental differences in data context and heterogeneity
of access patterns call for analysis algorithms that are
co-designed with efficient memory and data management
solutions.

B. Energy Trend: Performance-energy tradeoffs are becom-
ing an essential part of the design and implementation of
architectures, system software, and algorithms.

In parallel computing, as computation scales, efficiency
tends to be diminished, and if the power consumed in
resource usage is not reduced proportionately, then the
overall energy usage of the algorithm can increase in a super-
linear fashion. Therefore, performance-energy tradeoffs must
be considered in a systematic way to develop appropriate
power-aware algorithms and software.



Although this observation can be generally applied, ana-
lytics provides particular opportunities, such as approximate
algorithms, fixed-point computations, index-based analytics,
knowledge priors-driven search, hierarchical exploration,
and others (as discussed later) in order to develop energy-
performance optimizations. A framework for analysis of
performance/energy tradeoffs for large-scale parallel systems
thus becomes necessary for designing and implementing
energy-efficient scalable analytics and mining algorithms.

As part of this framework, identifying the right config-
uration among multiple resources for different classes of
problems is essential to reduce the high-energy consumption.
Given the number of applications, the task of breaking them
down to be applicable on different architectures becomes
tedious, if not impossible. However, some general solutions,
when incorporated into the software framework, can help
increase the energy-efficiency—minimizing data movement
(e.g., via data compression) and generating approximate
results (e.g., via partial-precision indexing and querying as
well as fixed-point arithmetic), as described later.

C. Architecture Trend: Emerging HPC systems are adopting
increasingly heterogeneous architectures.

The newer HPC systems will comprise heterogeneous
components with multi-core processors along with general-
purpose graphic process units (GPGPUs) accelerators and
possibly FPGAs. Algorithms for scalable data analysis ker-
nels must be capable of acceleration on hybrid multi-node,
multi-core HPC architectures comprised of a mix of GPUs
and FPGA, which is a significant challenge in its own right.

Furthermore, as systems scale, due to power and cost
considerations, memory sizes are not expected to increase
linearly. However, at the same time, technologies such as
solid-state device (SSD) memories (e.g., FLASH, phase-
change memories) have the potential to provide much higher
capacities compared to DRAMs, at a lower power-cost
point, while providing much lower latencies as compared
to disks, particularly, for random accesses. Clearly, out-of-
core algorithms, which can exploit SSDs will be needed to
deal with such systems with the above constraints, but these
newer features provide an opportunity for different design
optimizations for algorithms and software.

II. DATA REDUCTION

The data flow in scientific analysis pipelines proceeds
through several resources, starting from computational nodes
that run simulations and produce their output data, through
local and shared storage devices, to visualization clusters and
accelerators for analysis, and display. The movement of data
not only results in a high-energy cost, but the discrepancy in
the bandwidth of the “pipes” leads to significant idle energy
atrophy. For example, visualization routines for analyzing
data are primarily rate limited due to I/O. As both I/O
and network throughput lack in bandwidth compared to

the computational power, compute nodes on visualization
clusters are forced to wait for data to be ingested. To increase
resource utilization, one could add more storage devices,
and build higher capacity networks. However, this does not
scale, as energy and maintenance costs increase steeply,
while offering diminishing returns. A systematic solution is
needed, where the data is reduced at the earliest possible
stage of the pipeline, such that the benefits of reduced
data movement compound at each level of in transit data
processing.

Data compression can thus be a viable solution for re-
ducing data movement and the strain on storage resources.
However, this “viabilty” is contingent upon high lossless
reduction achieved by a compression method on scientific
datasets, which is a significant challenge. This is primarily
due to the hard-to-compress nature of scientific datasets that
consist of predominantly real-valued numbers containing a
significant amount of high-entropy fractional components.
Standard compression routines are unable to extricate the
parts of the data that contain the most information, and
hence they deliver a low compression ratio and low (de-
)compression throughput. Under both lossless and error-
bounded lossy compression (needed to maintain high sim-
ulation fidelity), the majority of the current data reduction
utilities are found to be lacking in compression performance.

Although reduction of data is essential, without sup-
porting high-throughput (de-)compression routines, achiev-
ing energy-efficiency becomes an even harder problem.
Compression routines expend additional CPU cycles that
can consume almost an order of magnitude more power
than storage accesses. Compression routines must, therefore,
deliver high-performance on all three fronts– compression
throughput, decompression throughput, and compression
ratios—to achieve high energy efficiency. This is illustrated
by ISOBAR’S method [4], [5], as briefly described next.

For a majority of the scientific datasets, the exponent
and the higher-order bytes of the floating-point data tend
to exhibit more repetition than the mantissa bytes. Based
on this observation, ISOBAR applies a pre-conditioner to
identify those byte columns that are “compressible.” Instead
of wasting CPU cycles trying to compress incompressible
bytes in the data, ISOBAR groups the compressible parts
together and performs compression only on those parts.
By operating on a lower memory footprint, this method
results in higher energy-efficiency, while simultaneously
offering better throughput. A preliminary result of ISOBAR
compression performance, along with its power consumption
is shown in Figure 1. Apart from the higher throughput, the
higher compression ratios offered by ISOBAR decrease the
data movement, thus resulting in higher energy gains. In
fact, ISOBAR achieves ≈ 20% more reduction in storage,
with a factor of 1.8− 5.5 reduction in energy consumption.

Compression is expected to play a vital role not only for
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Figure 1. Power profile for ISOBAR, ZLIB, and BZLIB compression.

reducing the amount of data stored but also for addressing
the data movement and I/O bottlenecks. Unfortunately, state-
of-the-art I/O middleware does not have native support
for write compression in a parallel context, due to the
complexity of handling the resultant variable-sized com-
pressed data buffers that require synchronization between all
nodes performing shared-file I/O. The proper placement of
(de-)compression routines for maximal I/O throughput and
minimal data movement is a non-trivial issue.

Arguably, interleaving lossless compression and parallel
I/O is a “secret sauce” for addressing the I/O bottleneck [5].
Through fast, dynamic identification of highly-compressible
bytes, ISOBAR [4] can asynchronously write the remaining,
incompressible bytes to storage, effectively hiding the cost of
compression and I/O synchronization. This renders parallel
write compression viable under the full resource utilization
scenario.

Such an interleaving method naturally fits into data stag-
ing architectures [6], [3], where various data transformations
occur “in transit” or in situ, between compute nodes and
disks. With interleaved compression and I/O, we perform
compression as an in situ transfer and storage optimization.
Using various performance metrics about the system (e.g.,
network bandwidth and latency, disk read/write throughput)
and the application (e.g., compression ratio and throughput,
amount of data per core), ISOBAR’s theoretical model
accurately predicts the optimal balance among the place-
ment of compression (on compute, I/O, or staging nodes),
the data movement, and I/O. ISOBAR exhibits both read
and write performance gains proportional to the degree of
data reduction, which ranges as high as 46% on scientific
datasets, in addition to reducing the total amount of data that
is being stored and accessed. It is worth noting that merely
compressing the data without interleaving, and then writing
it to storage, results in only marginal gains (6%).

As application of compression methods becomes more
ubiquitous, wherein they are no longer employed merely
for archival purposes, maintaining read and query efficiency

becomes of paramount importance, as described next.

III. QUERY-DRIVEN DATA ANALYTICS

Query processing is a driving force behind many of
the statistical and visual data analytics routines on scien-
tific data. Within an exploratory setting, processing ad-hoc
queries at high-throughput requires the use of precomputed
indexes. However, indexing scientific data at scale presents
a number of storage, computational, and energy challenges.

First, the prime impediment stems from the unreasonable
storage requirements of indexing high-cardinality floating-
point variables. Second, index construction for scientific
databases is traditionally performed in an expensive post-
processing manner, once all of the data has been generated
and global descriptive statistical information has become
available for optimal index parameter selection. In contrast,
next-generation scientific data management will likely de-
mand high-throughput, parameter-free index building while
the data is being produced. Third, processing the majority of
the queries run on scientific data is typically rate limited by
I/O, not only due to the massive size of the index and data,
but also due to heterogeneous access patterns induced by
various types of queries. Finally, query operations have not
traditionally been optimized for energy-efficiency, which is
critical for a sustainable scientific data management solution.

I/O-bound operations, such as those induced by query
processing, typically deliver unacceptable response times,
but are reasonably energy-efficient for a number of reasons
(e.g. low power consumption by disks). The inverse relation-
ship between performance and energy efficiency necessitates
re-evaluating the existing query processing and indexing
designs.
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Figure 2. Example energy profiles for ISABELA-QA in comparison with
popular scientific database technologies.

Scientific query processing is used in performing a
wide variety of analysis functions, ranging from identifying
correlations across spatial and temporal scales to detect-
ing anomalies, clustering, dimension reduction, and other
mining operations. For example, consider the following
query on a dataset produced from a climate simulation:



“Which cities in California experienced abnormally high
temperatures (over 100◦F ) during the month of May in
the year of 2000?” This query requires efficient retrieval of
data across space, time, and value. To efficiently accelerate
queries of this nature, several indexing schemes pioneered
in databases can be used. However, building B-Trees and
bitmap indexes [10] on these datasets can require storage
of approximately 100%-300% of the raw data. Considering
the fact that indexes tend to be auxiliary data structures,
the total storage requirement can become over 300% of the
original data. Moreover, traditional databases do not natively
support array-based retrieval, which is highly common in
scientific data analytics. Analytics not only needs index-
efficient operations, like retrieving small-sized “interesting”
regions, but also fast large-scale data retrieval. Such non-
trivial challenges often lead to performance rate-limited by
I/O, incurring higher data movement than necessary, with
additional heavy-weight indexes.

Arguably, several classes of queries on exascale scientific
datasets would thus be more effective if the query engines
were tailored around coarse-grained and storage light-weight
indexes. ISABELA-QA [14] operates by building indexes
on the metadata generated by the ISABELA compression
methodology [15], instead of the actual data. Data in the
compressed form can be used to quickly extract the relevant
information needed to answer queries efficiently. Figure 2
shows a promising result with ISABELA-QA, a query pro-
cessing engine over compressed data, which results in better
overall performance as well as energy-efficiency. Its overall
storage requirement (compressed scientific data+index) was
observed to be around 40% of the original data with a
bounded per-point relative error of less than 0.1%. With the
above result in mind, we next describe some future research
directions for building efficient querying schemes.

Redesigning Indexing and Storage: Future solutions
can look towards techniques that have tightly coupled im-
plementations of data reduction, layout optimizations, and
indexing for delivering a high-throughput light-weight query
processing engine. By alleviating the performance gap on
I/O, one can move away from the traditional notion of query
processing as being an I/O-bound problem, and design faster
I/O-CPU balanced solutions, with minimal data movement.
Further investigation is required into effectively partitioning
the data for querying over different access patterns, paral-
lelizing the task of building indexes for efficient parallel
execution, and load-balancing queries from an energy per-
spective.

Approximate Querying: Application scientists con-
stantly perform exploratory querying over data, where they
are interested in a quick, approximate result of a query
rather than in a slow, complete result. One method to enable
such an approach would be to employ querying only the
indexes, rather than the entire dataset. This could, in fact,
be an effective solution for visualization routines, as they

can usually tolerate some amount of loss in precision with-
out appreciable decrease in quality of output. Approximate
query processing, as employed in ISABELA-QA, or by
querying the precomputed indexes, can result in significant
improvement in query throughput. Then, if the user requests
more accurate results, extra disk accesses can be made
to iterate over full-precision data. The above is only one
example of approximate querying, and it becomes evident
that this can be extended beyond the precision levels offered
by data aggregation or sampling, in a manner, similar to
multi-resolution analysis commonly applied in visualization.

Cooperative Computing: Query optimizers in databases
typically use a cost-based model to identify the most efficient
execution plan for a given query. Recent works [16], [17]
additionally incorporate the energy cost when picking the
ideal query execution plan and achieve appreciable savings
in energy consumption by picking the most energy-efficient
plan. The scope for research in this area is expanded when
factoring in the hetoregenous platform. Query optimizers
should be able to break down the execution plan, to incorpo-
rate co-processing on GPU and CPU simultaneously. Such
optimizers should consider different configuration options,
and intelligent execution pipeline to minimize both energy
consumption and query response time.

IV. SCALABLE ANALYTICAL KERNELS

As both the size and complexity of scientific data grow,
the demands for more sophisticated analytics increases.
While domain scientists will likely remain the primary
conceptual designers of how their application-specific data
get analyzed, they must be relieved from the burden of
optimizing the analytical pipelines on the next-generation
HPC systems.

By examining a number of data analysis pipelines in a
particular area, it is possible to determine to what extent
they have similar performance characteristics and share
computational kernels. Highly optimized versions of these
kernels can then be used in building higher-level algorithms.
By using these kernels, designers can achieve efficient
implementations of their algorithms easily.

Fortunately, the execution of many data mining algorithms
is dominated by a small number of kernels. As an illustra-
tion, Table I [12] lists important kernels for representative
algorithms in classification, association rule mining, and
clustering. Note that the fraction of execution by the top
three kernels usually exceeds 90% and reaches up to 99%
for this set of algorithms. Thus, a promising strategy would
provide a generic and highly optimized set of core, or kernel
analytics functions, from which a broad constellation of
high performance analytical pipelines could be organically
constructed.

Arguably, a comprehensive library of such analytical ker-
nels could eventually bring analytics algorithms to the next
level. NU-MINEBENCH utilizes this strategy in the context



Table I
THE FREQUENCY OF KERNEL OPERATIONS IN ILLUSTRATIVE DATA MINING ALGORITHMS AND APPLICATIONS

Application Top 3 Kernels (%)
Kernel 1 (%) Kernel 2 (%) Kernel 3 (%)

K-means 1 Distance (68) Center (21) minDist (10)
Fuzzy K-means 1 Center (58) Distance (39) fuzzySum (1)
BIRCH Distance (54) Variance (22) redist.(10)
HOP 1 Density (39) Search (30) Gather (23)
Naı̈ve Bayesian 1 probCal (49) Variance (38) dataRead (10)
ScalParC 1 Classify (37) giniCalc (36) Compare (24)
Apriori Subset (58) dataRead (14) Increment (8)
Eclat Intersect (39) addClass (23) invertC (10)
SVMlight 1 quotMatrix(57) quadGrad (38) quotUpdate(2)

1 Application has the sum of top 3 kernel frequencies exceeding 90%

of heterogeneous HPC computing. It currently consists of
20+ analytics and mining algorithms and software [12], [8].
The use of such analytical kernels as plug-ins in the existing
environments for statistical computing such as R and WEKA
could offer a desirable ease-of-use. In fact, the APIs for
such kernels, as implemented within RSCALAPACK and
parallel R libraries mimick R-like serial functions and enable
software reuse with minimal or no changes to the current
analysis codes [13].

V. APPROXIMATE ANALYTICS

Data mining and analytics algorithms are approximate
in many ways. First, discovery of patterns, clustering, pre-
dictive modeling and learning relationships provide results
within an error bound (e.g., the convergence error for cluster-
ing is within a pre-specified bound), meet certain confidence
constraints (e.g., the probability of a decision rule to be
true is above 80%), or have certain confidence in model
prediction (e.g., precision is above a threshold). Second, the
data itself is typically noisy due to the collection process
or assumptions in the underlying mathematical models used
to generate the data. Third, the existence of many potential
alternatives requires quick exploration of the space of mining
models where it is sufficient to know relative ranking of the
models rather than to have accurate results in order to allow
a user to perform a more in-depth analysis on a smaller
parameter space. Therefore, approximate algorithms for data
analytics are needed for both performance and resource
usage purposes.

Fixed-Point Arithmetic on Analytical Kernels: Several
hardware architectures, including mobile devices and em-
bedded systems, lack sufficient floating-point computation
power and thus require algorithms that can deliver the
required performance while operating with lower energy.
Algorithms implemented using fixed-point arithmetic [11]
trade precision for energy-and-computational efficiency, re-
placing expensive floating-point operations with a sequence
of faster integer operations. Compute-intensive parts of
kernels described in Table I depend heavily on floating-
point computations, which consume a significant amount
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Figure 3. Power consumption on transferring varying fixed-point repre-
sentations from the CPU to the GPU.

of resources on accelators like FPGAs, making them prime
candidates for fixed-point optimization. Gains in energy
result since fewer precision bits would need to be transferred
to the FPGAs as shown in Figure 3.
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Fixed-point representations use a virtual decimal point
in an integer data that seperates the inegral and fractional



parts of a real number. A fixed-point variable represented
using Q.i.f uses i bits for the integer part and f bits for the
fractional part of the data. For implementation efficiency,
the values of i and f are generally chosen as powers of
two, and the fixed-point number is represented in base 2,
rather than base 10. The target analytical kernel is analyzed
and those functional blocks that would ideally benefit with
a fixed-point representation are chosen for conversion. For
these blocks, a range analysis is applied to identify variables
susceptible to an overflow or underflow error for various
combinations of integer and fractional part sizes in the fixed-
point representation; i.e., the values of i and f.

The ensuing accuracy analysis phase details the gradual
loss in accuracy between fixed-point and floating-point rep-
resentations. While gradual loss in accuracy is expected, care
must be taken so that critical errors do not arise. In those
highly-sensitive parts, native implementations floating-point
have to be retained. Figure 4 shows the performance benefits
of a reduced-precision implementation of k−means clus-
tering algorithm. Using a fixed-point 12-bit representation
results in 44% energy saving, with just 0.03% relative error
in mis-classification. Similar results are seen with Pearson
correlation, with speedups of ≈ 2.5 and a 50−70% reduction
in energy consumption.
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