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ABSTRACT
In Computational Materials Design (CMD), it is well recog-

nized that identifying key microstructure characteristics is cru-
cial for determining material design variables. However, existing
microstructure characterization and reconstruction (MCR) tech-
niques have limitations to be applied for materials design. Some
MCR approaches are not applicable for material microstruc-
tural design because no parameters are available to serve as
design variables, while others introduce significant information
loss in either microstructure representation and/or dimensional-
ity reduction. In this work, we present a deep adversarial learn-
ing methodology that overcomes the limitations of existing MCR
techniques. In the proposed methodology, generative adversarial
networks (GAN) are trained to learn the mapping between latent
variables and microstructures. Thereafter, the low-dimensional
latent variables serve as design variables, and a Bayesian opti-
mization framework is applied to obtain microstructures with de-
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sired material property. Due to the special design of the network
architecture, the proposed methodology is able to identify the la-
tent (design) variables with desired dimensionality, as well as
capturing complex material microstructural characteristics. The
validity of the proposed methodology is tested numerically on a
synthetic microstructure dataset and its effectiveness for materi-
als design is evaluated through a case study of optimizing optical
performance for energy absorption. Additional features, such
as scalability and transferability, are also demonstrated in this
work. In essence, the proposed methodology provides an end-to-
end solution for microstructural design, in which GAN reduces
information loss and preserves more microstructural character-
istics, and the GP-Hedge optimization improves the efficiency of
design exploration.

Keywords: Materials design, Microstructural analysis, Deep
learning, Generative adversarial network, Bayesian optimization,
Scalability, Transfer learning
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1 INTRODUCTION
To date, Computational Materials Design (CMD) has rev-

olutionarily changed the way advanced materials are developed
[1–8]. In the plethora of successes in CMD [9–15], microstruc-
ture sensitive design [16] has shown its significance in driving
the rapid discovery and manufacturing of new materials. In
designing material microstructures, the appropriate design rep-
resentation of microstructures determines its ultimate success.
A common practice of selecting microstructural design vari-
ables is to choose key microstructure characteristics from ex-
isting microstructure characterization and reconstruction tech-
niques (MCR). A comprehensive review of existing MCR tech-
niques is provided by Bostanaband et al. [17]. Together with
some recent works using deep learning, the existing techniques
are classified into the following categories:
1. Correlation function-based methods [18]
2. Physical descriptor-based methods [19]
3. Gaussian Random Field (GRF)-based methods [20]
4. Markovian Random Field (MRF)-based methods [21]
5. Deep Belief Network-based methods [22]
6. Spectral Density Function (SDF)-based methods [15], and
7. Transfer Learning-based methods [23, 24]

However, not all existing MCR techniques are applicable for
materials design. Two major limitations exist: 1) Some MCR
methods (methods 3, 4, 5 and 7) are not applicable for mate-
rial microstructural design, because no parameters are available
to serve as design variables for generating new microstructure
designs. 2) While methods 1, 2 and 6 are applicable for mate-
rial microstructural design, their efficacy is limited by the po-
tential information loss (i.e. loss of either dispersive or geomet-
rical characteristics) in microstructure representation and/or di-
mensionality reduction. In microstructure representations, some
approximations such as taking radial averages in method 1 & 6 or
approximating cluster shapes with ellipses in method 2 could re-
sult in the loss of microstructural characteristics. Dimension re-
duction is often needed in microstructure optimization due to the
high-dimensional representation of microstructures. A common
practice is to conduct a transformation of microstructure rep-
resentations (e.g. using Principal Component Analysis (PCA))
and remove some insignificant dimensions. Information loss
would also occur in the removal process. For instance, Paulson
et al. [25] use spatial correlation function as the microstructure
representation, and conduct a PCA transformation. It is shown
in their work that removing some principal components could
lead to a significant reduction in explained structural variance.
Another example is the use of descriptor-based approach. After
obtaining the full list of descriptors, a supervised learning-based
feature selection step is often used to remove the lower-ranked
descriptors [26], wherein some geometric or higher-order dis-
persive information is lost. It should be noted that the aforemen-
tioned dimensionality reduction techniques do not guarantee the
capability of generating new microstructural designs using the

reduced dimension. For example, while the principal compo-
nents learned by PCA are capable of identifying new dimensions
that are not linearly correlated, it is not clear how to generate a
new microstructure by sampling in the learned principal dimen-
sions.

Compared to the existing MCR techniques, generative mod-
els are promising alternatives to address the problems in ma-
terials design. Instead of identifying characteristics from mi-
crostructures, generative models emphasize the ability of using a
low-dimensional latent variables Z to generate high-dimensional
data X through a generative mapping G : Z→ X to approximate
the real data probability density Pdata(x). In other words, the
evaluation criteria for generative models is whether it is capable
of producing very realistic samples, which are indistinguishable
from real samples. The latent variables learned in the genera-
tive model can therefore serve as design variables for microstruc-
tural design. In addition, generative models are especially pow-
erful for materials design because the approach is model-based
and it can rapidly generate new microstructures by changing the
values of latent variables, while existing MCR approaches of-
ten need tedious optimization for microstructure reconstructions
(e.g. Simulated Annealing is used in correlation function-based
reconstruction).

In the realm of deep learning, Variational Auto-Encoder
(VAE) [27] and Generative Adversarial Networks (GAN) [28,29]
are two major categories of generative models. It is well recog-
nized that VAE suffers from the issue of “maximum likelihood
training paradigm” when combined with a conditional indepen-
dence assumption on the output given the latent variables, and
they tend to distribute probability mass diffusely over the data
space and generate blurry samples [30]. Despite these theoreti-
cal disadvantages, both Cang et al. [31] and Guo et al. [32] de-
veloped VAE-based models for representing sandstone material
microstructures and topology optimization respectively. How-
ever, their generative capability is bottlenecked at images of size
40×40, and it is impossible to scale up because fully-connected
layers are involved in their network architecture.

In contrast to VAE, GAN is a better choice to bypass these
problems. Different from VAE, GAN identifies the latent vari-
ables of data by training a generator-discriminator model pair in
adversarial manner. In [33, 34], GAN is used for reconstruct-
ing different types of microstructures, but their applications in
computational materials design are unexplored. In this work, as
illustrated in Figure 1, we apply a fully scalable GAN-based ap-
proach to determine the latent variables of a set of microstruc-
tures once its dimensionality is pre-specified. The latent vari-
ables are then treated as design variables in microstructure op-
timization. Thereafter, the material property for the latent vari-
ables is obtained by propagating the latent variables through the
generator in GAN, followed by physical simulations of structure-
property or structure-performance relations. Considering that
physical simulations are usually computationally costly, we also
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FIGURE 1. THE FLOWCHART OF THE PROPOSED DESIGN METHODOLOGY

want to minimize the number of property evaluations. Therefore,
we pursue a response surface model-based GP-Hedge Bayesian
optimization framework to optimize microstructure with desired
material property/performance.

The proposed deep adversarial learning methodology pro-
vides an end-to-end solution that offers a low-dimensional
and non-linear embedding of microstructures for material mi-
crostructural design. Compared with the existing methods which
cannot fully capture microstructural characteristics (e.g. two-
point correlation function in method 1 and physical descriptors
in method 2), the proposed method does not make any geomet-
rical or dispersive approximations and thus there is no informa-
tion loss. In addition, the non-linear embedding of microstruc-
tures in the proposed method avoids the removal of insignificant
dimensions of microstructure representations (e.g. physical de-
scriptors in method 2 and principal components in method 1) so
that more microstructural information is preserved. Moreover,
the proposed method is also beneficial for materials design be-
cause the dimensionality of latent variables can be pre-specified
as needed. Meanwhile, since the GAN is implemented by deep
neural networks with large model capacity, it is able to capture
very complex microstructural characteristics. In addition to the
contribution of the proposed approach to materials design, we
also demonstrate that the proposed approach is advantageous in:
1) scalability: the proposed approach is capable of converting
microstructures into reasonable and computationally affordable
low-dimensional representations as needed, and the generator in
proposed model is scalable to produce arbitrary sized microstruc-
tures; 2) transferability: the discriminator in the proposed ap-
proach could be reused to serve as a pre-trained model to facili-
tate the development of structure-property predictive models. To
the best of the authors knowledge, this work is the first that ap-
plies adversarial learning in computational design of materials
microstructure.

In the remainder of this paper, we break our presentation of
the deep adversarial learning design methodology into five sec-
tions. In the first part (Section 2 Design Representation), we
present the technical fundamentals of the deep adversarial learn-

ing approach, and show how the latent variables of microstruc-
tures are learned using the proposed approach. The latent vari-
ables are then treated as design variables in the latter sections. In
the second part (Section 3 Design Evaluation), we demonstrate
how material properties are evaluated from design variables us-
ing the proposed model. This demonstration is then followed by
Section 4 Design Synthesis, in which Gaussian Process meta-
modeling is used to create a surrogate response surface between
the latent variables and the objective property/performance, and a
GP-Hedge Bayesian optimization is applied to optimize the mi-
crostructure to achieve the target material property. After that,
we elaborate two additional features of the proposed methodol-
ogy – scalability which provides flexibility in taking arbitrary
sized input/output, and transferability which makes it possible
to utilize the trained weights to build a more accurate structure-
property predictive model (Section 5). Last but not the least, we
draw conclusions and discuss potential directions to further ex-
tend this proposed methodology.

2 Microstructural Design Representation using Deep
Adversarial Learning
In the proposed methodology, the deep adversarial learning

approach, specifically Generative Adversarial Network (GAN),
is first used to identify a set of latent variables as microstruc-
ture design variables based on microstructure images collected
for the same material system. In this section, the fundamentals
of GAN are first introduced. It is then followed by a presentation
of the proposed network architecture and designated loss func-
tion. Finally we specify some training details of the proposed
deep adversarial learning model.

2.1 Fundamentals of Generative Adversarial Network
(GAN)

Generative Adversarial Network is a type of deep genera-
tive neural network first proposed by Goodfellow et al. [28, 29].
Originated from game theory, the training process of GAN is

3 Copyright c© 2018 by ASME



essentially a two-player competitive game. Specifically, GAN
trains a generator network G(z;θ (G)) that produces samples xG
from latent variables z to approximate real samples xdata, and
a discriminator network D(x) that distinguishes the generated
samples from the real samples. This competitive game would
eventually lead to a Nash Equilibrium [35] between the genera-
tor G and the discriminator D. A more vivid analogy of GAN
is given by Goodfellow et al. [28]: in this adversary scenario,
the generator can be thought of a group of counterfeiters who
tries to produce fake currency, while the discriminator is anal-
ogous to a team of police, trying to detect the counterfeit cur-
rency from the real money. Competitions in this adversary game
would keep pushing both sides to the equilibrium in which the
counterfeits are indistinguishable. When the generator is capa-
ble of producing realistic samples at the equilibrium, the latent
variables z would be naturally taken as the “code” of the data. In
the context of proposed generative microstructural design frame-
work, the “code” will serve as the design variables to create new
microstructure designs.

An illustration of GAN is shown in Figure 2. The latent vari-
able space is denoted as Z while the microstructure data space is
represented by X . On the left hand side, to learn the generator
distribution pg that approximates the data distribution, a prior
distribution of the latent variables is defined by Z ∼ pz(z). z is
then propagated through a deep neural network to create a dif-
ferentiable mapping G(z;θ (G)) from the latent variable space Z
to microstructure data space X . On the right hand side, we also
define a discriminator network that takes x, either generated or
real microstructures, and produces a scalar label that indicates if
x is from real data. In other words, we train discriminator (D)
to maximize the probability of assigning the correct label to both
real (label=1) and generated samples (label=0), while we train
generator (G) to maximize the number of occurrences that the
labels are incorrectly assigned by D. Essentially, D and G plays
a two-player minimax game, which can be expressed as the fol-
lowing equation:

min
G

max
D

V (D,G) = EX∼pdata(x)[logD(x)]
+Ez∼pz(z)[log(1−D(G(z)))]

(1)

2.2 Network Architecture
In this work, the architecture of deep convolutional gener-

ative adversarial network in [36] is adopted except that we use
convolutional layers to replace the fully-connected layers in both
generator and discriminator for the sake of scalability (this will
be introduced in section 5). The generator and the discriminator
have the same number of layers, and the number of the convolu-
tional filters are aligned symmetrically in the generator and the
discriminator. In the generator, the last de-convolutional layer is
associated with a tanh activation function to produce images with

FIGURE 2. THE ARCHITECTURE OF THE PROPOSED GENER-
ATIVE ADVERSARIAL NETWORK.

bounded pixel values, while the other de-convolutional layers are
attached with batch normalization operations [37] and Rectified
Linear Unit (ReLU) activations [38]. In the discriminator, the last
convolutional layer has a sigmoid activation function appended
to produce probabilities between 0 and 1, while the other convo-
lutional layers are all associated with batch normalization oper-
ations [37] and leaky Rectified Linear Unit (Leak ReLU) activa-
tions [39].

Figure 2 is a simple demonstration of the proposed architec-
ture with 5 layers in both generator and discriminator. It should
be noted that, arbitrary number of layers could be applied in the
proposed architecture, as long as the symmetry is kept.

2.3 Loss Function
While the optimality of GAN model is Nash equilibrium the-

oretically, in practice, the global optimality or sufficiently good
local optimality is not guaranteed [40]. A common example of
failure is the model collapse, in which the generator converges to
a state that consistently produces identical samples. Therefore,
in order to produce morphologically and statistically equivalent
microstructures from the generator, we carefully design the loss
function which can be generalized to different applications (Sec-
tion 2.3) and training parameters (Section 2.4). Specifically, the
total loss consists of three major components: 1) adversarial loss
(aka. GAN loss) that combinatorially evaluates the performance
of generator and discriminator, 2) Style transfer loss that imposes
morphological constraints to the generated micorstructures, and
3) Model collapse loss that prevents the training from collapsing.
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GAN adversarial Loss: The GAN adversarial loss is essen-
tially the optimization objective in the vanilla version of GAN
(Eq. 1), expressed as

LGAN = EX∼pdata(x)[logD(x)]
+Ez∼pz(z)[log(1−D(G(z)))] (2)

Note again that, in the min-max training minG maxD LGAN es-
sentially wants the generator G to minimize this loss and let D
maximizes it. In practice, we follow [40] to alter the loss of
min(log(1−D)) to max(logD) when optimizing G.

Style Transfer Loss: This loss essentially imposes mor-
phology constraints to the generated samples. The style trans-
fer loss, namely Gram-matrix loss, is originated from a work by
Gaty et al. [41] for the purpose of texture synthesis. In the field
of material science, Cang et al. [31] included the style transfer
loss into the total loss function as a penalty term when train-
ing a Variational Auto-Encoder network [29]. In our early work,
Li et al. [23] takes the style transfer loss as an optimization ob-
jective and uses its gradients with respect to each entry in the
microstructure image to reconstruct statistically equivalent mi-
crostructures. They also discover an interesting intrinsic rela-
tionship between the layers included in the calculation of style
transfer loss and the reconstructed microstructure: higher level
convolutional layers could be dropped to reduce the computa-
tional cost while preserving the reconstruction accuracy. Recog-
nizing this intrinsic relationship, in this work, we only retain the
first four lowest convolutional layers in the VGG-16 model [42]
and compute their Gram-matrix as the style representations. The
style transfer loss [41] can be expressed as

Lstyle = ∑
l

∑
i, j

1
4N2

l M2
l
(Gl

i j−Al
i j)

2 (l = 1,2,3,4) (3)

which measures the distance between style representations of
generated images and real images. In Eqn. 3, Nl and Ml are
number of feature maps and size of each feature map (i.e.
height×width) of the lth convolutional layer. Gl and Al are the
Gram-matrix of generated images and real images, respectively.
The formula of Gram-matrix is

Gl
i j = ∑

k
F l

ikF l
jk (4)

which calculates the inner product between the ith and jth vector-
ized feature maps of the lth convolutional layer.

Model Collapse Loss: Model collapse is a common prob-
lem of training a GAN model where the generated samples are
clustered in only one or few modes of pdata(x). Thus, model

FIGURE 3. THE COMPOSITION OF LOSS FUNCTION AND IN-
FORMATION FLOW IN THE PROPOSED ARCHITECTURE.

collapse loss [43]

Lcollapse =
1

n(n−1) ∑
i

∑
j 6=i

(
ST

i S j

||Si||||S j||
)2 (5)

is introduced to prevent the training from getting into collapse
mode. In this equation, n denotes the number of samples in a
batch and S represents a batch of sample representations from
outputs of the first four convolutional layers of VGG-16 model
[42]. In other words, S is the concatenated vectorized feature
maps of the first four convolutional layers of VGG-16 model
[42].

The total loss: The total loss is a weighted combination of
the three aforementioned losses.

L(G,D) = LGAN +αLstyle +βLcollapse (6)

α and β are the moderating weights that prevent the style transfer
loss and model collapse loss from diminishing to zero or over-
whelming the GAN adversarial loss. The composition of loss
functions and the information flow in the proposed neural net-
work architecture is depicted in Figure 3.

2.4 Numerical Validation of Latent Variables
We apply the proposed deep adversarial learning approach

to determine the latent variables for a dataset of material
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TABLE 1. THE DIMENSIONALITY OF EACH LAYERS IN THE
PROPOSED NETWORK ARCHITECTURE. (bs. IS THE ABBREVI-
ATION OF BATCH SIZE)

Layer Dimension

Random Tensor z bs.×4×4×1

Generator Layer 1 bs.×8×8×128

Generator Layer 2 bs.×16×16×64

Generator Layer 3 bs.×32×32×32

Generator Layer 4 bs.×64×64×16

Image X bs.×128×128×1

Discriminator Layer 1 bs.×64×64×16

Discriminator Layer 2 bs.×32×32×32

Discriminator Layer 3 bs.×16×16×64

Discriminator Layer 4 bs.×8×8×128

Discriminator Layer 5 bs.×1×1×1

microstructures.

Training data To train the proposed GAN model, a
dataset of material microstructure images that covers a variety
of microstrucural dispersions are required. In addition, it is
also required that all the training microstructure images share
the same size. In this work, to validate the proposed approach,
5,000 synthetic microstructure images of size 128× 128 are
created using Gaussian Random Field (GRF) method [20].
In order to reasonably cover the vast space of compositional
and dispersive patterns that correspond to different processing
conditions for the same material system, three parameters (mean,
standard deviation and volume fraction) are carefully controlled
in the GRF model to produce microstructures with different
dispersive status but sharing similar underlying characteristics
of morphology. Figure 4 row 1 demonstrates some examples of
the training microstructures. 5,000 of these samples are used for
training the GAN model. While 5,000 seems to be an unrealistic
number in material data gathering, we note that multiple images
can be cropped from one microstructure image in practice.
For example, for 1,000× 1,000 sized microstructure imagess,
thousands of 128× 128 samples can be cropped with partial
overlapping of the samples.

Network architecture specifications and training pa-
rameters One advantage of the proposed methodology

is the flexibility in assigning the dimension of latent variables.
The generator network is essentially a mapping between latent
variables and microstructure images, so the neural network ar-
chitecture depends on both the dimensionality of latent variables
pre-specified and the size of microstructure images. Typically,
lower dimensionality is desired for latent variables from the
microstructural design perspective, because smaller number
of design variables helps to reduce the computational cost in
microstructure optimization. However, smaller dimensionality
of latent variables will increase the depth of neural network or
increase the stride parameter in the convolutional layers, which
makes the training of GAN more difficult. Therefore, a trade-off
between the latent variables dimensionality and the training
difficulty needs to be considered. After several experiments,
it is discovered that the 5-layer architecture with stride 2× 2
as illustrated in Figure 2 is practically easy to stabilize and
converge while providing sufficiently low dimensionality for the
latent variables. The 2×2 stride configuration essentially results
in a scaling factor of 2 on each dimension in each layer, thus
5 stacked layers would scaling down the microstructures by a
factor of 32 (i.e. 25) on each dimension. For the aforementioned
dataset, the 128× 128 images are converted to a 4× 4 latent
variable tensor, which is flattened to a 16-dimensional latent
variable vector z.

In addition to the dimensionality of z, a bounded latent
variable space is defined by setting each entry of z to be indepen-
dent and uniformly distributed between -1 and 1. For generator
network, four (de-convolutional)-batch normalization-ReLU
layers are appended to z sequentially, which is then followed by
a (de-convolutional)-tanh layer to produce 128× 128× 1 sized
microstructure images. In contrast, the discriminator network
is composed by four sequentially connected convolution-batch
normalization-leaky ReLU layers. A convolutional-sigmoid
layer is appended to the end of the discriminator network to
produce a scalar valued between 0 and 1 to represent the prob-
ability of classifying if the image given to the discriminator is
from real microstructure dataset (instead of artificially generated
ones). A detailed specification of the dimensionality in each
layer is illustrated in Table 1. Note that to achieve the specified
dimensionality, in both de-convolutional and convolutional
layers, the filter size is set as 4× 4 and strides are all 2× 2
(The only exception is that we use 8× 8 filter with stride 1× 1
between discriminator layer 4 and 5).

The α and β parameters discussed in Section 2.3 are set as
0.03 and 0.03 for optimal balance between the three components
of losses, respectively. Adam optimizer [44] is applied in
training by setting the learning rate as 0.0005, β1 value as 0.5
and β2 value as 0.99. In the alternating training of the generator
G and the discriminator D, it is found that it is optimal to set the
ratio of network optimization for discriminator and generator
to 3:1 (i.e. update discriminator three times and then update
generator once) to achieve stability and convergence.
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FIGURE 4. EXAMPLES OF ORIGINAL (TRAINING) MI-
CROSTRUCTURES AND MICROSTRUCTURES PRODUCED BY
THE GENERATOR.

Some other significant training parameters include: number
of epochs – 15,000; batch size – 30 and the α parameter in leaky
ReLU – 0.2.

Validation of the latent variables The validity of the
latent variables and the amount of information loss are evaluated
by comparing the original microstructure set and a set of mi-
crostructures produced by randomly sampling latent variables z
and propagating through the generator network. Specifically, we
compare the two-point correlation functions [17, 18] and lineal-
path correlation functions [45] of the 5,000 original microstruc-
tures and 5,000 generated ones produced by the generative model
trained in GAN. Figure 4 shows that the generator in GAN is ca-
pable of producing visually similar microstructures as the origi-
nal image data used for training. Figure 5 shows the two-point
and lineal-path correlation functions of original microstructures
and microstructures generated by the proposed generator. Fig-
ure 5 (a) and (b) show that the mean correlation functions of
the 5,000 training samples matches those of the 5,000 generated
ones. In addition, the two-point correlation functions envelop of
the generated samples overlaps with all possible regions that the
original data covers and its slightly broadened envelop suggests
that the proposed model might be capable of extrapolating the
range of microstructures (by exploring more possibilities of the
microstructures) while retaining the morphological characteris-
tics of the collected samples.

3 Microstructure Design Evaluation
In the context of materials design, design evaluation is the

process of evaluating the material properties of interest for a
generated microstructure controlled by the design variables. In
the proposed methodology, it includes two steps: 1) Latent vari-
ables (design variables) to microstructures: the GAN generator
learned in the deep adversarial learning is used to propagate the
values of latent variables to obtain microstructure images. 2) Mi-
crostructure to material property: For a generated microstructure,
physics-based simulation is used to obtain the corresponding ma-

terial property or structure performance. For the case study in
this work, the Rigorous Coupled Wave Analysis (RCWA) [15] is
used to simulate the optical absorption performance of the given
microstructure. RCWA is a Fourier-domain-based algorithm that
can solve the scattering problems for both periodic and aperiodic
structures. Detailed mathematical formulations of RCWA could
be found in [46, 47]

4 Microstructure Design Synthesis
Each entry of the latent variables vector z identified by GAN

is independent and bounded in [-1 1]. They serve as the mi-
crostructure design variables in design synthesis which is ac-
complished through simulation-based optimization. Since the
structure-property or structure-performance evaluation is often
computationally expensive, a Bayesian optimization approach is
applied to search for the optimal microstructure with desired ma-
terial behavior through sequential adaptive sampling. The design
optimization problem is formulated as

z = argmin
z
− f (G(z))

s.t. zi ∈ [−1,1].

where G(·) is the generator mapping in GAN, and f (·) is the
physical simulation. After obtaining the optimal value of z, the
optimal microstructure can be generated rapidly by generator
G(z).

In the remaining part of this section, we illustrate the use
of response surface-based Bayesian optimization through a ma-
terials design case study. The 2D metamaterial structures being
explored have similar morphological characteristics as the ones
used in Section 2 (Figure 4 row 1), but a smaller size of 96×96
pixels. The design objective is to obtain the microstructure that
maximizes the optical absorption simulated by RCWA, a desir-
able performance in applications such as solar cell design. The
learned model in Section 2 is applied in this case study, and the
dimensionality scaling factor is still ×32 in each dimension. In
other words, the 96×96 microstructure images would be repre-
sented by 3×3 dimensional tensor (i.e. 9-dimensional vector).

4.1 Exploration of Design Variable Space using De-
sign of Experiments(DoE)

To create the response surface model between the design
variables and the objective material property, a set of design of
experiments (DOE) are sampled. In this work, Latin Hyper-cube
Sampling (LHS) [48] is applied to sample 250 points in the 9-
dimensional space. Then the material optical performance for
these designs, denoted as y, is obtained by following the de-
sign evaluation process described in Section 3. The dataset of
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FIGURE 5. COMPARISON OF TWO-POINT CORRELATION FUNCTIONS AND LINEAL-PATH CORRELATION FUNCTIONS OF ORIGI-
NAL MICROSTRUCTUES AND MICROSTRUCTURES GENERATED BY PROPOSED GENERATOR.

250 samples (z,y) are used to create the initial response surface
model for Bayesian optimization.

4.2 Gaussian Process Metamodeling and GP-Hedge
Bayesian Optimization

After the initial sampling using LHS, metamodel-based
Bayesian optimization is conducted to iteratively explore the po-
tentially optimal design point. Compared to stochastic optimiza-
tion approaches such as Genetic Algorithm (GA) and Simulated
Annealing (SA), Bayesian optimization is a much more efficient
global optimization technique as it encourages both exploration
and exploitation in the optimization search process. In each op-
timization iteration, we fit a metamodel (aka. surrogate model
or response surface model) using Gaussian Process metamod-
eling [49] to statistically approximate the relationship between
design variables and the design performance. The dataset (z,y)
is expanded by one more sampling point in each iteration using
the GP-Hedge criteria [50]. Figure 6 illustrates how Gaussian
Process metamodeling and the GP-Hedge optimization strategy
are integrated in this work.

Gaussian Process model [49], also known as Kriging
model, is a statistical model that interpolates the observations
and supplies uncertainty for the metamodel prediction at each
estimation point. In essence, Gaussian Process models the data
points {X,y} and the estimations {X′,y′} using

[
y
y′

]
∼N

(
0,
[

Cov(X,X) Cov(X,X′)
Cov(X′,X) Cov(X′,X′)

])
(7)

where Cov(A,B) represents the covariance matrix between A
and B, defined by Cov(A,B) = E(ABT )−E(A)E(B)T . Condi-

FIGURE 6. THE INTEGRATION OF GAUSSIAN PROCESS
METAMODELING AND GP-HEDGE BAYESIAN OPTIMIZATION.

tioning on the data D = {X,y}, the posterior P(y′|X,X′,y) yields
a Gaussian distribution in which,

µ = Cov(X,X′)Cov(X,X′)−1y

Σ = Cov(X′,X′)−Cov(X,X′)Cov(X,X)−1 Cov(X′,X)
(8)

Gaussian Process metamodeling essentially gives a surrogate
model that quantifies the statistical mean estimations and uncer-
tainties at the unexplored design points. By using the mean esti-
mations and the uncertainties, a smaller set of design points that
could potentially improve the performance can be identified. In
this case, expensive design evaluations only need to be conducted
on these candidate design points, thereby eliminating redundant
design evaluations. As a consequence, the overall computational
cost of the design process is reduced tremendously.

In each iteration of the Bayesian optimization, the Gaus-
sian Process metamodel is applied to determine the next sam-
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pling point. Typical criterion (aka. acquisition functions) to
locate the next sampling point include expected improvement
(EI) [51], probability of improvement (PI) [52] and lower confi-
dence bound (LCB) [53]. These criterion are different in how the
trade-off is made between exploration (picking samples at loca-
tions with large uncertainty) and exploitation (choosing samples
at locations close to the optimum based on the mean prediction).
In this work, we apply the GP-Hedge mechanism to probabilis-
tically choose one of the above three acquisition functions at ev-
ery optimization iteration. The general procedure of GP-Hedge
Bayesian optimization is illustrated in Algorithm 1.

Algorithm 1 GP-Hedge Bayesian Optimization
1: Select parameter η ∈ R+

2: Set the gains for acquisition function i, gi
0 = 0 for i =

1,2, ...,N
3: t = 0
4: while stopping criteria is not met do
5: t = t +1
6: Each acquisition function propose a point xi

t
7: Set xt = xi

t with softmax probability pi
t =

exp(ηgi
t−1)/∑

K
l=1 exp(ηgl

t−1)
8: Obtain the objective function value yt = f (xt)
9: Augment data D1:t = {D1:t−1,(xt ,yt)}

10: Receive rewards ri
t = µ(xi

t) from the updated GP
11: Update gains gi

t = gi
t−1 + ri

t
12: end while

This GP-Hedge Bayesian optimization process is applied to
our design case study beginning with the metamodel created us-
ing the 250 initial LHS samples, followed by 120 iterations of
optimization. Throughout the optimization process, the values
of the latent (design) variables are constrained between [-1, 1] to
retain the morphological characteristics learned from the sample
images.

Figure 7 shows the optimization history with microstructure
design solution indicated at a few iterations. A few observations
can be made: 1) Design performance is improved significantly at
the very beginning of the Bayesian optimization, while the im-
provement becomes less as the number of iterations increases.
2) Design performance is not necessarily improved in the new
iteration. This is reasonable because the new sampling point is
chosen for both exploration and exploitation using the criterion
that combines both the mean estimation and the uncertainty in
the metamodel.

Figure 8 illustrates the comparison between the optical per-
formance of three datasets: a) 30 randomly sampled microstruc-
tures from training set, b) 30 microstructures generated by ran-
domly sampling latent variables z and propagating through the

FIGURE 7. THE MICROSTRUCTURE OPTIMIZATION HIS-
TORY AND MICROSTRUCTURE DESIGNS INDICATED AT A
FEW ITERATIONS

FIGURE 8. THE COMPARISON OF THE OPTICAL ABSORP-
TION PROPERTY BETWEEN 1) 30 RANDOMELY SAMPLED
MICROSTRUCTURES FROM TRAINING DATASET, 2)30 MI-
CROSTRUCTURES GENERATED BY THE TRAINED GENERA-
TOR, AND 3) OPTIMAL DESIGN.

trained generator, and c) the optimized microstructure. It should
be noted that in order to make a fair comparison, we randomly
sampled 30 microstructures from training set in each trial for
dataset a), and repeated this trial 10 times. It is observed that
the results of randomly sampled microstructures have the low-
est optical performance and the largest variance. It is found that
the mean optical performance of the microstructures produced by
the GAN generator (0.6827) is 4.8% (0.6827/0.6509−1) greater
than that of the randomly sampled microstructures (0.6509),
while the optimized microstructure’s performance (0.7630) ex-
ceeds the mean performance of randomly sampled microstruc-
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tures by 17.2% (0.7630/0.6509−1). It should be noted that the
theoretical upper bound of the evaluated optical absorption prop-
erty is 1.0, so the design solution provided by the proposed ap-
proach is reasonably good. These results verify the effectiveness
of the proposed design optimization framework.

5 Scalability and Transferability
In the previous sections, we have discussed the process of

applying the proposed deep adversarial learning model for iden-
tifying latent variables of microstructures and conducting mi-
crostructural materials design. With the proposed methodol-
ogy, the dimensionality of latent (design) variables can be pre-
scribed and the information loss is negligible even for complex
microstructural geometries. In addition to these advantages, in
this section a few additional useful features of the proposed deep
adversarial learning model are elaborated.

5.1 Scalability of the generator
Benefited from the exclusion of fully-connected layers in the

network architecture, the scalability of the generator provides the
proposed GAN model the flexibility of taking arbitrary sized in-
puts (latent variables) and outputs (microstructures). This is a
signature of the proposed model because confining the input di-
mensionality could lead to a low dimensional microstructural de-
sign space, and varying the output size can consequentially pro-
duce different sized microstructures to serve different analytical
purposes (e.g. analysis in Statistical Volume Elements (SVEs)
vs. Representative Volume Elements (RVEs)).

Specifically, the scalability is useful in two ways: a) Flexi-
bility in setting the dimensionality of latent variables. In the
proposed network architecture, adding each additional convolu-
tional layer increases the scaling factor between the generated
image and the latent variables by a factor of 4 (×2 on each di-
mension). Therefore, in the aforementioned design case in Sec-
tion 4, when the 9216-dimensional (96× 96) microstructure is
to be converted into 9-dimensional (3× 3) latent variables, five
network layers are stacked (i.e. 96/3 = 32 = 25). In theory,
stacking more neural network layers in the proposed model can
enlarge the scaling factor, and the accuracy would be retained
as long as the training is well handled. However, adding more
layers inevitably increase the difficulty of training the GAN. In
other words, while low dimensionality of the latent variables of-
ten leads to less microstructure design optimization cost because
of less design variables, it increases the GAN training cost be-
cause of higher model complexity. Hence a key consideration
in choosing the number of latent variables is the trade-off be-
tween the optimization cost and the GAN training cost. When the
computational resource for design optimization is limited (e.g.
physics-based simulations are extremely expensive), it would
be better to keep a lower dimensionality of the latent variables

FIGURE 9. AN ILLUSTRATION OF MICROSTRUCTURES OF
DIFFERENT SIZES GENERATED BY THE SCALABLE GENERA-
TOR.

though more training time for GANs is needed. In contrast, if
the design optimization is not limited by the computational re-
source, a reasonably higher dimensionality of the latent variables
is acceptable so that the burden on training GANs can be re-
duced. b) Generating arbitrary sized microstructures. While
the deep learning network is trained by setting the dimension of
z as bs.×4×4×1, one may modify the dimensionality of latent
variables z to control the size of the generated images without
retraining the model. Figure 9 illustrates the generated images
with different sizes using different dimensional settings of z. It
demonstrates that the proposed generator is capable of generating
arbitrary sized microstructures for the material system of interest.
An alternative way of controlling the size of microstructure is
to include/remove convolutional layers. For instance, 256×256
images could be generated by adding one more layer in both gen-
erator and discriminator before training and keep the size of z as
bs.× 4× 4× 1 However, the deeper the neural network is, the
harder the training process would be. Moreover, retraining is re-
quired if model’s architecture is changed. Hence changing the
dimensionality of z is often preferred for this reason.

5.2 Transferability of the discriminator
In addition to the aforementioned materials design contri-

butions of the proposed approach, we also discover an addi-
tional utility of the discriminator in improving structure-property
predictions via transfer learning. While the generative capabil-
ity is usually emphasized [28, 54], the utilization of discrimi-
nator is more or less ignored. However, totally discarding the
discriminator is wasteful as there is always significant “knowl-
edge” about the data (in the context of this work, microstructures)
learned by the discriminator. In this work, we propose to lever-
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age the knowledge learned from the discriminator into the devel-
opment of machine learning-based structure-property predictions
via transfer learning. In training deep networks, Stochastic Gra-
dient Descent (SGD) based algorithms are the typical choices.
Since SGD converges to local minimum, its optimized value is
very sensitive to the initialization of the network. With transfer
learning, instead of randomly selecting a starting point for the
weights of the structure-property predictive network, the weights
are initialized using ones obtained in the GAN discriminator
trained on the microstructure dateset in Section 2, by analogy
to [55].

In the context of this work, the discriminator is essentially
a binary classifier trained together with the generator to distin-
guish generated microstructure from real ones. Our objective is
to utilize the trained weights in this classifier and transfer them
into a structure-property regression model. It should be noted
that, in training and testing this regression model, we use ad-
ditional 250 samples (microstructures and their corresponding
properties) exclusive from the 5,000 samples used for training
the GAN, and we randomly split them into 200/50 sets for train-
ing/testing. There are three primary steps in building the regres-
sion model:

1) Transferring partial architecture and weights: We bor-
row the first four convolutional layers of the trained discrimina-
tor (their architecture and the corresponding weights) as the basic
building blocks.

2) Appending full-connected layers at the end: The output
of the 4th convolutional layer is flattened and two fully-connected
layers of 2048 and 1024 neurons with ReLU activation are ap-
pended. Dropout normalization (p = 0.5) is applied after each
fully connected layer. A fully-connected layer of 1 neuron is
added at the end to produce the scalar output of the regressor. The
weights of all these additional layers are initialized randomly.

3) Fine-tuning weights using Adam: Adam optimizer is
applied to fine-tune the weights in some of the layers. As it
is well recognized that the early convolutional layers (Convo-
lutional layers 1-3 of the discriminator) usually contains general
Gabor-like filters, we freeze these layers’ weights from Adam
optimization. The other layers are subject to the Adam optimiza-
tion (learning rate=0.0005, β1=0.5, β2=0.99) for 4,000 epochs
with batch size of 50.

To demonstrate the advantage of applying this transfer
learning strategy for building the structure-property model, we
also conduct another training process with exactly the same net-
work architecture but initializing all weights randomly (instead
of using pre-trained weights) as a control group. This control
group is named “training from scratch” in the remainder of this
section. We compute the mean-squared-errors (MSE) and the
mean-absolute-errors (MAE) on the 50 reserved testing data with
30 repetitive trials, as shown in Fig. 10 and Fig. 11. From these
results, it is found that, compared to training from scratch, trans-
fer learning strategy can facilitate the development of structure-

FIGURE 10. THE COMPARISON OF THE MEAN-SQUARED-
ERRORS(MSE) FOR TRAINING FROM SCRATCH AND TRANS-
FER LEARNING.

FIGURE 11. THE COMPARISON OF THE MEAN-ABSOLUTE-
ERRORS(MAE) FOR TRAINING FROM SCRATCH AND TRANS-
FER LEARNING.

property predictive model by improving its accuracy and stabil-
ity. This finding is consistent with our intuition that prior knowl-
edge learned by the discriminator network could help in building
a more accurate predictive model.

6 Conclusion and discussion
In this work, we proposed a deep adversarial learning

methodology for microstructural material design. In the pro-
posed methodology, the dimensionality of latent variables for
microstructures are prescribed first. Then a GAN consisting of
a generator and a discriminator is trained on a dataset of mi-
crostructures being studied. The latent variables are then taken
as design variables in a Bayesian optimization framework to ob-
tain the microstructure with desired material property. Gaus-
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sian Process metamodeling is used at each optimization iter-
ation to update the relationship between the design variables
and the microstructure performance, and GP-Hedge criterion
is used for proposing the next candidate sampling point. The
proposed methodology features several contributions: First, the
proposed methodology provides an end-to-end solution for mi-
crostructural design, which reduces information loss and pre-
serves more microstructural characteristics. Second, this work
is to extend the use of GAN to be a part of the design loop. The
GP-Hedge Bayesian optimization incorporates Gaussian Process
metamodeling to reduce the number of design evaluations and
thus decreases the computational cost while improving the de-
sign performance. Third, a customized loss function with the
proper moderating parameters is presented for generating new
microstructural design with similar characteristics. Finally, the
deep learning network architecture and the training parameters
obtained in this work could be re-used as a starting point for other
applications of deep learning in materials science (e.g. transfer
learning). While this work demonstrates the benefits of the
proposed methodology, a few technical details can be further ex-
amined in future work. First, this work could make a boarder
impact on other material microstructures such as ones with very
sharp features (e.g. pointy edges), crystalline structures or grain
boundary maps, multiphase or continuous phase microstructures.
Next, the processing or manufacturing constraints are not consid-
ered in the design optimization. In order to take the processing
conditions as design variables, the processing-structure-property
(PSP) linkage needs to be established. Similar to our earlier
work [11, 15, 56], we will study the relationship between latent
variables and such processing or manufacturing parameters, in-
cluding appropriate constraints in the optimization process. At-
tempts would be also made to associate physical meanings to the
learned latent variables so that materials scientists could explic-
itly control some characteristics of the optimized microstructure.
In addition, the choice of dimensionality of latent variables can
be guided through detailed numerical studies to better understand
the impact of low dimensionality on network training. Special at-
tention needs to be paid towards the network theory and practice
for stabilizing the training process. Other potential directions for
improving network modeling include but are not limited to utiliz-
ing Wasserstein GAN [40] for solving model collapse problem,
introducing ResNet structure [57] for higher learning capability,
or investigating visual attention mechanism [58] for better inter-
pretation of the model.

ACKNOWLEDGMENT
The Rigorous Couple Wave Analysis simulation is sup-

ported by Prof Cheng Sun’s lab at Northwestern University. This
work is supported by Center of Hierarchical Materials Design
(NIST CHiMaD 70NANB14H012), Predictive Science and En-
gineering Design Cluster (PS&ED, Northwestern University),

NSF-DMREF (NSF Award 1818574, 1729743) and NSF-DIBBS
(NSF Award 1640840).

REFERENCES
[1] Thornton, K., Nola, S., Garcia, R. E., Asta, M., and Ol-

son, G., 2009. “Computational materials science and engi-
neering education: A survey of trends and needs”. JOM,
61(10), p. 12.

[2] Olson, G. B., 1997. “Computational design of hierarchi-
cally structured materials”. Science, 277(5330), pp. 1237–
1242.

[3] Saito, T., 2013. Computational materials design, Vol. 34.
Springer Science & Business Media.

[4] Kuehmann, C., and Olson, G., 2009. “Computational mate-
rials design and engineering”. Materials Science and Tech-
nology, 25(4), pp. 472–478.

[5] Vickers, J., 2015. “Materials genome initiative”.
[6] Agrawal, A., and Choudhary, A., 2016. “Perspective: Ma-

terials informatics and big data: Realization of the fourth
paradigm of science in materials science”. Apl Materials,
4(5), p. 053208.

[7] Zhao, H., Li, X., Zhang, Y., Schadler, L. S., Chen, W., and
Brinson, L. C., 2016. “Perspective: Nanomine: A material
genome approach for polymer nanocomposites analysis and
design”. APL Materials, 4(5), p. 053204.

[8] Wang, Y., Zhang, Y., Zhao, H., Li, X., Huang, Y., Schadler,
L. S., Chen, W., and Brinson, L. C., 2018. “Identifying in-
terphase properties in polymer nanocomposites using adap-
tive optimization”. Composites Science and Technology.

[9] Paul, D., and Robeson, L. M., 2008. “Polymer nanotech-
nology: nanocomposites”. Polymer, 49(15), pp. 3187–
3204.

[10] Natarajan, B., Li, Y., Deng, H., Brinson, L. C., and
Schadler, L. S., 2013. “Effect of interfacial energetics
on dispersion and glass transition temperature in polymer
nanocomposites”. Macromolecules, 46(7), pp. 2833–2841.

[11] Hassinger, I., Li, X., Zhao, H., Xu, H., Huang, Y., Prasad,
A., Schadler, L., Chen, W., and Brinson, L. C., 2016. “To-
ward the development of a quantitative tool for predicting
dispersion of nanocomposites under non-equilibrium pro-
cessing conditions”. Journal of Materials Science, 51(9),
pp. 4238–4249.

[12] Brough, D. B., Wheeler, D., Warren, J. A., and Kalidindi,
S. R., 2017. “Microstructure-based knowledge systems
for capturing process-structure evolution linkages”. Cur-
rent Opinion in Solid State and Materials Science, 21(3),
pp. 129–140.

[13] Liu, R., Yabansu, Y. C., Yang, Z., Choudhary, A. N., Ka-
lidindi, S. R., and Agrawal, A., 2017. “Context aware ma-
chine learning approaches for modeling elastic localization

12 Copyright c© 2018 by ASME



in three-dimensional composite microstructures”. Integrat-
ing Materials and Manufacturing Innovation, pp. 1–12.

[14] Yang, Z., Yabansu, Y. C., Al-Bahrani, R., Liao, W.-k.,
Choudhary, A. N., Kalidindi, S. R., and Agrawal, A. “Deep
learning approaches for mining structure-property link-
ages in high contrast composites from simulation datasets”.
Computational Materials Science. Accepted.

[15] Yu, S., Zhang, Y., Wang, C., Lee, W.-k., Dong, B., Odom,
T. W., Sun, C., and Chen, W., 2017. “Characterization and
design of functional quasi-random nanostructured materials
using spectral density function”. Journal of Mechanical
Design, 139(7), p. 071401.

[16] Fullwood, D. T., Niezgoda, S. R., Adams, B. L., and Ka-
lidindi, S. R., 2010. “Microstructure sensitive design for
performance optimization”. Progress in Materials Science,
6(55), pp. 477–562.

[17] Bostanabad, R., Zhang, Y., Li, X., Kearney, T., Brinson,
L. C., Apley, D. W., Liu, W. K., and Chen, W., 2018. “Com-
putational microstructure characterization and reconstruc-
tion: Review of the state-of-the-art techniques”. Progress
in Materials Science.

[18] Jiao, Y., Stillinger, F., and Torquato, S., 2007. “Mod-
eling heterogeneous materials via two-point correlation
functions: Basic principles”. Physical Review E, 76(3),
p. 031110.

[19] Xu, H., Dikin, D., Burkhart, C., and Chen, W., 2014.
“Descriptor-based methodology for statistical characteriza-
tion and 3d reconstruction of microstructural materials”.
Computational Materials Science, 85, pp. 206–216.

[20] Jiang, Z., Chen, W., and Burkhart, C., 2013. “Efficient
3d porous microstructure reconstruction via gaussian ran-
dom field and hybrid optimization”. Journal of microscopy,
252(2), pp. 135–148.

[21] Bostanabad, R., Bui, A. T., Xie, W., Apley, D. W., and
Chen, W., 2016. “Stochastic microstructure characteriza-
tion and reconstruction via supervised learning”. Acta Ma-
terialia, 103, pp. 89–102.

[22] Cang, R., and Ren, M. Y., 2016. “Deep network-based
feature extraction and reconstruction of complex mate-
rial microstructures”. In ASME 2016 International De-
sign Engineering Technical Conferences and Computers
and Information in Engineering Conference, American
Society of Mechanical Engineers, pp. V02BT03A008–
V02BT03A008.

[23] Li, X., Zhang, Y., Zhao, H., Burkhart, C., Brinson, L. C.,
and Chen, W., 2018. “A transfer learning approach for mi-
crostructure reconstruction and structure-property predic-
tions”. arXiv preprint arXiv:1805.02784.

[24] Lubbers, N., Lookman, T., and Barros, K., 2017. “Infer-
ring low-dimensional microstructure representations using
convolutional neural networks”. Physical Review E, 96(5),
p. 052111.

[25] Paulson, N. H., Priddy, M. W., McDowell, D. L., and Ka-
lidindi, S. R., 2017. “Reduced-order structure-property
linkages for polycrystalline microstructures based on 2-
point statistics”. Acta Materialia, 129, pp. 428–438.

[26] Xu, H., Liu, R., Choudhary, A., and Chen, W., 2015. “A
machine learning-based design representation method for
designing heterogeneous microstructures”. Journal of Me-
chanical Design, 137(5), p. 051403.

[27] Kingma, D. P., and Welling, M., 2013. “Auto-encoding
variational bayes”. arXiv preprint arXiv:1312.6114.

[28] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.,
2014. “Generative adversarial nets”. In Advances in neural
information processing systems, pp. 2672–2680.

[29] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and
Frey, B., 2015. “Adversarial autoencoders”. arXiv preprint
arXiv:1511.05644.

[30] Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky,
M., Mastropietro, O., and Courville, A., 2016. “Adversari-
ally learned inference”. arXiv preprint arXiv:1606.00704.

[31] Cang, R., Li, H., Yao, H., Jiao, Y., and Ren, Y., 2018. Im-
proving direct physical properties prediction of heteroge-
neous materials from imaging data via convolutional neural
network and a morphology-aware generative model. Arxiv:
arXiv:1712.03811.

[32] Guo, T., Lohan, D. J., Cang, R., Ren, M. Y., and Allison,
J. T., 2018. “An indirect design representation for topology
optimization using variational autoencoder and style trans-
fer”. In 2018 AIAA/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, p. 0804.

[33] Mosser, L., Dubrule, O., and Blunt, M. J., 2017. “Re-
construction of three-dimensional porous media using gen-
erative adversarial neural networks”. Physical Review E,
96(4), p. 043309.

[34] Mosser, L., Dubrule, O., and Blunt, M. J., 2017. “Stochas-
tic reconstruction of an oolitic limestone by generative ad-
versarial networks”. arXiv preprint arXiv:1712.02854.

[35] Osborne, M. J., and Rubinstein, A., 1994. A course in game
theory. MIT press.

[36] Radford, A., Metz, L., and Chintala, S., 2015. “Un-
supervised representation learning with deep convolu-
tional generative adversarial networks”. arXiv preprint
arXiv:1511.06434.

[37] Ioffe, S., and Szegedy, C., 2015. “Batch normalization:
Accelerating deep network training by reducing internal
covariate shift”. In International conference on machine
learning, pp. 448–456.

[38] Nair, V., and Hinton, G. E., 2010. “Rectified linear units
improve restricted boltzmann machines”. In Proceedings
of the 27th international conference on machine learning
(ICML-10), pp. 807–814.

[39] Maas, A. L., Hannun, A. Y., and Ng, A. Y., 2013. “Rectifier

13 Copyright c© 2018 by ASME



nonlinearities improve neural network acoustic models”. In
Proc. icml, Vol. 30, p. 3.

[40] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X., 2016. “Improved techniques
for training gans”. In Advances in Neural Information Pro-
cessing Systems, pp. 2234–2242.

[41] Gatys, L., Ecker, A. S., and Bethge, M., 2015. “Texture
synthesis using convolutional neural networks”. In Ad-
vances in Neural Information Processing Systems, pp. 262–
270.

[42] Simonyan, K., and Zisserman, A., 2014. “Very deep convo-
lutional networks for large-scale image recognition”. arXiv
preprint arXiv:1409.1556.

[43] Zhao, J., Mathieu, M., and LeCun, Y., 2016. “Energy-
based generative adversarial network”. arXiv preprint
arXiv:1609.03126.

[44] Kingma, D. P., and Ba, J., 2014. “Adam: A method for
stochastic optimization”. arXiv preprint arXiv:1412.6980.

[45] Lu, B., and Torquato, S., 1992. “Lineal-path function
for random heterogeneous materials”. Physical Review A,
45(2), p. 922.

[46] Li, L., 1997. “New formulation of the fourier modal method
for crossed surface-relief gratings”. JOSA A, 14(10),
pp. 2758–2767.

[47] Moharam, M., Pommet, D. A., Grann, E. B., and Gaylord,
T., 1995. “Stable implementation of the rigorous coupled-
wave analysis for surface-relief gratings: enhanced trans-
mittance matrix approach”. JOSA A, 12(5), pp. 1077–1086.

[48] McKay, M. D., Beckman, R. J., and Conover, W. J., 2000.
“A comparison of three methods for selecting values of
input variables in the analysis of output from a computer
code”. Technometrics, 42(1), pp. 55–61.

[49] Rasmussen, C. E., 2004. “Gaussian processes in ma-
chine learning”. In Advanced lectures on machine learning.
Springer, pp. 63–71.

[50] Hoffman, M. D., Brochu, E., and de Freitas, N., 2011.
“Portfolio allocation for bayesian optimization.”. In UAI,
pp. 327–336.

[51] Jones, D. R., Schonlau, M., and Welch, W. J., 1998. “Ef-
ficient global optimization of expensive black-box func-
tions”. Journal of Global optimization, 13(4), pp. 455–
492.

[52] Kushner, H. J., 1964. “A new method of locating the max-
imum point of an arbitrary multipeak curve in the presence
of noise”. Journal of Basic Engineering, 86(1), pp. 97–
106.

[53] Auer, P., 2002. “Using confidence bounds for exploitation-
exploration trade-offs”. Journal of Machine Learning Re-
search, 3(Nov), pp. 397–422.

[54] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P., 2016. “Infogan: Interpretable representa-
tion learning by information maximizing generative adver-

sarial nets”. In Advances in Neural Information Processing
Systems, pp. 2172–2180.

[55] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H., 2014.
“How transferable are features in deep neural networks?”.
In Advances in neural information processing systems,
pp. 3320–3328.

[56] Lee, W.-K., Yu, S., Engel, C. J., Reese, T., Rhee, D., Chen,
W., and Odom, T. W., 2017. “Concurrent design of quasi-
random photonic nanostructures”. Proceedings of the Na-
tional Academy of Sciences, 114(33), pp. 8734–8739.

[57] He, K., Zhang, X., Ren, S., and Sun, J., 2016. “Deep resid-
ual learning for image recognition”. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 770–778.

[58] Mnih, V., Heess, N., Graves, A., et al., 2014. “Recurrent
models of visual attention”. In Advances in neural infor-
mation processing systems, pp. 2204–2212.

14 Copyright c© 2018 by ASME


