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ABSTRACT
This paper explores the idea of using deep neural networks
with various architectures and a novel initialization method,
to solve a critical topic in the field of materials science. Un-
derstanding the relationship between the composition and
the property of materials is essential for accelerating the
course of materials discovery. Data driven approaches us-
ing advanced machine learning to derive knowledge from
that of existing compounds, and/or from simulations of non-
existing ones, have only started to play a crucial role. We
demonstrate an application with a large-scale data set con-
taining 300K organic and inorganic compounds. Deep multi-
layer perceptrons are used to capture nonlinear mappings
between chemical composition and compound stability char-
acterized by a continuous value, known as the formation en-
ergy. It is surprising to see that input features as raw and
sparse as the compositional fractions of elements can lead to
a remarkably accurate modeling of a far-fetched regression
prediction. The performance is shown to be outperforming
state-of-the-art predictions by as much as 54%.

Keywords
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1. INTRODUCTION
The practice of data mining, in light of the availability of

large-scale data, has been causing a paradigm change in sci-
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entific discovery, from empirical science to theoretical, com-
putational science, and now to data science [2, 12]. Specifi-
cally, there are spurring interests in applying advanced ma-
chine learning techniques to assist materials discovery, advo-
cated by the Materials Genome Initiative (MGI) [1], which
envisions computationally assisted discovery, development,
manufacturing, and deployment of advanced materials at a
much accelerated speed and reduced cost. The initiative of
Integrated Computational Materials Engineering (ICME) [4,
15] also encourages the development of methods that help
objectively create new materials with desired properties for
specific applications, by linking what we see (structure of
a crystal, composition of a compound) to what we want (a
certain strength demand of an alloy). Interdisciplinary fields
like materials informatics, materials data science have been
formed to address such need.

In materials science, the primary goal concerns the discov-
ery of new, alternative materials (metals, crystals, ceramics,
polymers, etc.), from the prior knowledge of past experi-
ments and simulations. A recent work by Raccuglia et.al [23]
has accomplished crystal-structure prediction by learning
from failed experiment observations. The work uses sup-
port vector machine (SVM) as the predictor. Kernel meth-
ods like SVM has limitations due to its shallow structure,
and cannot handle large-scale data effectively. Deep neural
networks (DNN), with its extensible and flexible structure
and huge number of parameters, are powerful for captur-
ing highly nonlinear mappings between inputs and outputs.
They are able to automatically extract high level features
from low level one through multi-layer abstraction. Their
capability of utilizing large data has demonstrated great suc-
cess with various data types like image [18, 26], speech [13],
video [16], text [31] and more.

However, the application of DNN to modeling materials
phenomena with large data is rarely seen. The main rea-
son, arguably, is that materials data are never large enough.
Materials data come from two sources: empirical experi-
ments, and computational simulations. For a long time trial-
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and-error experiments are the only way of observation and
hence data generation, and the collection, standardization
and maintenance of such data is expensive and laborious.
Until fairly recently, progresses have been made in first prin-
ciples calculations [9, 10], such as Density functional theory
(DFT), as a theoretical and computational technique for ma-
terials property calculation. Although the DFT simulation
for compounds is rather slow (approximately 10 hours per
compound for formation energy calculation), it has offered
opportunities for large scale data collection. Several pub-
lic databases containing computed materials properties are
hence built. Examples include the Materials Project [14]1,
and Open Quantum Materials Database (OQMD) [17]2. The
latter stores over 285,780 compounds.

In this work, we attempt to utilize the opportunity pro-
vided by the large-scale available data, to address an intri-
cate compound stability prediction problem by use of deep
learning. We intend to fully utilize the capability of deep
neural networks in learning hierarchy of features from raw
inputs, for that purpose we only draft the input feature to
the network in a raw, sparse, unprocessed form. It is also our
intention to develop general purpose learning models with-
out much guidance from domain experts, and therefore the
input and output variables are designed to be easily obtained
and interpretable.

The rest of paper is organized as follows. In Section 2,
we review the related work on the use of neural networks
in many materials problems. Section 3 introduces the prob-
lem of chemical compound stability prediction. In Section 4
we discuss the proposed deep learning solution framework,
and Section 5 the experiments and results. Further imple-
mentation details and discussions of deep net training are
provided in Section 6. We finally conclude the paper and
discuss future work in Section 7.

2. RELATED WORK
The past few years have witnessed a renewed interest in

neural networks. With the availability of large scale data
and fast computation tools, the practice of training deep
networks has been favored. We have seen its application
to not only traditional computer science problems such as
image, speech, languages, but also other areas of science. A
recent work for drug discovery making use of a multitask
deep learning framework [24] is an example.

Similarly to drug discovery, the problem of materials dis-
covery is about deciding on certain composition, formula-
tion, and processing steps of materials with a desired target
property [3, 19–21]. Neural networks as a tool have been
used in materials science applications such as spectroscopy
classification and structural identification [27], characteriz-
ing constitutive relationship for alloys [28], the evaluation
of descriptors [7], etc. However, neither the size of data
or complexity of networks in these works have gone large
enough.

Montavon et al. [22] have used about 7000 compounds to
train a 4 layer MLP to predict molecular electronic proper-
ties. In [8], Support Vector Machines (SVMs) are built to
predict which atoms in a liquid are most mobile, a key ques-
tion in understanding the structure of liquids. The data
size was up to 10,000 particles. In the work by Meredig

1https://www.materialsproject.org
2http://www.oqmd.org

et.al [21], around 90,000 compound entires in the Inorganic
Crystal Structure Database (ICSD) are used to construct
an ensemble learning model for the prediction of formation
energy. We tackle a similar problem as [21] in this paper but
are using a much larger dataset. The OQMD data contains
the entirety of ICSD.

To this date, the actual combination of deep learning and
materials discovery has been scarce. Moreover, the size of
data in these applications are not large enough to qualify
the notion of big data. To the best of our knowledge, this
work is the first work utilizing a dataset as large as 300K
compounds.

3. COMPOUND STABILITY PREDICTION

3.1 Problem Definition
The problem deals with the prediction of chemical prop-

erties from the compound compositions. It is an application
strongly related to materials discovery, as it helps explore
the chemical compositional space to find compounds that
are stable and thus are possible to form.

It is known, from the basic theory of matter, that atoms of
different elements combine in small, generally whole-number
ratios to form compounds. For example, hydrogen and oxy-
gen atoms combine in a ratio of 2:1 to form the compound
water, H2O. Carbon and oxygen atoms combine in a ratio
of 1:2 to form the compound carbon dioxide, CO2. Iron and
oxygen atoms combine in a ratio of 2:3 to form the familiar
substance rust, Fe2O3. The set of element types and its cor-
responding ratio is the simplest, most straightforward form
of representation of a compound’s composition.

For chemical compounds, composition is what we observe,
and property is what we desire to know. The property of
interest to this work is the the formation energy of a com-
pound. It is the energy released when forming that material
from its constituent elements, and is often the most impor-
tant design criterion when searching for new materials. By
comparing the formation energy of a material to those of
known compounds, it is possible to determine if a material is
likely to be actually made in a lab. Consequently, the abil-
ity to actually and quickly obtain formation energies and,
thereby the stability of materials is crucial for the discovery
of new materials. Commonly, the formation energy is pre-
dicted using Density Functional Theory (DFT) which, while
accurate, requires significant computational resources. The
estimated time to simulate one compound given composition
is 10 hours.

In the machine learning setup, each distinct compound is
a data entry. Suppose the only available information about
a given compound is its composition, i.e. the set of ions and
the associated ratios in which they appear. The objective is
to determine chemical properties of it, after studying a set of
known composition-property pairs. And the property to be
predicted here is the formation energy. We take DFT sim-
ulation results as the ground truth, and build models that
predict the energy as close to the simulated value as possi-
ble. However, we have to note that DFT is not absolutely
accurate. The formation energy simulation is known to be
within an error bound of 0.1 electronvolt (eV) per atom.
Past works have shown performances similar magnitude.

3.2 Existing Work and Our Distinction
Many existing work from the materials science domain
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have studied the relationship between compound composi-
tion and chemical property. In [30], a composition similarity
function is defined to quantify how similar two compositions
are, and in turn how possible they are to take the same crys-
tal structure prototype. The function basically computes the
probability that two ions will substitute for each other within
the same prototype. Meredig et al. [21] developed heuristic
and machine learning models on a similar DFT database for
the prediction of formation energy. A total of 129 attributes
are used to represent each compound entry. Among those,
112 are the elemental composition percentage, or atomic ra-
tios, which we will use in our deep learning model evaluation.
The other 17 attributes are heuristic quantities developed
using chemical intuition, such as the average atomic mass,
average column and row numbers on the periodic table, aver-
age and maximum difference of atomic numbers, average and
maximum difference of electronegativity, etc. The learning
system used is Rotation Forest [25] and the mean absolute
error (MAE) achieved for prediction is 0.12 eV.

Our proposed work is a lot similar to this work in [21] but
does offer some key differences and improvements:.

1. The data size is over three times bigger. In [21] around
90,000 compound entires in ICSD are used to construct
an ensemble learning model, while we have accessed
the whole OQMD, a collection of over 285,780 entries.

2. We further eliminated intuitive based attributes in com-
pound representation as inputs, and therefore restricted
the representation to the most straightforward set -
atomic fractions in compound composition.

3. A deep learning architecture is used as a replacement
to Rotation Forest.

4. PROPOSED DEEP LEARNING SOLUTION
Our goal is to build a deep learning regression system,

which each time takes a fixed-length vector of atom fraction
values (0 when the element does not appear in the com-
pound) and produces a real-numbered value that stands for
the formation energy. A snapshot of the input and output
data is shown in Fig. 1(a). The deep neural network archi-
tecture is schematically illustrated in Fig. 1(b). We propose
to use an MLP architecture, with a number of fully con-
nected (FC) layers. We also propose a novel treatment on
the weight initialization.

4.1 Architectures
We train several MLPs with 5 to 9 hidden layers and vary-

ing numbers of hidden units. Mostly the number of hidden
units per layer would start with a largest number and de-
creases towards the output layer. Since it is a regression
problem, there is one output node, producing the formation
energy with values roughly between [−20, 5]. The unit is
electronvolt (eV) per atom. For each architecture we train
a total epoch of 1000, minibatch of 128, with SGD as the
learning algorithm, and learning rate 0.001 which is halved
every 100 epochs. The loss function used is the mean ab-
solute error between predicted output and target. We also
tried mean squared error and the difference is negligible.

4.2 Initialization method
In this solution we make an innovative design in the train-

ing method of MLP. The idea comes from observing the

H He Li Be B C … Pu 
0.25 0 0 0 0 0.75 0 
0.33 0 0 0 0 0.67 0 
0.5 0 0 0 0 0.5 0 
… 0 

Constituent Elements and Their Atomic Ratio Formation Energy 
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2.7278534 
0.0122534 
0.9037976 
… 

…
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 …
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 … 
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Figure 1: (a) Snapshot of data used in the composition
based compound energy prediction problem. The input
data is for each compound the ratio of its constituent
elements. For a binary compound it is a row of two

nonzeros and others all zero. The nonzeros add up to be 1.
(b) A schematic of the proposed deep neural network

architecture.

input data. It is noticeable from the data (and valid in
theory) that not all combinations of elements are possible,
given by the relatively small number of compound collection
compared to the whole combinatorial space of all elements.
Bearing such restrictions, we can guide the learning so that
the network starts with a structure that lies in a more prob-
able parameter space.

Even without domain knowledge of compound formation
principles, insights can be drawn from data that some combi-
nations of elements happen more frequently and some never
do. This inspires us to model the a priori distribution of
elements, from the input data in an unsupervised fashion.
The probability of each element is then used as the variance
of a Gaussian distribution with which the initial weights of
the first layer is sampled from. For example, if we have ele-
ment C present in the dataset at a probability of 0.05, and
the first layer has 1024 nodes, weights between the input
node for C and every one of the 1024 first-layer nodes would
be initialized with a Gaussian distribution with 0 mean and
standard deviation of 0.05. In this way, more frequently
present elements would have a larger influence factor at the
very starting stage of the training process. This gives the
network a more promising area to start the searching of all
parameters. We demonstrate in the following result section
that the proposed initialization method improves the pre-
diction performance by a large margin.

5. EXPERIMENT RESULTS

5.1 Data and network configuration
The public materials database of OQMD contains DFT

calculations of more than 285,780 compounds as of Febru-
ary 2016. Out of all 118 known elements in the periodic
table as of 2016, OQMD contains compounds composed by



Table 1: Configuration of MLPs designed for compound
prediction.

MLP Configuration Init. MAE
mlp5r 1024x2-512-128-1 random 0.115
mlp5p 1024x2-512-128-1 prob. 0.096
mlp7r 1024x2-512x2-128x2-1 random 0.092
mlp7p 1024x2-512x2-128x2-1 prob. 0.072
mlp9r 1024x2-512x2-256x2-128x2-1 random 0.112
mlp9p 1024x2-512x2-256x2-128x2-1 prob. 0.090

89 of them (whose psuedopotentials are available for DFT
calculations). And the number of compositionally unique
compounds is 275,759. In the case of more than one com-
pounds with the same composition (but with different mi-
crostructures), the one with the lowest formation energy is
chosen, for that a low formation energy indicates a more
chemically stable compound and is of more interest in this
study.

Three rounds of outlier removal is conducted before train-
ing. Firstly, all non-compound, single-element materials are
removed, as their formation energy is considered zero. Sec-
ondly, data entires with out-of-bound energy values are dis-
carded, with a rational bounds set to be [−20, 5]. Lastly, we
further remove entries whose energy value is outside of the
±5σ bound, σ being the standard deviation in the training
data. The reason for removing outliers outside of several σs
is to prevent calculation errors undetected by strict value
bounds. To validate we tried experimenting without remov-
ing σ-based outliers and ended up having performances that
are in average the 16% worse.

There remains 256,673 compounds after outlier removal.
This set contains 16,354 (6.37%) binary compounds, 208,859
(81.37%) ternaries, and 31,460 (12.26%) quaternaries and
above. The highest order composition contains 7 elements.
The data is randomly split into training and test with a 9:1
ratio. All results reported in this section are on the test set.

Three MLP architectures are designed, as shown in Ta-
ble 1. The configuration 1024x2-512-128-1 means that there
are 4 FC layers with 1024, 1024, 512, 128 nodes and an out-
put layer with 1 node. We insert Dropout modules wherever
the number of node changes from the previous layer to the
current layer. That is, for mlp7*, we have a Dropout be-
tween layer 2 and 3, between 4 and 5, and between 7 and
the output. In this way, the mlp5* networks have 3 Dropout
modules, and mlp9* have 4 Dropout modules.

Two types of initialization methods are experimented: ran-
dom and our proposed probability based, denoted “prob.” in
Table 1. The corresponding network is therefore named with
the number of FC layers, and either a “r” or “p” affixed. In
random initialization, weights are initialized with a Gaussian
random distribution with zero mean and standard deviation
of 0.02.

5.2 Prediction results
The MAE results shown on the last column in Table 1 is

the final error on test data at the end of a training of around
1000 epochs. Figure 2 shows the change of test MAE along
training epochs, for all 6 networks. If we compare every
pair of networks under the same architecture, it is consis-
tent that the when we initialize the network with probability
based random weights, the result outperforms pure random

initialization. A zoomed in view of the beginning 50 epochs,
shown in the bottom figure in Fig. 2, indicates clearly that
the network mlp7p is able to search from a much more opti-
mistic area at the very beginning of training, and could have
finished the training much earlier.

Figure 2: Test MAE (unit: eV/atom) over training epochs
in chemical compound application. All 6 networks with 3
different architectures and 2 initialization methods. The
probability based method (network with name ending in

“p”) consistently outperforms random method. The
influence is clearer at the beginning of training, shown in

the bottom zoomed-in figure.

The benchmark we chose to compare our result with in-
clude 1-Nearest Neighbor (1-NN), and Random Forest (RF)
regressors. Table 2 shows three benchmark systems results.
Different number of member trees in RF from 50 to 150 is
used, resulting in systems RF50, 100 and 150. The run time
is based on the scikit-learn 3 implementation. The distance
function used in 1-NN is selected to be cosine. The run time
of 1-NN is based on an implementation with Theano [5, 6],
taking advantage of batch processing with GPU when cal-
culating matrix-matrix multiplications.

We can see that RF gives relatively consistent perfor-
mance despite the number of trees. Our best MLP out-
performs RF by a margin of 54%. Cosine distance based
1-NN is the worst performing method, indicating that com-
paring the proximity of the composition ratios across every
element dimension is not reliable in predicting a compound’s
formation stability. We outperform 1-NN prediction by as
much as 94%.

6. IMPLEMENTATION AND DISCUSSION
3http://scikit-learn.org/stable/modules/ensemble.html#random-
forests



Table 2: Benchmark results for compound prediction, using
1-NN and RF with different number of trees.

Benchmark System MAE (eV/atom) Run time (s)
RF-50 0.155 203.78
RF-100 0.154 423.05
RF-150 0.154 797.79
1-NN 1.299 2062.74

All experiments were carried on an NVIDIA DIGITS De-
vBox with a Core i7-5930K 6 Core 3.5GHz desktop proces-
sor, 64GB DDR4 RAM, and 4 TITAN X GPUs with 12GB
of memory per GPU. Although only one GPU is used during
each deep net training. The implementation of deep neural
networks is done using Theano [5,6]. The remainder of this
section discusses several observations in the training process.

Training time. The numbers of data samples is around
300,000. There are over 2 million free parameters, or weights,
in the largest MLP we designed. The MLP architecture we
proposed are not considered typically deep in recent applica-
tions, when successful designs are seen with 150 layers and
more [11] in the case of convolutional networks. When we
use one TITAN X GPU through Theano implementation,
the MLP training takes about 2 hours.

Preprocessing. We do not particularly preprocess the
input features as atomic fractions of elements are already
between 0 and 1. We tried center each input column by
subtracting the mean and dividing it by its standard de-
viation, and we do not observe particular improvement of
results.

Dropouts. We find that adding dropouts to some extent
were helpful. We find that as we kept adding dropout layers,
starting from no dropout layer to 3 in MLP, the performance
steadily increased. However, trying to add more than that
ends up hurting the performance.

Hyperparameter tuning. For every network structure,
we tried a number of different combinations of hyper pa-
rameter settings before fixing on one, through a grid search.
Hyperparameters include the learning rate, minibatch size,
learning rate drop rate (how many epochs to reduce learning
rate to half), among others. For each setting, we train for
a couple of iterations and then observe the dropping rate of
validation error. The set with the steepest drop is chosen.

7. CONCLUSION
In this paper we demonstrated the application of deep

learning as a step towards automated and accelerated mate-
rials discovery. We make use of fully-connected multi-layer
perceptrons for chemical property prediction of compounds,
by directly looking at their atomic composition ratios. To
the best of our knowledge, this study is the first application
of deep learning strategy towards large-scale materials dis-
covery, utilizing a dataset as large as 300,000 and generating
a higher prediction accuracy than present state-of-the-art.
The best network achieves a prediction mean absolute er-
ror of 0.072 eV, within the bound of DFT simulation error
which is known to be around 0.1eV.

As popular as deep learning has become these days, there
is no free lunch. A single universal architecture, parameter
set, loss function, training method or initialization cannot
work for all kinds of problems. It can hardly be used as an

off-the-shelf classifier. We managed to treat the application
problems from an agnostic point of view, but there is still
extensive data-driven exploration conducted to adapt the
learning model to each given problem.

A key challenge in applying deep learning to materials
science problems is that the available labeled training sam-
ples are very limited. Simulated and experimental data are
the two most common types of data in materials science.
Experimental data refer to the trial-and-error iterations of
experimental observations, examples being microscopic im-
ages taken directly from a materials sample. Such data are
often very limited in the size and may contain noise of non-
stationary variance affecting the data quality. Simulation
data, on the other hand, are more abundant, available, and
stable - less prone to human operation errors. This work
makes use of large scale simulation data from DFT calcula-
tions.

However, even with the help of computational apparatus
like DFT, extensive calibration of parameters is required and
the running time is unbearable. Therefore the search of new
materials is still limited. Besides, while DFT results are
regarded reliable for organic materials, for inorganic ma-
terials the structure-property relationships are often more
complicated and DFT less reliable. This is ascribed to the
diversity of chemical elements, crystal structures and tar-
get properties [29]. In our experiments, bot organic and
inorganic materials are included and randomly distributed
between training and test set. A future work could be look-
ing into how performances differ between these two types of
compounds.

A more fundamental challenge persists, in the next step
after an accurate model construction: how to distill infor-
mation from learned model and extract crucial insights that
relate structure to property; how to not only build robust
predictive, quantitative models, but also interpret them with
domain knowledge, and systematically integrate them in the
discovery, engineering process of materials.

As databases containing various type of materials data
are growing, being refined and becoming available everyday,
the application of data mining techniques begins to gain
large expectation in the business of faster and smarter ma-
terials discovery. Similar development has been successful
in biological science, drug discovery and healthcare, and is
yet to be seen in the materials domain. Our demonstra-
tion in this work could play a role in encouraging the use
of large datasets, efficient analytics, and advanced compu-
tational models for all kinds of applications in this field.
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paradigmÓ of science in materials science. APL
Materials, 4(5):053208, 2016.

[3] A. Agrawal, P. D. Deshpande, A. Cecen, G. P.
Basavarsu, A. N. Choudhary, and S. R. Kalidindi.
Exploration of data science techniques to predict
fatigue strength of steel from composition and
processing parameters. Integrating Materials and
Manufacturing Innovation, 3(1):1–19, 2014.

[4] J. Allison, D. Backman, and L. Christodoulou.
Integrated computational materials engineering: A
new paradigm for the global materials profession.
JOM: the journal of the Minerals, Metals & Materials
Society, 58(11):25–27, 2006.

[5] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J.
Goodfellow, A. Bergeron, N. Bouchard, and
Y. Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop, 2012.

[6] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy),
June 2010. Oral Presentation.

[7] H. Bhadeshia, R. Dimitriu, S. Forsik, J. Pak, and
J. Ryu. Performance of neural networks in materials
science. Materials Science and Technology,
25(4):504–510, 2009.

[8] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D.
Malone, J. Rottler, D. J. Durian, E. Kaxiras, and a. J.
Liu. Identifying Structural Flow Defects in Disordered
Solids Using Machine-Learning Methods. Physical
Review Letters, 114(March):108001, 2015.

[9] S. Curtarolo, G. L. Hart, M. B. Nardelli, N. Mingo,
S. Sanvito, and O. Levy. The high-throughput
highway to computational materials design. Nature
materials, 12(3):191–201, 2013.

[10] J. Hafner, C. Wolverton, and G. Ceder. Toward
computational materials design: the impact of density
functional theory on materials research. MRS bulletin,
31(09):659–668, 2006.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

[12] A. J. Hey, S. Tansley, K. M. Tolle, et al. The fourth
paradigm: data-intensive scientific discovery,
volume 1. Microsoft research Redmond, WA, 2009.

[13] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r.
Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The
shared views of four research groups. Signal Processing
Magazine, IEEE, 29(6):82–97, 2012.

[14] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D.
Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner,
G. Ceder, and K. a. Persson. The Materials Project: A
materials genome approach to accelerating materials
innovation. APL Materials, 1(1):011002, 2013.

[15] S. R. Kalidindi and M. D. Graef. Materials data
science: Current status and future outlook. Annual
Review of Materials Research, 45(1):171–193, 2015.

[16] A. Karpathy, G. Toderici, S. Shetty, T. Leung,

R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1725–1732,
2014.

[17] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson,
J. W. Doak, M. Aykol, S. Rühl, and C. Wolverton.
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