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Abstract—Recent progress in big data and computer vision
with deep learning models has gained a lot of attention. Deep
learning has been performed on tasks such as image classifica-
tion, object detection, image segmentation, image captioning,
visual question and answering, using large collections of anno-
tated images. This calls for more curated large image datasets
with clearer descriptions, cleaner contents, and diversified
usability. However, the curation and labeling of such datasets
can be labor-intensive. In this paper, we present PinterNet, an
algorithm for automatic curation and label generation from
noisy textual descriptions, and also publish a big image dataset
containing over 110K images automatically labeled with their
themes. Our dataset is hierarchical in nature, it has high
level category information which we refer as verticals with
fine-grained thematic labels at lower level. This advocates a
new type of hierarchical theme classification problem closer to
human cognition and of business value. We provide benchmark
performances using deep learning models based on AlexNet
architecture with different pre-training schemes for this novel
task and new data.

Keywords-Computer vision; Dataset; Image classification;
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I. INTRODUCTION

Recent years witnessed breakthroughs in computer vision

with the combined advancement of big data and deep

learning. Deep Convolutional Neural Networks (CNNs) are

used to understand image scenes; deep Recurrent Neural

Networks (RNNs) are used to model speeches and lan-

guages unfolded in time. Popular CNN architectures such

as AlexNet [1], VGG [2], GoogLeNet [3] and ResNet [4],

have demonstrated significant performance on large scale

visual recognition tasks such as image classification [5].

Streamlining image understanding with language modeling

to achieve higher cognitive intelligence has been pursued

in image captioning [6], sentence-based image retrieval [7],

and question answering [8].

The success of deep learning models is inseparable with

the advancement of big data. A chief contributing fac-

tor behind all the developments in deep learning is the

availability of large datasets that are clean, diversified and

clearly labeled. While there has been increasing efforts in

the society to collect, annotate, and publicize datasets to

serve as training and benchmarking for various tasks, a large

extent of the work is carried out manually, through crowd

workers, either locally recruited or through online services

like Amazon Mechanical Turk 1.

Although crowd labeling has become the standard ap-

proach, its limitations cannot be overlooked. First, the reli-

ability of labels is largely affected by each individual’s own

experience, preference, capability and even fidelity. Some

labeling systems try to reduce the variability by passing the

same sample to many workers and “merge” different results.

However, there is little universally acknowledged principle

as of how to synthesize crowd-sourced results. Secondly,

crowd-sourcing is expensive, requiring necessary expenses

at the pipeline design, strategy deployment, software devel-

opment and payment to workers.

The third drawback of crowd source labeling, and the most

important one, is the fact that each label is generated with

no regards to the holistic view of the entire dataset, given

each labeling worker is only exposed to a small portion of

the dataset. We argue that the comprehension of data in its

entirety is important in producing reasonable labels. The

focus of this paper is to develop an algorithm that relies

on word affinity and frequency to generate image labels

from noisy, easy-to-get annotations or search terms. Our

algorithm, while entirely automatic, can be easily inserted

into a crowd-sourcing pipeline, either before the human

labeling to produce a set of reasonable candidates to reduce

individual variance, or after the human labeling to merge

and summarize labels.

The developed algorithm automatically collects, cleans,

and eventually produces labels from verified tags of images

from Pinterest 2. Labels created by this process turn out to

be strongly related to a set of themes. Thematic labels are

for example, “4th of July”, “father’s day gift”, and “summer

outfit”. They tend to include a conceptually coherent set of

objects that could span a wide spectrum of looks and types.

Such thematic labels are different from commonly seen

1https://www.mturk.com
2https://www.pinterest.com
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object labels (e.g. different breeds of dogs in ImageNet),

for that it describes a higher level of abstraction of what

human perceives in images.
We present PinterNet, the label curation tool along with

the image dataset, currently containing over 110K images.

Images are first categorized into verticals, and then into

themes. Examples of verticals include “food”, “fashion”, and

“home decor”, and themes are “4th of July”, and “christmas

gift ideas”. The same theme may appear across multiple

verticals. Detailed information about the dataset can be

found on the dedicated website3. Such a hierarchical label

structure inspires us to build a hierarchical classification sys-

tem, released as the first benchmark for theme classification.
The rest of the paper proceeds as follows. In Section II,

we present the algorithm PinterNet, for data curation and

labeling based on frequent itemset mining. In Section III,

we describe the dataset, containing over 110K images

crawled from Pinterest, organized by hierarchical verticals

and thematic labels. Section IV presents the hierarchical

classification system based on pre-training and fine-tuning

CNNs with various architectures. The infrastructure of image

collection is described in Section V. A literature review

of related public datasets, automatic data labeling tools, as

well as related recognition tasks is given in Section VI, and

Section VII discusses future works and concludes the paper.

II. AUTOMATIC LABEL CURATION

Nowadays, the continuous volume of images being up-

loaded on social sites, simply outpaces the rate of annotation

that can be conducted using crowd-sourced workers. Image

labeling simply cannot entirely rely on manual labeling

anymore. Therefore the automation of label curation be-

comes essential. When an image is collected from a public,

mostly social website, a series of information trails with

it in the form of unstructured texts, e.g. annotations, tags,

and comments from different participants. For each image,

there could be many information pieces describing the same

content from possibly different perspectives and in noisy

ways. For a set of images, all those pieces collectively form

a holistic understanding of the dataset as a whole. Labels

of individual images should not only depend on their own

tags, but it should also take into account such a holistic

understanding of the whole data.
When images are passed to generate labels one at a time,

as most manual labeling systems do, the labeling person may

use random phrases of his/her choice that might be filtered

out eventually due to the scarcity of such phrase, hence

resulting in a waste of resource. In contrast, we propose

an algorithm that incorporate collective information from all

images in a set, automatically filter out the infrequent tag and

produce a refined set of descriptions. Such descriptions can

be directly used as labels, or passed on to labeling persons

for further curation.

3http://www.pinternet.org

A. Overview

The common approach for labeling is conducted bottom-

up, where a single image is shown to a labeling worker

at a time, and a label is generated with no regards to its

proximity to other generated labels. In contrast, we follow

the top-down approach, using the textual information already

existing in images during collection, either the search terms

used in crawling, or the comments, tags, and annotations

associated with them during propagation on social sites.

Such information is abundant, easy-to-get, but can be too

noisy to use directly as labels. On social sites an image can

be described by many users from many perspectives with

different keywords; even the same concept can be written out

in redundant ways. For instance, an image4 from Pinterest,

shown in Figure 1, is annotated with a series of word phrases

by human users, along with the occurrence of each phrase.

All of them are trying to convey a similar idea, but as a result

of human variation, are largely overlapping and repetitive.

It is therefore necessary to rely on data-driven methods to

refine its labels, by not only looking at the frequency of

words appeared in this image, but also that appeared in the

whole dataset. By focusing on this image only, it is easy to

generalize labels like “mother’s day” and “father’s day” but

leave out “diy” because it doesn’t appear frequent enough.

However in view of its appearance in the whole dataset it

would be saved.

Figure 1. An example image from Pinterest. The annotations are those
made by users when they “pin” an image they like. The four labels are
generated automatically by frequent itemset mining algorithms relying on
statistics of annotation on all images.

The algorithm we propose has the following benefits:

• Automated. It takes in a large set of existing noisy

textual annotation segments and generates a refined set

4What’s shown in Figure 1 is not five separated images but one. It is
common on Pinterest to find long, collaged images to show working steps.
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of keyword labels. No human supervision is required

in this labeling process.

• Data-driven. The label generation is done mindfully,

taking into account the word frequency, affinity, and

correlations within the entire data. It produces not

only single-word labels but also multi-word segments,

without the assistance of hand-crafted rules in word

concatenation.

• Modular. The developed tool can be used as a module,

pipelined with other steps in the data acquisition and

processing stage to ensure the quality of labels. In a

system of manual label generation, this module can be

used either in the beginning to generate candidate labels

for crowd workers, and/or afterward to clean and refine

human generated labels.

B. Problem definition

Suppose we have crawled a collection C of images using a

number of search terms (details of the crawling infrastructure

described in Section V). Each image I ∈ C is associated with

a series of search terms used to query it, I : {s1, s2, . . .}.

Each search term further comprises a sequence of keywords,

si = {w1, w2, . . .}, and can have a high overlap of keyword

usage with other search terms. We claim two search terms to

be the same if they have the same set of keywords regardless

of the word order. For example “gifts father’s day” and

“father’s day gifts” are the same search term (this has been

validated by the Pinterest search engine – querying with such

two phrases returns the same set of images). In this section

we develop an automatic label curation strategy that answers

the following questions:

1) Given a collection of images C and the set of search

terms S used to query C, along with statistics such as

the number of images acquired from each search term

si ∈ S , how can we determine a set of image labels

that are meaningful, concise, and representative?

2) Given an unlabeled image I ∈ C, and the associated

search terms {s1, s2, . . .} used to acquire it, how can

we determine what label, or set of labels, to assign to

the image?

C. Association rule mining

The idea is to adapt concepts from association rule mining

to the generation of labels. Frequent itemset mining is the

fundamental strategy towards the discovery of association

rules, in the form of A ⇒ B which means given itemset A
appears, B is likely to appear. The adapted procedure for

label creation is composed of the following three steps.

Building word transaction. We start with building a

many-many relationship graph between two kinds of ele-

ments, words that have ever appeared in a search term (anal-

ogous to “items” in a market-basket model), and a search

term used to obtain an image (analogous to “baskets”). Each

time a search term (a basket of words) is used to acquire

an image, we record it as a transaction. A set of image data

acquired through this searching procedure would create a

transaction file. The number of transactions in the file is the

same as number of images acquired. As the definition of

items is now words, we change the term itemset to wordset

from here on.

Word preprocessing. To create a transaction of wordsets,

a series of processing steps is required to account for

upper/lower cases, stop words, abbreviations, inflectional

and derivational forms of words, etc. We use standard

natural language processing (NLP) procedures, with four

steps illustrated in Figure 2. The implementation is based

on the Python Natural Language Toolkit [9].

Figure 2. Four steps of NLP procedure to clean a sequence of words
and strip into word items. An example input and outputs at each step are
shown.

Frequent itemset mining. After a clean transaction file is

obtained, an algorithm finds frequent sets of items (itemsets)

from examining the transactions. Let W = {w1, w2, . . .}
be the collection of word items. We use the Apriori [10]

algorithm, which works by assuming that a multi-item set is

frequent only if all its subsets are frequent. Two threshold

parameters are required, the support threshold τsupp, and

the confidence threshold τconf . The result of Apriori is:

(1) a list of wordsets (consisting of both single words and

frequently co-occurring multi-words) whose occurrence ratio

is larger than τsupp, and (2) a set of association rules, in

the form of P ⇒ Q(P ⊂ W ∗, Q ⊂ W ∗, P ∩ Q = ∅)
whose confidence measure is over τconf . W ∗ is the set of

all unique words appeared in wordsets generated by (1). The

confidence measure is defined as the ratio of the number

of transactions containing both P and Q to the number of
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transactions containing P . When P ⇒ Q is found in the rule

set, most likely Q ⇒ P can be found too, with a different

confidence value.

D. Label curation algorithm

Given the wordset and association rule results generated

by Apriori, labels are created with two branches, namely,

Single-Label Curation (SLC) and Multi-Label Curation

(MLC). They work in an interlaced fashion, generating

respectively a single-word label set and multi-word label

set. The two resulting sets of labels are merged to produce

the final set of labels.

Let’s denote the wordset result (the ranked list of sets of

words that co-occur frequently) of Apriori as S0∪M0, where

S0 is the set of single words that by themselves occur in the

transaction with a probability over τsupp, and M0 is the set

of multi-words that satisfy the same criterion.

As of the association rule result of Apriori, we process

it in the following fashion. For each rule generated in the

form of P ⇒ Q, where P and Q are non-overlapping

wordsets, we process each rule into R = P ∪ Q and keep

only the unique Rs. The set of unique Rs forms M1, the

final multi-word label set. The final single-word label set,

S1, is generated by subtracting the support value of each

word in M1 from its value in S0, and having the resulting

set go through the support threshold filter again.

The entire process is denoted by an example in Figure 3.

Given a transaction file (each line of transaction records a

set of words being used to query one image), the Apriori

algorithm finds the most frequent single wordset S0 and

multi-word set M0 with the set parameter τsupp. Another set

parameter τconf filters association rules based on M0. We

curate multi-word labels M1 by merging words appeared in

rules. Then M1 is used to update confidence values in S0

and obtain curated single-word labels S1.

III. PINTERNET DATASET STATISTICS

Using the PinterNet automatic label curation tool, we col-

lected a large set of images from Pinterest, organized them

into categorized verticals, and generated theme-oriented la-

bels. This hierarchically labeled dataset is publicized 5.

The data are extracted for a period of one year between

January 2015 to January 2016, using a list of search terms to

query from Pinterest API (see Section V for details of search

term construction and image crawling). The dataset contains

110,828 images, with each image placed under one of 33

categories, which we call verticals, and assigned a number

of themed labels. Verticals are defined by Pinterest category

information 6. The distribution of verticals is illustrated in

Figure 4. Table I summarizes the label information of top 10

verticals (amounts to 72% of entire data) in this dataset. The

5http://www.pinternet.org
6Pinterest categories are explained in the section “Get ideas from

categories” at: https://help.pinterest.com/en/guide/discovering-things

Figure 3. The procedure of the proposed label generation algorithm,
illustrated with an example.

number of classes in each vertical is determined by adjusting

τsupp and τconf so that it is close to about 1% of the number

of images.

Figure 4. Vertical distribution in PinterNet.

Class labels within each vertical were generated automat-

ically, from the search terms that were used to query those

images. On inspection of the food vertical, we found 5,750

unique search terms used to acquire it. The distribution of a

number of images acquired by each of the search terms is
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Table I
LABEL INFORMATION OF EACH VERTICAL (TOP 10) IN PINTERNET.

Vertical name #Images #Classes

Food and drink 24762 287
DIY crafts 14223 126

Women’s fashion 8438 87
Holidays 5441 52

Hair beauty 5361 53
Kids 5201 77

Home decor 4450 28
Health and fitness 4141 30

Weddings 4004 43
Education 3292 44

shown in Figure 5 in descending order. We can see how

it is a heavy-tailed problem. If we were to directly use

search terms as class labels, there would be too many classes

and image assignment over classes would get skewed. The

top 20 search terms are zoomed in to show the exact

phrases used. After label curation, however, we obtain 287

classes, which is a much more reasonable number. Figure 6

shows all the labels in a word cloud. The size of the label

indicates the number of images in the corresponding class.

We can see “recipe” is the most used single word, even

after subtracting its occurrence in multi-word phrases such

as “chicken recipe”, “health recipe”, “cookie recipe”, “paleo

recipe”, etc., all can be seen in the cloud (multi-word labels

use ‘-’ in between words for better visualization).

Figure 5. Number of images returned from each distinct search term in
food vertical. Top 20 search terms in terms of returning size are shown in
detail.

The image set we publicize is different from existing

datasets in three-folds. It is a dataset of thematic labels,

multi-labeled images, and of hierarchies. These special char-

acteristics are explained below.

Thematic labels. Due to the unique characteristics of

Pinterest as an idea-provoking platform, the labels that

got assigned to images are not names of objects like in

ImageNet. Instead, people search for ideas and the images

Figure 6. Word cloud presenting the ratio of occurrence for terms in
the Food and Drink Vertical. The size of the term indicates the number of
images in the PinterNet dataset.

returned are thematic portrayals of those ideas. Theme

descriptions can be vague, generic, obscure, and therefore

harder for classification systems to recognize, but are a lot

closer to how human interprets images. Four thematic labels

generated from curating textual search terms of all obtained

images (as opposed to curating under a certain vertical),

along with several example images, are shown in Figure 7.

In the label first day, some are posters that contain words like

“school”, “begins”. There are some scenes which suggest

summer is over, while others suggest outfits to wear on

first day of school (or work). More variations are seen in

the label graduation. As imagined, most are seen with a

scholar cap, but some are about a more derived concept

like earning money, moving, or instructions of how to make

a graduation cake. In hair color the actual position of

colored hair can be anywhere, big or small. An image about

nail color also appears, possibly due to a user’s remark of

what hair color goes with this. The theme hair color is

the most obscure, a concept that is so widely applicable

that can basically contain anything. Themes pose a much

harder job for machine classifiers, however, they are a closer

description of human’s needs when searching for an image.

The identification of themes in images specifically will be

helpful for business applications, but also helpful to semantic

understanding of images, and is closer to human cognition.

Multi-labeled images. In this dataset, each image is

described by more than one labels. The most number of

labels an image has in the current set is 47. The histogram

of the number of labels each image is associated with is

shown in Figure 8. Over 65% of images got assigned to

more than one labels. In a multi-label classification problem,

the challenge comes from not only intra-class variation but

also inter-class similarity. For example the four labels of the

image in Figure 1 are not semantically independent, making

the classification difficult.

Hierarchies. Images and labels in PinterNet dataset are

organized in a hierarchy. Instead of all labels on one flat

level, there is first a separation of verticals. The same label,

However, can exist in multiple verticals. For example “gift

ideas” can be a label in “fashion” and in “holidays”. Another

example refers back to Table I. The top 10 verticals each
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Figure 7. Four thematic labels, “first day”, “graduation”, “hair color”, and
“happy day”, each with a couple of image examples. In each case some
obscurity is seen. Sometimes it is even required to read the texts in images
to be able to classify.

Figure 8. Histogram distribution of number of labels per image. Over
65% of images have more than one labels. This is generated using 80K
training data. Test data has similar distribution.

has their own set of labels. The arithmetic sum of labels is

827. However, the actual number of distinct labels are 536,

making the overlapping rate as high as 35%. In Figure 9,

we show many images with the same label 4th of July but

in different verticals. A classifier is required to generalize

that it is actually the color scheme that makes the major

determinant.

IV. TRAINING NEURAL NETWORKS FOR THEME

CLASSIFICATION

This section provides benchmark results using classic

CNN architectures on the PinterNet dataset. We perform and

present results of the following experiments.

Figure 9. Examples of images of the same label, “4th of July”, but under
different verticals.

(a) Take all images and treat all 536 classes as on one flat

level. No pre-training.

(b) Take all images, first train a binary support vector

machine (SVM) classifier that classifies an image as

whether food or not food. Train CNN with images in

the food vertical with 287 classes. No pre-training.

(c) Same as (b), but with pre-training from all PinterNet

image classes.

(d) Same as (b), but with pre-training from ImageNet

classes.

Experiment (a) gives the benchmark of using no hierar-

chical information in images. The total number of theme

classes is 536. We use existing popular CNN architectures:

AlexNet [1], AlexNet-with-one-weird-trick [11], VGG [2],

Overfeat [12], and GoogLeNet [3]. The implementation is

based on a multi-GPU Torch package 7. Parameters used are

unchanged from this package. We found AlexNet-with-one-

weird-trick to perform the best, beating deeper structures

like VGG, Overfeat and GoogLeNet. Results shown in

this section are all AlexNet-with-one-weird-trick(referred to

AlexNet-OWT for simplicity).

Figure 10 shows the top 1, top 5 and top 10 classification

accuracies. With no vertical information to narrow down

the image category and no pretraining scheme, the top 1

accuracy can barely reach 5% after 20 epochs (of 5000

iterations of 128 batch size).

Then we move to a specific vertical, food and drinks
(simplified as food from here on). We consolidate the three

experiment results on food vertical data, with different

7https://github.com/soumith/imagenet-multiGPU.torch
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schemes of pre-training, into Figure 11. We can see that

pretraining from all themes in PinterNet helps the most, even

more than pre-training with ImageNet, a much larger object

dataset. CNNs are trained on the training dataset (80% of

the entire PinterNet dataset). Results shown are all on test

data (20% of all data maintaining same image distribution

among labels).

Figure 10. Testing results for Experiment (a): flat 536 classes, no
pretraining, using AlexNet for 20 epochs.

Figure 11. Consolidated testing results for Experiment (b), (c) and (d),
all using AlexNet for 20 epochs.

We found that AlexNet-with-one-weird-trick (AlexNet-

OWT) performed best among all the top four models for all

our verticals with(out) pre-training. In the results presented

for Food vertical, we had 287 labels (larger than many other

existing Image datasets). Without using any pre-training,

we achieved an accuracy of around 50% for label in top

10 output labels, after 30 epoch (of 5000 iterations of 128

batch size). After using pre-training (using Pinternet data and

ImageNet data separately), we found around 10% increase

in accuracy for label in top 10 output labels. Overfeat had

10% less accuracy compared to AlexNet-OWT. VGG and

AlexNet didn’t work well. We found similar result across

other verticals.

To predict theme of a new image/pin, we first predict its

vertical using SVM and then use our best deep CNN model

to predict the theme within that vertical. This hierarchical

model helps in achieving better accuracy in predicting theme

without increasing complexity (depth) of existing top CNN

models.

V. IMAGE COLLECTION FROM PINTEREST

This section describes the procedure of image collection

from Pinterest using a set of search phrases. The image

collection is described by three steps. First, we create search

terms which we query images with. Then, we crawl the

Pinterest website and collect image URLs for each search

term. Next, for each search term, we download a random

set of images to build the PinterNet image catalog.

A. Search term creation

We generate a search term (e.g. “stocking stuffer ideas

for men”) by traversing the suggested terms by the Pinterest

website for several levels. Once logged in, the Pinterest

homepage provides 33 classification categories – the same

that we used as verticals in the resulting dataset. Our

program first selects one vertical at a time, and visits the

vertical homepage. On each vertical page, Pinterest recom-

mends a set of search categories. The second step is visiting

each one of these search category pages in that vertical.

Again, for each search category page, there are lower level

recommended search categories. This way, we traverse the

search category tree. It is more appropriate to call it a search

category graph as the hierarchy of search terms are not

uniquely classified. For example in the vertical “Animals and

pets”, we have suggested terms to follow as “dogs”, “cute”,

“mammals”, etc., mentioned as search categories. However,

both “dogs” and “cute” search pages have each other (i.e.

”cute” and ”dogs” respectively) mentioned as the following

level search categories.

In our current work, we traverse up to 6th level categories

and also, restrict ourselves to a limited set of search cate-

gories in each level. This is because the breadth of the search

tree explodes very quickly. Our crawler collects images at

every level, not just at the bottom (sixth) level. An example

of three-level search term crawling is displayed in Figure 13.

We eventually build 20K unique search terms containing

1 to 6 words. Figure 12 presents the top 20 words, or search

categories, and their position at which they occur in the final

concatenated search phrase, regardless of verticals. We see

that the words “Christmas” and “women” occur mostly at the

first position of search phrases while “ideas” and “recipes”

occur mostly at the second and third in search phrases.

B. Image Crawling

We create an image crawler to obtain images from Pinter-

est with a certain search term, comprised of either a word

or a sequence of words.

We use an open-source web automation tool, Selenium

WebDriver [13] for generating the image crawler. Selenium
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Figure 12. Top 20 words represented as a stacked bar graph. We present
the positions at which these words occur.

is one of the most popular suites for automating web

application testing and it is employed in many industrial

projects. Selenium WebDriver provides a comprehensive

programming interface used to control a browser. It offers

different ways to locate the UI elements composing a web

page i.e. by name, id, xpath, class of the corresponding web

element.

First, our code logs into Pinterest by identifying the email

address and password feeding location on the login page, and

then passing the corresponding values. Our code iterates over

the list of created search terms, one at a time. For search

term ”dogs”, our query looks like http://www.pinterest.com/

search/?q=dogs. q refers to the query containing the search

term. For each term, we let the Pinterest page load for a

minute. We do this to make sure a sufficient number of

images have loaded for that search term. Once the page has

loaded, we download the page source. In Table II, we list

example search terms for three levels.

Table II
EXAMPLE SEARCH QUERIES FOR THREE SEARCH LEVELS

Category Level Search Query
Top/First q=dogs
Second q=dogs+cute
Third q=dogs+cute+funny

For every aggregated search term (i.e. second or third level

term), the order of the terms do not matter. For e.g. the

Figure 13. Steps of crawling from verticals to top and lower level search
categories

query q=dogs+cute would give us the same set of images as

q=cute+dogs. However, Pinterest keeps updating their image

catalog frequently i.e. the set of images for a search term

changes with time. Hence, the exact set of images collected

by our crawler for both queries may not be same.

To ensure a properly curated dataset, we use search terms

which are listed under verticals or a higher level search

term. This ensures that our image curation database is not

arbitrary. Rather, it contains a representative set of pins.

C. Data Cleaning and Downloading Pins

During our image crawling step, we store source pages

for 20,408 search phrases. This includes top, second and up

to sixth level search terms. Each source page contains a list

of pins (Pinterest images) corresponding to that search term.

We use a python library called BeautifulSoup to parse

the HTML of the source page. It helps format and organize

the HTML structure into an easily traversed Python object.

Using BeautifulSoup, we generate a list of pin URLs for

each search term from the HTML of the page source. For

each pin, we collect the image size, verification information

of the pin URL domain, and the name of the vertical it is

listed under.

The name of the vertical might seem like redundant

information as the search term was constructed from the

vertical page. However, we find that it is possible that

Pinterest lists a pin image without a vertical. Therefore to

make sure our data remains consistent and clean, we ignored

images with no vertical information, or images which were

not posted by verified user.

The dictionary containing the image details is stored as
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MongoDB tables. MongoDB is a free and open source

document oriented database and it adheres to the NoSQL

paradigm. The database structure resembles a JSON file

structure. Finally, we traverse the pin URLs for each search

term and download the pins.

VI. RELATED WORK

We discuss research works in three related areas. First

of all, we review existing datasets that have been released

in computer vision community for various purposes. Then,

we explore existing work that tackles data labeling in an

automatic, unsupervised fashion. Lastly, we give a brief

overview of the literature in perception tasks, including

image classification, object detection, image captioning, etc.

A. Datasets

Probably the most widely used large-scale dataset, Im-

ageNet [5] provides large-scale image classification and

object localization annotations. It contains over 1.4 million

images, with in average 1000 images per class (a total of

1000 object classes). The main focus of ImageNet is object

recognition, which means the class labels are only nouns.

There is no information regarding what the object is doing,

or what the photographer tries to depict, other than the fact

that the object exists. Each image is assigned one label,

corresponding to only the most salient object in the scene.

PASCAL VOC [14] provides classification (whether an

object is there), detection (where is the object) and seg-

mentation (which exact pixels belong to the object) labels

for 20 classes of objects. The size of dataset is about 20K.

Compared to ImageNet whose images are mostly a clear,

centered shot of one object, PASCAL VOC images are less

handpicked, more real-world like. It is closer to what we

offer in PinterNet, a set of unfiltered natural images that are

labeled by themes.

Microsoft COCO [15] contains 300K images for multiple

object segmentation – each pixel in image has an assigned

label in one of 80 object categories.

Visual Genome [16] is a rich dataset with over 100K

images, each associated with a large number of objects,

attributes, relationships, and question and answers. Each

object is grounded by a bounding box and each image is

annotated densely with a number of object descriptions. It

provides a platform for tasks that are closer to human per-

ception; rather than recognizing apparent objects in image,

can you describe the events (by, say, adjectives)? Can you

answer questions about the scene?

The idea of describing images from a different angle than

objects was experimented by the Places [17] dataset. As

the name suggests, the classes in Places database are about

scenes of places, such as “bedroom”, “kitchen”, “forest

path”. Images within one scene class can be composed of

totally different objects which may pose a greater challenge

for object-oriented classification systems.

B. Automatic Labeling

A highlight of our tool is to generate class labels auto-

matically, without human manual annotation. Tools of this

kind have been very scarce, although some work are related.

In [18]. a Bayesian Network based interactive system

for facial expression labeling is used. Initial labeling is

produced automatically, but human has to examine the initial

result and make corrections. In [19], Chen et al. presented

an automatic segmentation approach given annotated 3D

bounding boxes. However there is still human supervision

involved.

C. Perception Tasks

With the increasing availability of large datasets, re-

searchers in computer vision, machine learning and data

mining society have begun to tackle increasingly compli-

cated problems.

Object detection and classification are mostly performed

using ImageNet, with ever improving results shown by

AlexNet, VGG, Overfeat, GoogLeNet, ResNet and a recent

FractalNet [20]. Object segmentation requires a more fine-

grained labeling of objects in pixel level. The usual way to

achieve it, is by running a sliding window over each pixel

and make local object recognition. Tasks in this category

often involve less number of objects compared to object

classification.

Image captioning is the task of describing images with

natural language, with a freedom of using any words in the

vocabulary. Recent approaches [6], [21]–[23] have adopted

Recurrent Neural Networks (RNNs) for generating captions,

conditioned on image information.

Visual question and answering is an interesting task that

has been proposed as a proxy task for evaluating a vision

systems capacity for deeper image understanding [24]. Given

an image and a question, the system is required to give

answers either in free form or from multiple choices.

VII. FUTURE WORK AND CONCLUSION

PinterNet is a combination of an automatic label curation

tool for web crawled images, and the resulting thematic

dataset of 110K Pinterest images. The tool takes free-form,

noisy and repetitive textual descriptions of each image, and

produce a concise set of meaningful, representative labels of

various number of words.

The label generation tool performs association rule mining

on the search terms used in image query. Further studies

can apply the same strategy on image annotations, user

comments, or other noisy textual information associated with

online images on social cites. Other future directions to

improve the current work include: (1) incorporate image

content information (in the form of image features extracted

by CNNs) when determining labels; (2) consider word affini-

ties with synonyms grouped together; and (3) extend such

practice to all types of data beyond images. Moreover, this
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tool can be adapted to curate search phrases for commercial

product pages in order to achieve more accurate responses

for queries.

The novelty of the PinterNet dataset is its thematic la-

bels. Identification of themes requires not only recognizing

objects, but also capturing salient information from different

perspectives such as color, tone, and arrangement of objects.

It is a recognition challenge much closer to true human

cognition. This work lays down the ground-work for better

theme-based classification in the future.
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