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Abstract—Many scientific applications have started using deep
learning methods for their classification or regression problems.
However, for data-intensive scientific applications, I/O perfor-
mance can be the major performance bottleneck. In order to ef-
fectively solve important real-world problems using deep learning
methods on High-Performance Computing (HPC) systems, it is
essential to address the poor I/O performance issue in large-
scale neural network training. In this paper, we propose an
asynchronous I/O strategy that can be generally applied to deep
learning applications. Our I/O strategy employs an I/O-dedicated
thread per process, that performs I/O operations independently
of the training progress. The I/O thread reads many training
samples at once to reduce the total number of I/O operations
per epoch. Given the fixed amount of training data, the fewer
the I/O operations per epoch, the shorter the overall I/O time. The
I/O operations are also overlapped with the computations using
the double-buffering method. We evaluate our I/O strategy using
two real-world scientific applications, CosmoFlow and Neuron-
Inverter. Our experimental results demonstrate that the proposed
I/O strategy significantly improves the scaling performance
without affecting the regression performance.

Index Terms—I/O, Deep Learning, Parallelization

I. INTRODUCTION

Recently, a variety of scientific applications adopt deep

learning methods to solve their classification and regression

problems [1]–[4]. However, training deep and large networks

is an extremely time-consuming task that can take hours or

even days. Especially for the data-intensive scientific appli-

cations, efficient scaling of training is critical to fully utilize

High-Performance Computing (HPC) platforms and effectively

tackle large-scale problems.

In deep learning solutions for large-scale scientific ap-

plications, I/O time can take up a large portion of model

training time. When collecting experimental data, they are

usually stored as a few large files such that each file contains

many data samples. Thus, in data parallel training, many

processes can access the same file simultaneously causing

I/O congestions. In addition, it is a common practice that the

training samples are randomly shuffled during training, which

results in having many small random accesses. The expensive

I/O cost implies that the compute resources are waiting for

the data to be ready staying idle. In order to achieve a good

scaling efficiency, thus, it is essential to minimize the I/O cost.

However, while the statistical efficiency of training algorithms

and the communication cost in parallel training have been

widely studied, the I/O performance is largely overlooked and

has not been well studied.

Several deep learning applications acknowledge that the

parallel training of their networks suffer from the expensive

I/O cost [3], [5]–[8]. There are several previous works focused

on improving the I/O performance as follows. Mathuriya et al.

prefetch the training dataset into Burst Buffer so that the mini-

batches are rapidly read from the SSD-based storage servers

[3]. Zhu et al. introduce I/O pipeline designed for TensorFlow

[9], which takes advantage of Remote Direct Memory Access

(RDMA) for data shuffling [8]. Pumma et al. improve the

I/O performance of Caffe [10] by re-designing the LMDB

I/O library [6]. Although these works effectively improve the

I/O performance, they either rely on special hardware-assisted

features or tackle the performance issues existing in a specific

software library.

In this paper, we study how to improve the scalability

of large-scale deep learning applications with a focus on

I/O performance. Specifically, our study considers the I/O

performance of loading the training data from disk space to

CPU memory space. We propose an asynchronous I/O strategy

that can be generally applied to data parallel neural network

training. First, we discuss how to enforce all the processes to

read contiguous file regions only. Our I/O strategy enables to

read a large amount of contiguous data at once to minimize the

number of I/O operations. Given a fixed total dataset size, the

fewer the I/O operations, the shorter the overall I/O time. We

also explain how to effectively overlap the I/O time with the

computation time via double buffering. On the one hand, the

larger the I/O buffer size, the fewer the I/O operations and thus

the better I/O performance. On the other hand, the smaller the

I/O buffer size, the higher the degree of randomness in data

shuffling and the smaller the memory footprint. We investigate

such a trade-off focusing on how to achieve the best I/O

performance and reasonable extra memory footprint without
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significantly affecting the regression performance.

We evaluate our proposed I/O strategy using two real-world

scientific applications, CosmoFlow and Neuron-Inverter. Both

applications solve domain-specific regression problems using

a large amount of experimental data that cause expensive I/O

cost during the neural network training. We report and analyze

the scaling performance on two different supercomputers,

Summit at Oak Ridge National Laboratory (ORNL) and Cori

at National Energy Research Scientific Computing (NERSC).

Our experimental results demonstrate that the I/O time can be

effectively reduced by applying our proposed I/O strategy to

the large-scale deep learning applications.

II. BACKGROUND

A. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of artificial

neural network that contains convolution layers [11]. The

convolution layers have a special connection pattern such that

each neuron at one layer is connected to a subset of the

neurons at the previous layer. Such connection pattern enables

exploitation of spatially-local correlation in the input data.

Each convolution layer can be followed by a pooling layer.

Depending on the model architecture, the networks can have

a few fully-connected layers at the end of the model.

CNNs are popularly used to solve computer vision or natural

language processing problems. Many scientific applications

also employ CNNs when the input data is known to inherently

have spatially-local correlation. In this work, we study two

real-world scientific applications that solve the domain-specific

regression problems using deep CNNs.

B. Training Algorithms with Data Shuffling

The most popular training algorithm for neural networks

is mini-batch Stochastic Gradient Descent (SGD) and its

variants such as Adam [12], AdaGrad [13], and AdaDelta

[14]. We will call mini-batch version of SGD ‘SGD’ for short.

SGD iteratively updates the model parameters using gradients

approximated from a random subset of training samples (called

mini-batch). The algorithm stops the training when either the

gradients become sufficiently small or the achieved accuracy

becomes acceptable by users.

In deep learning applications, ‘epoch’ is usually defined as

iterations for traversing over all the given training samples

once. It is a common practice to shuffle the training samples

every epoch so that the mini-batches consist of differen train-

ing samples. Approximating gradients from different mini-

batches can be considered as inherently injecting noise to the

training, and it likely results in achieving better generalization

performance. However, such a random data access pattern

can cause an expensive I/O cost. Especially for scientific

applications with large-scale experimental data, the global data

shuffling can cause an extremely expensive I/O cost.

C. Synchronous SGD with Data Parallelism

Synchronous SGD with data parallelism is the most popular

parallelization strategy for deep learning applications. In data

parallel training, each mini-batch is evenly distributed to

all workers and they are independently processed. Once all

the workers locally compute the gradients from the given

training samples, the gradients are averaged across all the

workers using inter-process communications. Typically, the

gradients are averaged using allreduce communications. If

the gradients are averaged every iteration, all the workers

can update the model parameters always using the globally

synchronized gradients. This approach is called ‘synchronous’

SGD. Although there are many alternative parallel training

algorithms, such as asynchronous SGD or local SGD, we

focus on synchronous SGD with data parallelism considering

its popularity and effectiveness on achieving the high accuracy.

D. CosmoFlow

CosmoFlow is a deep learning tool for Cosmology data

analysis, developed by Lawrence Berkeley National Labora-

tory and Intel. Given a 3-dimensional distribution of masses

in the evolved Universe, CosmoFlow estimates the initial

condition of the Universe. Mathuriya et al. proposed a 3-

D CNN solution to this large-scale multi-value regression

problem and studied the scaling performance on Cori KNL

nodes [3]. CosmoFlow is incorporated in the MLPerf HPC

benchmark suite - an industry standard for measuring machine

learning performance on large-scale HPC systems [15]. The

most computationally challenging aspect of the CosmoFlow

is ingestion of the input 3D cubes of size from 1283 up to

10243, which can easily exceed the memory space available

on GPU.

E. Neuron-Inverter

Neurons are the fundamental units of computation in brain.

Their electrical properties arise from the spatial densities of the

diverse ion channels along the membrane. Neuron-Inverter is a

project to develop a deep learning tool for inferring such chan-

nel density values from empirical recordings of single neurons.

It will allow to construct realistic biophysical neuronal models

and give insights into the etiology of neurological diseases

such as Autism and Epilepsy [16], [17]. Ben-Shalom at al.

demonstrated use of 1-D CNN to regress the time series data

of neuron action potential to ion channels densities [16]. For

Neuron-Inverter, the data samples are relatively small, but the

dataset contains an enormous number of samples (O(108))
causing extremely I/O intensive neural network training.

III. ASYNCHRONOUS I/O STRATEGY FOR

DATA-PARALLEL TRAINING

In this section, we describe our I/O strategy for data-parallel

neural network training. We begin with a description of our I/O

strategy that enables large contiguous read operations. Then,

we explain how to overlap the I/O time with the computation

time by employing double-buffering method. We will use a

few notations as follows: N is the total number of training

samples, B is the I/O buffer size with respect to the number

of samples, M is the mini-batch size, and P is the number of

processes.

2
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dataset I/O buffer size

1. Shuffle the groups of samples

…

2. Each process reads one group 
of samples at a time whenever 
its I/O buffer is empty

I/O 
thread

I/O 
thread

I/O 
thread

I/O 
thread

Comp 
thread

Comp 
thread

Comp 
thread

Comp 
thread3. Each I/O thread shuffles 

the samples within the I/O 
buffer and provides mini-
batches to computation thread

Process 1 Process 2 … Process P

Fig. 1. An example illustration of the proposed I/O strategy for deep learning. Each process has an I/O dedicated thread. First, the dataset is partitioned to
N
B

groups and randomly shuffled, where N is the number of samples and B is the I/O buffer size per process. Second, each process is assigned with N
BP

groups, where P is the number of processes. Then, during the training, each process reads one group of samples at a time using an I/O-dedicated thread.

A. Asynchronous I/O Strategy

1) I/O pattern in training: Before we discuss our proposed

I/O strategy, we define the I/O pattern in neural network

training. Given N training samples, M samples are extracted

as a mini-batch and processed one batch after another. Thus,

at each epoch, N
M mini-batches are read from the dataset in

total. The described I/O operations are repeatedly performed

for many epochs until the training loss converges. In data

parallel training, each mini-batch is evenly distributed to all

P processes. So, each process reads M
P samples per iteration.

As scaling up, the number of iterations per epoch is fixed to
N
M regardless of the number of processes.

In neural network training, the data samples are usually

shuffled every epoch. Each mini-batch most likely consists

of different samples every iteration. So, when a mini-batch is

extracted from the dataset, we assume random M samples are

read from the given input files. During the parallel training,

each process reads random M
P samples at each iteration and

repeats this N
M times per epoch.

2) Asynchronous I/O with I/O-dedicated thread: In many

scientific applications, the experimental data is usually stored

as a small number of large files. This data organization allows

researchers to better manage, transfer, and analyze the data.

However, considering the I/O pattern in neural network train-

ing, this approach makes multiple processes access a single file

at the same time causing I/O congestion. In addition, the data

samples are assumed to be shuffled in neural network training,

and it makes the random data access pattern. Such random

small reads from multiple processes can cause a significantly

expensive I/O cost.

To efficiently perform I/O operations in parallel neural

network training, we propose to asynchronously read a large

number of samples at once. Figure 1 presents our I/O strategy.

The dataset is partitioned to N
B groups and they are globally

shuffled every epoch. Then, each process is assigned with

random N
BP groups of samples and extracts the local mini-

batches from the given groups. Once a group of samples

are loaded in the memory buffer, all individual processes

iteratively read random M
P samples as a local mini-batch until

the samples in the buffer are all consumed. Such a local

shuffling is almost at no cost because the read operations are

random memory accesses.

The described I/O strategy has two advantages as follows.

First, a large contiguous region of a file can be read at once.

If each file contains more than B samples, the entire group

can be read by at most two read operations. Given the same

amount of total data, a cheaper I/O cost can be expected by

having fewer I/O operations. Second, the number of processes

that access the same file is dramatically reduced. Since our

strategy enforces each process to read the samples only from

the assigned groups, up to K
B processes may access the file,

where K is the number of samples in the file. If all the

individual samples are globally shuffled, up to max(K, P )

processes can access the same file. By reducing the number

of processes per file, the read operations can more effectively

take advantage of the cache effect. In practice, most of the

large-scale HPC systems allow to have the I/O buffers that are

large enough to read one file at a time achieving the optimal

I/O performance.

Our proposed I/O strategy makes a trade-off between the

I/O cost and the memory footprint. On the one hand, the

number of I/O operations is reduced as more samples are read

from the files at once. Given the fixed amount of data, the

fewer the I/O operations, the shorter the total I/O time. On

the other hand, our asynchronous I/O strategy keeps many

samples in the memory space increasing the memory footprint.

The modern HPC platforms usually have a large amount of

memory space in each node. For instance, each GPU node of

Summit supercomputer at Oak Ridge National Laboratory has

512 GB memory space. The extra memory consumption of

our I/O strategy can be justified in practice, considering such

a rich memory space.

Note that the proposed asynchronous I/O strategy affects

the degree of randomness in data shuffling. Since the groups

of samples are shuffled across the processes, instead of the

individual samples, the degree of randomness is sacrificed
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compared to the global shuffling. At the worst case, if the

number of groups is the same as the number of processes,

the proposed strategy becomes the local shuffling. Several

previous studies explain that the local shuffling does not harm

the regression performance if the ratio of each local data to the

total dataset is large enough [18]–[20]. In this study, we found

that the regression performance is not degraded even when

using an extremely large I/O buffer size such as several GiBs

per process. Especially in large-scale scientific applications, it

is reasonable to assume that the number of training samples

is sufficiently large to have many data groups, and thus the

degree of randomness is not significantly sacrificed by our

I/O strategy. We will further discuss the impact of our I/O

strategy on the regression performance in Section IV-E2.

B. Double-Buffering for I/O Overlap

When training a neural network using mini-batch SGD,

batches of data samples are processed one after another. Thus,

while one mini-batch is being processed, the next mini-batch

can be pre-loaded without having any data dependency. In this

way, the SGD iteration time can be reduced by overlapping

the I/O time with the computation and communication time

in parallel training. TensorFlow, one of the most popular deep

learning software frameworks, also supports data prefetching

feature that enables I/O overlapping. However, if the data

sample size is small, reading one batch at a time may cause

a large number of random small read operations.

We employ double-buffering method to effectively overlap

the I/O operations with the computations, based on the asyn-

chronous I/O strategy described in Section III-A2. First, each

process allocates two I/O buffers of the same size. Then, the

I/O thread of the process monitors how much new data is

stored in the two buffers. If the data in any of them is all

consumed, the I/O thread reads one group of data samples to

fill in the empty buffer. During the training, the I/O thread

keeps asynchronously monitoring and filling in the empty

buffers. The computation thread consumes the data in one

buffer after another. For each mini-batch, each computation

thread reads random M
P samples from the current buffer. Once

all the samples are extracted from one buffer, the computation

thread switches to the other buffer. If both buffers are empty,

the computation thread waits until the I/O thread fills in one

buffer with new data.

Figure 2 presents the described asynchronous double-

buffering for I/O overlapping. Once the computation thread

starts to consume the data from one buffer, it takes BP
M

iterations to use all the data in the buffer. If the I/O buffer size

B is larger than the local batch size M
P , one read operation can

be overlapped with the computations for processing multiple

mini-batches. In the ideal case, if the read operation takes

a shorter amount of time than the computation time for
BP
M iterations, the entire I/O time can be hidden behind the

computation time.

The double buffering method increases the memory foot-

print. While the computation thread consumes the data from

one buffer, the I/O thread fills in the other buffer simulta-

I/O 
thread

Comp 
thread

Process

Buffer 0 Buffer 1

Read a group from disk

Memory copy from 
the I/O buffer to GPU 
memory space

Group k Group k+1

I/O 
thread

Comp 
thread

Process

Buffer 0 Buffer 1

Group k Group k+1

(a) Iteration k (b) Iteration 

Fig. 2. Double-buffering for I/O overlapping. While the I/O thread fills in
one buffer, the computation thread consumes the data in the other buffer. The
producer (I/O thread) asynchronously fills in any buffer that is empty. The
consumer (Computation thread) extracts M

P
random samples from the buffer

as a local mini-batch, and switches the buffer once the current buffer is all
consumed.

neously. So, each process requires to allocate two memory

buffers each of which can hold B data samples. Typically,

it is a common practice for deep learning applications that

one process is assigned on one GPU so that the process fully

utilizes the given GPU resources including the GPU memory

space. In modern HPC systems, each compute node usually

contains 4 ∼ 8 GPUs. Thus, the proposed I/O strategy can

increase the memory footprint by 8B ∼ 16B. We suggest

maximizing the buffer size considering the available memory

space in the system to minimize the number of read operations.

In Section IV, we will analyze the impact of the I/O buffer

size on the overall performance.

C. Implementation Details

Most of the popular deep learning software frameworks such

as TensorFlow or PyTorch support Python programming envi-

ronment. In this work, we also implemented the deep learning

solutions for CosmoFlow and Neuron-Inverter using Tensor-

Flow in Python language. The proposed asynchronous I/O

strategy requires one I/O thread per process. However, Python

threading package does not actually support the instruction-

level parallelism due to the Global Interpreter Lock (GIL). In

order to avoid such a limitation, we used Python multiprocess-
ing package that implements the shared-memory programming

model using processes. At the initialization time, each MPI

process creates a ‘thread’ using multiprocessing package and

two memory buffers shared between them. The main thread

extracts mini-batches from the shared memory buffers while

the child thread asynchronously fills in the two buffers reading

new data samples. Note that our implementation is based

only on the off-the-shelf Python packages without using any

deep learning framework-dependent software features. Our

implementation also does not rely on any hardware-assisted

features.
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TABLE I
FOUR I/O STRATEGIES STUDIED IN THIS PAPER.

Prefetch I/O pattern I/O overlap

TF no one sample per read no

TF-Pre yes one sample per read TF thread pool

Async I/O no multiple samples per read I/O-dedicated thread

Async I/O (DB) yes multiple samples per read I/O-dedicated thread

IV. EVALUATION

In this section, we evaluate the performance of our asyn-

chronous I/O strategy using two real-world scientific applica-

tions: CosmoFlow and Neuron-Inverter. All the experiments

are conducted on two supercomputers that have different

hardware configurations. We report and analyze the scaling

performance of parallel neural network training with a focus

on I/O performance.

A. Experimental Settings

Systems – We use two large-scale HPC platforms for the

experiments, Cori GPU machines and Summit. Cori is a Cray

XC40 supercomputer at National Energy Research Scientific

Computing Center (NERSC). We use Cori GPU machines [21]

that consists of 18 nodes. Each node has two sockets of Intel

Xeon Gold 6148 (Skylake) CPUs, 8 NVIDIA V100 GPUs and

384 GB memory space. Summit is an IBM AC922 system that

consists of 4,608 nodes [22]. Each node has two sockets of

IBM Power9 CPUs, 6 NVIDIA V100 GPUs, and 512 GB

memory space.

Software – On Cori, we used TensorFlow 2.2.0 and

Horovod 0.19.0 for all the experiments. On Summit, we used

IBM Watson Machine Learning Community Edition 1.7.0-3

that supports TensorFlow 2.1.0 and Horovod 0.19.0. For the

I/O-dedicated thread, we used Python multiprocessing pack-

age. The source code of CosmoFlow1 and Neuron-Inverter2

will be released once this paper is accepted.

Applications and Datasets – CosmoFlow [3] is a large-

scale Cosmology parameters regression problem. The training

data for the CosmoFlow are simulated mass distributions of

the Universe for different initial conditions. The 4parE dataset

was generated with four different initial condition parameters

uniformly varied by 10% around their nominal values. The

range of the 4 varied parameters was scaled to be within (-

1,1). The same initial condition Universe was evolved into 4

different redshifts. The Universes were binned into cubes with

512 bins in all 3 dimensions. Then, each Universe is reshaped

into a 12-channel cube of size 128×128×128 by concatenating

subsets of the original cube on the channel dimension. So,

each sample size is 128× 128× 128× 12 and the label size

is 4. The data were packed as 5-dimensional Numpy arrays

of dtype unit16 and stored in HDF5 files. The dataset consists

of 64 HDF5 files in total and each file contains 128 samples.

The overall training data size is ∼ 384 GB.

1https://github.com/NU-CUCIS/tf2-cosmoflow
2https://github.com/NU-CUCIS/tf2-neuroninverter
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Fig. 3. The learning curves of CosmoFlow. The global batch size is 256
and the learning rate is 0.002. We used Adam optimizer and the training
is performed for 100 epochs. Using Mean Squared Error (MSE) metric, the
achieved validation loss is 0.002344.
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Fig. 4. The learning curves of Neuron-Inverter. The global batch size is 32,768
and the learning rate is 0.0005. We used Adam optimizer and the training
is performed for 100 epochs. Using Mean Squared Error (MSE) metric, the
achieved validation loss is 0.028126.

Neuron-Inverter is another regression problem that estimates

the input-output neuronal mechanism [23]. The Ontra2 dataset

consists of 101 files each which contains ∼ 610K data sam-

ples. The input data is neuron spikes measured at 3 different

locations as 1-dimensional time series of size 1600. The output

data is 19 electrical properties (conductances) determined for

different compartments of neuron. So, each sample size is

1600×3 and the corresponding label size is 19. All the samples

from each cell is stored as a single HDF5 file. Given 101

files, we used 64 files for training. Each data point is a 4-byte

floating point numbers and the overall training data size is

∼ 680 GB.

Parallel File System Settings – On Cori, the input files are

stored on Lustre parallel file system. For each file, the stripe

size is set to 1 MB and the stripe count is set to 1. On Summit,

the input files are located on IBM Spectrum Scale parallel file

system called Alpine. Alpine does not enable users to adjust

the stripe settings.

Neural Networks – For CosmoFlow, we used a slightly

modified version of Livermore Big Artificial Neural Network

(LBANN) [24]. The network has 7 3-D convolution layers

followed by 3 fully-connected layers. The overall number of

parameters is 9.4 millions. For Neuron-inverter, we designed

a 1-D CNN that consists of 4 1-D convolution layers followed

by 5 fully-connected layers. The network has 3.2 millions

parameters in total. Both networks are deep and large CNNs

designed to solve the application-specific regression problems.

The detailed model architecture can be found in the open-

source that will be opened once the paper is accepted.
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TABLE II
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON CORI

GPU MACHINES. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

32

TF 46.03 38.33 0.10
TF-Pre 28.91 38.31 0.11

Async I/O 43.18 38.01 0.11
Async I/O (DB) 10.71 37.95 0.10

64

TF 27.65 19.30 0.11
TF-Pre 14.39 19.32 0.12

Async I/O 21.82 19.84 0.12
Async I/O (DB) 4.00 19.13 0.11

32 64

TF

TF
 (P

re
)

As
yn

c 
I/O
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Fig. 5. Strong scaling performance of CosmoFlow on Cori GPU machines.
The timing breakdown shows the exposed I/O time, computation time, and
communication time, separately. The timings are collected and averaged from
3 epochs. The model does not fit to fewer than 32 GPUs. We scale the training
up to the case where each process works on one file.

I/O Strategies – We compare four different I/O strate-

gies that are summarized in Table I. TF is the baseline

that uses tf.data API. It reads one training sample at

a time without data prefetching. This setting exposes the

entire I/O time. TF-Pre uses tf.data API with prefetching

feature. The prefetching is adopted following the suggestions

in TensorFlow official guideline [25]. We used AUTOTUNE
option supported by TensorFlow. Async I/O is the proposed

asynchronous I/O strategy without double buffering. Similarly

to the baseline, all the I/O time is exposed. Async I/O (DB) is

the proposed asynchronous I/O strategy with double buffering.

B. Regression Performance

We first report the regression results achieved with our best-

tuned hyper-parameter settings. Although this paper focuses

on the I/O performance of parallel neural network training,

we present these regression results to provide useful insights

to the deep learning users and the domain scientists.

1) CosmoFlow: We trained LBANN model on 4ParE

dataset for 100 epochs using Adam optimizer. The global

batch size is 256 and the initial learning rate is 0.002. The

learning rate is decayed by a factor of 10 twice, after 50

epochs and 75 epochs. The loss function is Mean Squared

Error (MSE). Figure 3 presents the training loss (left) and the

TABLE III
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON

SUMMIT. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

32

TF 4.12 17.23 0.11
TF-Pre 1.99 18.39 0.10

Async I/O 2.29 18.25 0.10
Async I/O (DB) 0.00 18.73 0.11

64

TF 3.46 9.10 0.14
TF-Pre 1.13 9.59 0.15

Async I/O 1.71 9.60 0.14
Async I/O (DB) 0.00 9.67 0.15
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Fig. 6. Strong scaling performance of CosmoFlow on Summit. The timing
breakdown shows the exposed I/O time, computation time, and communica-
tion time, separately. The timings are collected and averaged across 3 epochs.
The model does not fit to fewer than 32 GPUs. We scale the training up to
the case where each process works on one file.

validation loss (right). With the best-tuned hyper-parameters,

we could achieve the validation loss of 0.002344. Note that we

did not observe any meaningful difference of the regression

performance between the global shuffling and the proposed

I/O strategy (< 0.0005).

2) Neuron-Inverter: We trained the 1-D CNN model we

designed on Ontra dataset for 100 epochs using Adam opti-

mizer. The global batch size is 32,768 and the initial learning

rate is 0.0005. The learning rate is decayed by a factor of 10

twice, after 60 epochs and 90 epochs. Figure 4 presents the

training loss (left) and the validation loss (right). We achieved

the validation loss of 0.028126. Note that, since each file has

different numbers of samples, some processes oversample the

data when they have smaller files than the other processes. So,

the number of processed samples can be slightly larger than

the number of the actual samples.

C. CosmoFlow Scaling Performance

We present the strong scaling performance of CosmoFlow

on Cori and Summit and then analyze the I/O performance.

In all the charts, we report ‘exposed I/O time’ rather than the

total I/O time. Since the I/O operations are asynchronously

performed by a separate thread, the directly measured I/O time
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TABLE IV
THE AVERAGE EPOCH TIMING BREAKDOWN FOR NEURON-INVERTER ON

CORI GPU MACHINES. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

16

TF 53384.49 390.93 4.35
TF-Pre 53100.29 388.48 4.24

Async I/O 199.99 387.28 4.05
Async I/O (DB) 0.00 390.93 4.94

32

TF 25899.36 201.29 2.93
TF-Pre 25703.93 203.42 3.09

Async I/O 113.42 198.82 2.48
Async I/O (DB) 0.00 200.19 3.13

64

TF 13798.48 97.05 1.99
TF-Pre 13664.83 96.05 2.24

Async I/O 77.95 97.13 2.83
Async I/O (DB) 0.00 98.99 2.19
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Fig. 7. Strong scaling performance of Neuron-Inverter on Cori GPU machines.
The y-axis is epoch time in log scale. The timing breakdown shows the
exposed I/O time, computation time, and communication time, separately. The
timings are collected and averaged across 3 epochs. The model does not fit
to fewer than 16 GPUs. The proposed asynchronous I/O strategy dramatically
reduces the I/O time.

may contain unexpected overhead such as context switching

time. So, we measure the waiting time of the main thread

instead and consider it as the exposed I/O time.

1) Cori GPU Nodes: Table II and Figure 5 present the

strong scaling performance of LBANN training on Cori GPU

nodes. Note that the model does not fit to the memory space

when running on fewer than 32 GPUs. Given 64 HDF5

training files, we set the buffer size to 128 samples (a single

file size), and thus the training can scale up to 64 GPUs.

First, we see that TF’s I/O time takes up a larger portion

than the computation time within each epoch. TF-Pre reduces

the exposed I/O time by preloading the data in background,

however, most of the I/O time is still exposed. Async I/O’s I/O

time is slightly shorter than that of TF thanks to the reduced

number of I/O operations. With the double buffering, Async
I/O (DB) effectively reduces the exposed I/O time and achieves

the shortest epoch time among all the I/O strategies. When

using 64 GPUs, Async I/O (DB) shows a significantly reduced

epoch time (23.25 sec) compared to TF-Pre (33.84 sec).

TABLE V
THE AVERAGE EPOCH TIMING BREAKDOWN FOR NEURON-INVERTER ON

SUMMIT. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

16

TF 45677.48 765.38 2.03
TF-Pre 40259.47 777.39 2.00

Async I/O 54.96 764.44 2.13
Async I/O (DB) 0.00 775.94 2.39

32

TF 24499.22 400.33 2.39
TF-Pre 22095.84 403.94 3.39

Async I/O 26.23 399.93 2.16
Async I/O (DB) 0.00 405.01 2.19

64

TF 10820.49 215.59 4.20
TF-Pre 10660.43 217.02 4.03

Async I/O 14.52 215.32 3.95
Async I/O (DB) 0.00 215.30 4.23
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Fig. 8. Strong scaling performance of Neuron-Inverter on Summit. The y-
axis is epoch time in log scale. The timing breakdown shows the exposed I/O
time, computation time, and communication time, separately. The timings are
collected and averaged across 3 epochs. The model does not fit to fewer than
16 GPUs.

2) Summit GPU Nodes: We perform the same CosmoFlow

scaling experiments on Summit. Table III and Figure 6 present

the scaling performance of CosmoFlow on Summit. Overall,

the timing breakdown shows the similar performance results

to that on Cori GPU nodes. Due to the different hardware

configurations and environmental settings, the baseline (TF)

I/O time is much shorter than that on Cori. While TF-Pre hides

only a part of the I/O time behind the computation time, our

proposed I/O strategy hides the entire I/O time and it results

in having near-zero I/O time.

D. Neuron-Inverter Scaling Performance

We also study the I/O performance of Neuron-Inverter

application. Compared to CosmoFlow, Neuron-Inverter dataset

has a significantly smaller sample size. Thus, we can expect

a different impact of I/O strategies on the performance.

1) Cori GPU Nodes: Table IV and Figure 7 present the

scaling performance of Neuron-Inverter on Cori GPU ma-

chines. The model does not fit to fewer than 16 GPUs. Thus,

we present the strong scaling performance from 16 processes
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(GPUs). First of all, the baseline takes an enormous amount

of I/O time compared to the proposed I/O strategy. This

huge difference of I/O time comes from the small random

access pattern. As described in Section III-A1, each mini-

batch consists of random M samples. The training sample

size in Neuron-Inverter dataset is ∼ 19 KB. Given the file

size of 10 GB ∼ 12 GB, reading such a small sample at a

time can cause a significantly expensive I/O cost. Although

TensorFlow’s prefetching feature hides a part of the I/O time

behind the computation time, the total I/O time is several

orders of magnitude larger than the computation time, and

thus the I/O overlap does not make a meaningful difference.

In contrast, our proposed I/O strategy reads a large number

of samples at once significantly reducing the number of I/O

operations. In this experiment, we used the buffer size as

the largest file size among all the given input files. So, each

read operation prefetches about 610K training samples into

the memory space at once. We see that such a coarse-grained

I/O operations considerably reduce the total I/O time.

2) Summit GPU Nodes: Neuron-Inverter scaling perfor-

mance on Summit is similar to that on Cori. Table V and

Figure 8 present the performance results on Summit. The

timing breakdown shows that the I/O time takes up most of

the epoch time in baseine (TF). Since the I/O time is several

orders of magitude longer than the computation time, the

TensorFlow’s prefetching feature does not make a meaningful

difference. In contrast, our proposed asynchronous I/O strategy

dramatically reduces the I/O time and the double buffering

method hides it behind the computation time. So, Async I/O
(DB) shows near-zero exposed I/O time. One notable thing is

that the computation time is longer than that on Cori. Because

Summit and Cori have different hardware configurations as

well as software packages, the performance cannot directly

compared between them. Remember that the computation time

on Summit was much shorter than that on Cori for Cos-

moFlow, as shown in Table II and III. This result demonstrates

that Summit can provide a better computational power when

each sample size is sufficiently large.

E. Impact of Buffer Size

The proposed asynchronous I/O strategy allows to read more

samples at once as the buffer size increases, and thus the total

number of I/O operations is reduced. Given the same total data

size, a cheaper I/O cost can be expected by performing fewer

I/O operations. We analyze the impact of the I/O buffer size

on both the I/O performance and the regression performance.

1) Impact on I/O Performance: We first report the impact

of the I/O buffer size on the I/O performance for both

applications. Figure 9 presents the impact of the I/O buffer size

on the performance of CosmoFlow. The timing breakdowns are

measured from CosmoFlow running on 64 processes (GPUs)

with different buffer sizes. Since the global batch size is 256,

the minimum buffer size is the local batch size, 4 samples. We

set the buffer size up to 128 samples, which means a single file

is read at once. Figure 10 shows the performance of Neuron-

Inverter with different I/O buffer sizes. The y-axis of Figure 10
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Fig. 9. CosmoFlow timing breakdown comparison with different I/O buffer
sizes. The buffer size shown in x-axis is with respect to the number of
samples. The left and right charts show the performance on Cori and Summit,
respectively. On Cori, the exposed I/O time is effectively reduced when the
buffer size is 128. On Summit, the exposed I/O time is already so small that
there is not much room for improvement.
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Fig. 10. Neuron-inverter timing breakdown comparison with different I/O
buffer sizes. The maximum buffer size is decided by the number of samples
in an input file (∼ 610K). Then, we reduced it by a factor of 10. The left
and right charts show the performance on Cori and Summit, respectively. The
exposed I/O time is dramatically reduced as the buffer size increases. Cori
requires at least the buffer size of 609 to entirely overlap the I/O time while
Summit requires the buffer size of 61. Note that the y-axis is in log scale.

is in log scale. For Neuron-Inverter, the maximum buffer size

is 609486 which is the maximum number of samples in a file.

When reducing the buffer size, we scaled down it by a factor

of 10. In both figures, the left chart shows the performance

measured on Cori GPU nodes and right chart shows that on

Summit.

We can get two insights from Figure 9 and 10. First, the

buffer size should be large enough to minimize the latency

overhead. Especially when the sample size is small, the latency

overhead can cause an extremely expensive I/O cost. The

Neuron-Inverter I/O time is several orders of magnitude larger

than the computation time on both Cori and Summit. However,

such a long I/O time is effectively reduced when the buffer

size is larger than 609 samples (about 11 MiB). Second, if the

I/O buffer is large enough to minimize the latency overhead,

the overlapping plays a key role in improving the scalability.

For example, CosmoFlow shows a minor improvement by

increasing the buffer size on Cori because the sample size

is already so large that the latency overhead does not take

up a large portion of the epoch time. By applying the double

buffering, most of the I/O time could be hidden behind the

computation time and it resulted in achieving a considerably
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reduced epoch time. These experimental results demonstrate

the effectiveness of the proposed asynchronous I/O strategy in

large-scale deep learning applications.

2) Impact on Regression Performance: Recently, Meng et

al. explained the impact of shuffling methods on the conver-

gence rate of SGD training [20]. For non-convex optimization

such as neural network training, the local shuffling does

not harm the convergence rate if the following condition is

satisfied.

S <
N

G
, (1)

where S is the number of epochs, N is the total number

of training samples, and G is the number of non-overlapped

subsets of the training dataset. The number of training epochs

for convergence is mostly affected by the training data, how-

ever, the condition shown above is most likely satisfied in

scientific applications. In our experiments, we found that the

above condition is most likely satisfied in both applications.

For example, when scaling up CosmoFlow using 64 processes,

the number of training samples N is 8192 and the minimum

number of data groups G is 64. So, if the training converges

in fewer than N
G = 128 epochs, the local shuffling is not

expected to degrade the regression performance. We found

that the training loss converges in 80 ∼ 100 epochs with the

appropriate learning rate decay settings. The Neuron-Inverter

also easily satisfies the above condition due to the large

number of training samples. In practice, the above condition

is most likely true especially for the large-scale scientific

applications that have a large amount of experimental data.

F. Comparison with Previous Works

1) TensorFlow Prefetching: We compare our proposed I/O

strategy with TensorFlow’s prefetching feature (TF-Pre) in all

the experiments. TensorFlow’s tf.data.Dataset module

calls a user-defined callback function to read each mini-batch.

The callback function is usually implemented such that it

reads one training sample at a time. Given a batch size of

B, the callback function is internally called B times to build

up a single mini-batch. The prefetching feature enables to

pre-load multiple samples or even mini-batches in advance.

Although such a data prefetching enables to overlap the I/O

with the computations, the I/O callback function reads one

random sample at a time, and it results in having an expen-

sive many small random-access pattern. So, this comparison

demonstrates that the I/O granularity is important in data-

intensive deep learning applications.

2) DeepIO: Zhu et al. proposed to employ double buffering

method for overlapping the I/O time with the training time [8]

similarly to our proposed I/O strategy. There are two primary

differences between DeepIO and our I/O strategy.

Data Shuffling – First, the two I/O strategies shuffle the

data samples in a different way. DeepIO globally shuffles the

training samples only within the pre-loaded samples in the

memory buffer. When a remote sample is required, the worker

obtains it using an RDMA read operation. Our approach is

generally applicable to any deep learning applications without

using such a hardware-assisted feature. Our proposed I/O strat-

egy first globally shuffles the contiguous groups of samples,

and then the workers independently read the assigned groups.

Although it causes random access pattern, each group is most

likely large enough to avoid the small random access overhead.

Then, each worker locally shuffles the samples again within its

memory space. Our approach does not cause any extra inter-

process communications.

Data read strategy – Second, it is not clearly explained

in [8] that how the actual read operations are performed. The

principle of our I/O strategy is that we reduce the total I/O

time by merging many small random reads to a single large

contiguous read, and then overlap the large read operation with

multiple SGD iterations. Thus, the efficient read strategy is

critical in our I/O strategy. We discussed how to efficiently

perform I/O operations using a stand-alone I/O-dedicated

thread. Assuming G workers run on each node using G GPUs,

by having an I/O-dedicated thread per process, G CPU cores

within each node will be fully occupied by the I/O threads.

Considering the number of CPU cores in each modern HPC

compute node, e.g., Summit at ORNL supports up to 128

logical cores on one node, such an overhead is most likely

negligible. Our experimental results demonstrate that the I/O-

dedicated thread enables to explicitly overlap the I/O time with

the training time without a significant overhead.

V. CONCLUSION

We proposed an asynchronous I/O strategy designed for

large-scale deep learning applications. Our experimental re-

sults demonstrate the importance of careful adjustment of I/O

granularity. In order to minimize the overall I/O time, each

I/O operation should read a sufficiently large amount of data at

once. We also discussed how to effectively overlap the I/O time

with the training time by employing an I/O-dedicated thread

per process. Without using hardware-assisted features, our

implementation using off-the-shelf software features virtually

eliminated the I/O time. Considering the increasing available

memory space in modern HPC systems, communication-based

data shuffling and the corresponding I/O strategy can be an

important future work.

ACKNOWLEDGMENT

This material is based upon work supported in part by

the U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, Scientific Discov-

ery through Advanced Computing (SciDAC) program award

numbers DE-SC0021399 and DE-SC0019358. This work was

supported by the Office of Advanced Scientific Computing

Research, Office of Science, of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231, and also used

resources of the National Energy Research Scientific Com-

puting Center. This research was supported by the Exascale

Computing Project (17-SC-20-SC), a collaborative effort of the

U.S. Department of Energy Office of Science and the National

Nuclear Security Administration. This research used resources

of the Oak Ridge Leadership Computing Facility at the Oak

9
330

Authorized licensed use limited to: Northwestern University. Downloaded on November 01,2022 at 17:45:25 UTC from IEEE Xplore.  Restrictions apply. 



Ridge National Laboratory, which is supported by the Office

of Science of the U.S. Department of Energy under Contract

No. DE-AC05-00OR22725.

REFERENCES

[1] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–11.

[2] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[3] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-
moflow: Using deep learning to learn the universe at scale,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[4] W. Dong, M. Keceli, R. Vescovi, H. Li, C. Adams, E. Jennings,
S. Flender, T. Uram, V. Vishwanath, N. Ferrier et al., “Scaling dis-
tributed training of flood-filling networks on hpc infrastructure for brain
mapping,” in 2019 IEEE/ACM Third Workshop on Deep Learning on
Supercomputers (DLS). IEEE, 2019, pp. 52–61.

[5] S. Pumma, M. Si, W.-c. Feng, and P. Balaji, “Towards scalable deep
learning via i/o analysis and optimization,” in 2017 IEEE 19th In-
ternational Conference on High Performance Computing and Com-
munications; IEEE 15th International Conference on Smart City;
IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2017, pp. 223–230.

[6] ——, “Parallel i/o optimizations for scalable deep learning,” in 2017
IEEE 23rd International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2017, pp. 720–729.

[7] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski,
J. Cazes, and N. Gaffney, “Fanstore: Enabling efficient and scalable i/o
for distributed deep learning,” arXiv preprint arXiv:1809.10799, 2018.

[8] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and
W. Yu, “Entropy-aware i/o pipelining for large-scale deep learning on
hpc systems,” in 2018 IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2018, pp. 145–156.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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