
Improving Scalability of Parallel CNN Training by
Adjusting Mini-Batch Size at Run-Time

Sunwoo Lee∗, Qiao Kang∗, Sandeep Madireddy†, Prasanna Balaprakash†, Ankit Agrawal∗,
Alok Choudhary∗, Richard Archibald‡, and Wei-keng Liao∗

∗Northwestern University
{slz839,qkt561,ankitag,choudhar,wkliao}@eecs.northwestern.edu

†Argonne National Laboratory
{smadireddy,pbalapra}@anl.gov
‡Oak Ridge National Laboratory

archibaldrk@ornl.gov

Abstract—Training Convolutional Neural Network (CNN) is a
computationally intensive task, requiring efficient parallelization
to shorten the execution time. Considering the ever-increasing
size of available training data, the parallelization of CNN
training becomes more important. Data-parallelism, a popular
parallelization strategy that distributes the input data among
compute processes, requires the mini-batch size to be sufficiently
large to achieve a high degree of parallelism. However, training
with large batch size is known to produce a low convergence
accuracy. In image restoration problems, for example, the batch
size is typically tuned to a small value between 16 ∼ 64,
making it challenging to scale up the training. In this paper,
we propose a parallel CNN training strategy that gradually
increases the mini-batch size and learning rate at run-time.
While improving the scalability, this strategy also maintains
the accuracy close to that of the training with a fixed small
batch size. We evaluate the performance of the proposed parallel
CNN training algorithm with image regression and classification
applications using various models and datasets.

Index Terms—Deep Learning, Convolutional Neural Network,
Parallelization, Adaptive Batch Size

I. INTRODUCTION

Deep Convolutional Nerual Network (CNN) has been used
in a variety of applications such as image classification [1],
[2], restoration [3]–[6], object detection [7], [8], and super-
resolution imaging [9]–[11]; While users enjoy its success,
training deep neural networks is, in fact, an extremely com-
putationally intensive task that can take hours or even days
to complete. Considering the ever-increasing size of available
training data, efficient parallelization is crucial to finish the
training in a reasonable amount of time. The most popular
CNN training algorithm is synchronous Stochastic Gradient
Descent (SGD) [12]. The algorithm iteratively calculates gra-
dients of a cost function with respect to the network parameters
from a random subset of training samples (mini-batch). Then,
the parameters are updated using the averaged gradients. In
data-parallel synchronous SGD, each mini-batch is evenly
distributed to all workers and concurrently processed. This par-
allelization strategy exhibits a strong data dependency between
any two consecutive iterations, i.e. iteration (i + 1) cannot
proceed before the completion of iteration i. Without the

possible cross-iteration concurrency, the degree of parallelism
is limited by the number of data samples in a mini-batch. Thus,
increasing mini-batch size becomes an intuitive approach to
employ more workers in the hope of reducing execution time.

Several recent parallelization works presented performance
results scalable up to thousands of nodes using large mini-
batch sizes [13]–[16]. However, most of them also acknowl-
edged that using large batch sizes can result in achieving a
lower validation accuracy. The impact of batch sizes on the
accuracy has been statistically analyzed in [17]–[19]. Figure
1 illustrates such impact using an example of an EDSR [11]
training on the DIV2K super-resolution image dataset [20].
Each learning curve corresponds to mini-batch sizes, ranging
from 16 to 256 images. When the batch size increases, the
training converges more slowly (in the number of epochs) and
achieves a lower validation accuracy. Such similar trends of
learning curves are also shown in [14], [18], [19], [21]–[24].
Owing to this observation, we argue two evaluation principles
below in order to ensure a fair performance comparison among
different neural network training methods.

• Timing comparison is only fair among methods that
produce the same model accuracies or within a small,
tolerable margin.

• The training time should be measured from the beginning
until the accuracy converges to a stable value.

The former argues a fair comparison under the condition of the
same input and output. As shown in Figure 1, B = 128 and
B = 256 give much lower accuracy than smaller B values.
Models produced with less accuracy are usually regarded of
no use to domain scientists. The latter describes the unique
characteristics of neural networks whose training process is not
considered completed until the convergence condition is met.
This argument stems from our study of recent parallelization
works that measured the time up to a fixed number of epochs
to represent the performance of a training method when
calculating the speedups and comparing against other methods.
In this paper, we present our experimental results and analysis
by following the above two principles.

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 830

26.00

27.00

28.00

29.00

30.00

31.00

32.00

33.00

34.00

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

V
al

id
at

io
n

 P
SN

R
 (

d
B

)

Number of epochs

B=16, μ=0.0001 (1020 epochs) B=32, μ=0.0002 (1130 epochs)

B=64, μ=0.0004 (1130 epochs) B=128, μ=0.0008 (1190 epochs)

B=256, μ=0.0016 (1340 epochs)

Fig. 1. Learning curves for EDSR training on DIV2K dataset. B is the mini-
batch size, µ is the learning rate, and the numbers shown in brackets are
the number of epochs till model converged. The training terminates when the
validation accuracy has not increased for 50 consecutive epochs. Batch sizes
larger than 64 result in significantly lower accuracy.

We propose a parallel CNN training strategy that adjusts the
mini-batch size during the training. The common practice of
neural network training is to tune the mini-batch size to a small
value that produces the best accuracy. Especially for image
restoration or super-resolution problems, the mini-batch size
is typically tuned to a small value between 16 ∼ 64 [3]–[6],
[9]–[11], which is too small to effectively scale up the parallel
training. Our goal is to improve the degree of parallelism
without a significant loss in validation accuracy. In our design,
the training begins with small batch size and it gradually
increases. To increase the batch size without affecting the
gradient noise scale, we also adjust the learning rate as the
batch size increases. The interval of batch size increase is
adaptively determined based on the ratio of cost reduction
to the distance between the initial parameters and the latest
ones. We also propose to dramatically lower the learning rate
when the training cost is saturated, to keep the generalization
performance from being degraded.

Besides adjusting the mini-batch size and learning rate,
our parallelization strategy also focuses on the overlapping
of communication and computation. In data-parallel trainings,
the locally computed gradients are averaged among all workers
before updating the parameters. We implement the averaging
with MPI all-to-all personalized communication followed by
a local summation and an MPI allgather communication. By
having two separate communications, not only the backprop-
agation but also the feed-forward computations in the next
iteration can overlap the communications.

We evaluate the performance of the proposed methods with
image regression and classification tasks on the KNL nodes
of Cori supercomputer at NERSC. For image regression ex-
periments, we train Enhanced Deep Super-Resolution (EDSR)
[11] on DIV2K [20] and Phantom [25] datasets and compare
the performance among various training methods. For image
classification experiments, we train ResNet20 [1] on Cifar10
which is one of the most popular benchmark dataset. The
DIV2K training with the best-tuned batch size 16 scales up to
16 KNL nodes (1,088 cores) only achieving 9.54 speedup. The

Phantom training with the best-tuned batch size 16 achieves
a speedup of 5.64. Our proposed training strategy increases
the batch size up to 256 during the training and the parallel
training achieves a speedup of 81.71 using up to 256 KNL
nodes (17,408 cores) while maintaining the similar validation
accuracy to that of the training with the best-tuned batch
size. The Cifar10 training with the best-tuned batch size 128
achieves a speedup of 3.49 only due to the high ratio of
communication to computation. Our proposed training strategy
successfully increases the batch size up to 2048 and the
training is scaled up to 256 nodes achieving a speedup of
64.64. The classification accuracy difference is lower than 1%.

II. BACKGROUND

A. Convolutional Neural Network

CNN is a type of artificial neural network that contains
convolution layers [26]. The convolution layers have a connec-
tion pattern such that each neuron is connected to a subset of
neurons at the previous layer. Such connection pattern enables
exploitation of spatially-local correlation in the input data.
Each convolution layer can be followed by a pooling layer
depending on the model architecture.

Recently, residual network has been proposed which has
connections between non-adjacent layers [1]. The non-adjacent
connection is called ‘residual connection’. The residual con-
nection makes each layer compute the output using data from
not only the neighboring layer but also the non-adjacent layers
so that it can effectively tackle the problem of vanishing
gradient [27]. The residual networks have been popularly used
for a variety of applications [1], [2], [9]–[11], [14], [16].

B. Mini-Batch Training

The batching method has been widely used for neural
network training. The batching algorithm stochastically ap-
proximates the gradients by computing them from a random
subset of training samples instead of the entire dataset. This
approach has shown superior results than other approaches and
is widely used for neural network trainings [27].

The batching approach causes a data dependency of the
model parameters across iterations. Each mini-batch can be
processed only after the parameters are updated using the
previous mini-batch. Therefore, the maximum workload that
can be parallelized is a single iteration for processing a
mini-batch. Unfortunately, the common practice of training
is to fix the batch size to a small value which gives the
best convergence rate. For example, the batch size for image
classification is usually fixed to 128 ∼ 256 during the training
[1], [21], [28]. The image regression applications also use a
fixed small batch size between 16 ∼ 64 [3]–[6], [9]–[11]. Such
small batch sizes make it challenging to scale up the training.

III. CNN TRAINING WITH ADAPTIVE BATCH SIZE AND
LEARNING RATE

In this section, we discuss the problems in large batch
training and our solutions to them. We begin with describing
the impact of the large batch size on the training result as

831

well as the potential problems. Then, we present our training
strategy which addresses the described problems by adaptively
adjusting the batch size and learning rate at run-time.

A. Impact of Batch Size on Model Accuracy

In this paper, we consider minimization problems of the
form

F (w) =
1

N

N∑
i=1

f(w, xi), (1)

where N is the number of training samples, w is the model
parameters, xi is the ith training sample, and f is the cost
function of w and x.

Mini-batch SGD computes the gradients from a random
subset of training samples (which is called mini-batch). The
stochastic gradients can be considered as a random variable
with mean of ∇F (w). Based on Central Limit Theorem, the
variance of the random variable is inversely proportional to
the mini-batch size [29]. If the variance is large, the gradients
can be considered as noisy. Smith et al. analyzed the impact
of the batch size on the gradient noise scale [17]. The noise
scale describes the correlation between the batch size and the
random fluctuation of SGD dynamics. For SGD, the noise
scale is approximated by the following equation under the
assumption of N � B.

g ≈ µN
B

(2)

This analysis shows that, when using a large batch size,
the learning rate should be proportionally increased to have
the same noise scale. Their experimental results demonstrate
that the analysis can be applied to variants of SGD such as
momentum SGD and Adam [30]. Goyal et al. proposed ‘linear
scaling rule’ in [21] that can be explained by this analysis.
The authors empirically showed that large batch sizes can
be used for ImageNet classification when the learning rate
is proportionally increased. Hoffer et al. have proposed ‘root
scaling rule’ in [31]. The authors argue that the variance of
the stochastic gradients is proportional to µ2

B . Their statistical
analysis is that the variance can stay the same when the
learning rate is proportional to the square root of the batch
size as follows.

µ ∝
√
B (3)

Recall that the stochastic gradient is considered as a random
variable with mean of ∇F (w). By making the variance stay
the same, one can expect the similar convergence rate.

Although these two works have derived different update
rules, they provide a common insight that the learning rate
should be increased when using a large batch size. In practice,
the gradients should be sufficiently noisy to achieve a good
accuracy [17], [18], [29]. Especially, in non-convex problems
such as neural network trainings, the noisy gradients help
the model avoid falling into a sharp minima which poorly
generalizes to the test dataset.

B. Impact of Batch Size on Parallel Performance

When using the data parallelism strategy, the degree of
parallelism depends on the problem size that can be partitioned
among all the available processes. In the case of CNN training,
it is the mini-batch size, as the minimum indivisible unit of
workload that can be assigned to a process is a single training
sample. Data parallelism partitions the samples in each mini-
batch evenly among all the processes. The highest degree of
parallelism is thus B. Therefore, larger mini-batch size enables
a parallel algorithm to run on more processes.

Using a large batch size can also reduce the communication
cost per epoch. Recall the communication for each batch is to
average the gradients across all the processes. Given a network,
the number of model parameters is independent from the batch
size. In other words, the communication amount for averaging
the gradients is not affected by the batch size. However,
the number of communications is equal to the number of
mini-batches in each epoch, N/B. Increasing the value B
effectively reduces the value of N/B.

In terms of computation, the amount of parameter updates
per epoch iteration is also reduced when using a large batch
size. Given N training samples, the number of parameter
updates per epoch is N

B , where B is the batch size. Since
each parameter update takes the same amount of computation,
increasing B proportionally reduces the number of updates.

C. Problems in Training with Large Batch Size

In this paper, we focus on two problems that can be
observed in large batch trainings.

• The training cost F (w) is not effectively reduced yielding
a poor convergence accuracy.

• The model easily loses generalization performance.
First, the large batch size causes a low variance of the
stochastic gradients and SGD quickly converges providing a
low convergence accuracy. This problem can be alleviated with
warm-up techniques such that the training starts with a small
learning rate and then increases it after a pre-defined number
of epochs. However, if the batch size is larger than a certain
problem-dependent threshold, the cost is still not effectively
reduced [21], [22]. Second, it is already known that large batch
sizes can make the model lose the generalization performance
[18], [23]. In other words, the large batch training tends to
over-fit the model so that the cost function is well minimized
while providing a low validation accuracy.

We address these two problems by adjusting hyper-
parameters during training. In the following subsections, we
discuss how to address the described problems with adaptive
batch size and learning rate control methods.

D. Adaptive Batch Size Control

The main idea of our training strategy is to begin the training
with a small batch size Bs and gradually increase the batch
size during the training. As the batch size increases, we also
increase the learning rate at run-time to minimize the impact
of the increased batch size on the gradient noise scale. The

832

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

θ

Number of epochs

b=128

b=512

b=2048

0.00

0.50

1.00

1.50

2.00

2.50

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

Tr
ai

n
in

g
co

st
 (

so
ft

m
ax

)

Number of epochs

b=128, validation acc=91.51%

b=512, validation acc=91.15%

b=2048, validation acc= 41.74%

Fig. 2. The training cost curves (left) and θ curves (right) for ResNet20
training on Cifar10 datasets. All three batch sizes achieve almost the same
training cost after 140 epochs. However, higher the θ curve, lower the
validation accuracy. This result demonstrates that θ roughly shows how sharp
the minimizer is. Note that the high θ at the beginning of ‘b=2048’ curve is
due to the learning rate warmup.

batch size and learning rate are adjusted after every K epochs
until the batch size reaches the maximum size Bm.

The small batch size at the early training epochs helps
rapidly lower the training cost. So, K should be sufficiently
large to effectively minimize the cost function. On the other
hand, a large K indicates that the degree of parallelism is
limited for more epochs due to the slow batch size increase.
Our training algorithm aims to find the smallest K that
effectively reduces the training cost.

We define a practical metric θ for estimating the sharpness
of the minimizer.

θi =
F (w0)− F (wi)
‖w0 − wi‖

, (4)

where w0 is the initial parameters. This metric shows the
ratio of the cost reduction to the distance between the initial
parameters and the latest ones. We can roughly estimate how
sharp the current minimizer is by checking θ. Given a training
cost F (wi), lower θ means the parameters have more moved
to achieve the same cost reduction. Figure 2 shows the training
cost curves (left) and the θ curves (right) of ResNet-20 training
on Cifar10 dataset with varying batch sizes. Even though all
the batch sizes achieve almost the same training cost after 140
epochs, the validation accuracy varies significatnly. We clearly
see that higher the θ curve, lower the validation accuracy. This
result demonstrates that θ can be considered as an indirect
metric for measuring the sharpness of the minimizer.

We increase the batch size after the θ curve peaks so that
the cost is sufficiently reduced before the batch size starts
to increase. For example, in Figure 2, the batch size of 128
shows the peak θ at 5th epoch. So, we set K = 5 so that
the batch size increases after every 5 epochs. We also see that
the θ curve for a large batch size peaks later than that of the
smaller batch sizes. So, by increasing the batch size gradually
after every K epochs, we can expect the batch size increases
after the θ curve of each batch size has already peaked. Such
careful adjustments also help avoid the cost fluctuation caused
by the increased learning rate.

Algorithm 1 is a CNN training algorithm with the proposed
adaptive batch size method. The algorithm iteratively traverses

Algorithm 1 SGD with Increasing Batch Size. (E: the number
of epochs, N : the number of training samples, w0: initial
model parameters, µ0: initial learning rate, Bs: the starting
batch size, Bm: the maximum batch size, f : the cost function)

1: w ← w0, B ← Bs, µ← µ0, n← 1,K ←∞
2: while stop condition is not met do
3: for i← 1 · · · NB do
4: B ← ith mini-batch of size B.
5: ∇w ← Compute Gradient(f , B, w).
6: Update w using ∇w.
7: if K is ∞ then
8: Compute θ using Eq. 4.
9: if θ is not changed more than 10%, then

10: K ← n.
11: if (n mod K) = 0 and B < Bm then
12: Increase both batch size B and learning rate µ
13: Increment n by 1

over all the training samples until the stop condition is satis-
fied. Typically, the training stops when either the parameters
are not further adjusted due to the small gradients or a target
accuracy is achieved. For each mini-batch B, the gradients of
a cost function f are computed with respect to the parameters
at line 5. The parameters are updated using the averaged
gradients at line 6. The θ is monitored and K is determined
when θ starts to be saturated at line 7 ∼ 10. In this study, we
consider θ is saturated if it is changed less than 10%.

When increasing the batch size and learning rate at line 12,
based on the statistical analysis in [17], we adjust the batch
size and learning rate together with a same factor to make the
gradient noise scale stay the same. To force the convergence
of SGD, we lower the gradient noise scale by decaying the
learning rate once the training cost is saturated.

The batch size can be increased to a certain problem-
dependent threshold without affecting the accuracy [18], [21].
For example, it has been shown that, the batch size for
ImageNet classification can be increased to 4096 ∼ 8192
without affecting the accuracy [21]. We call this batch size
‘maximum stable batch size’. By setting Bs to the maximum
stable batch size, we can significantly improve the degree of
parallelism. In practice, the maximum stable batch size can
be easily found by comparing l2-norm of the gradients among
batch sizes. A sufficient condition for gradients to be a descent
direction with respect to the parameters is as follows [29].

‖∇w −∇F (w)‖ < ‖∇w‖

Note that the expected value of the left-hand side of the above
inequality is the variance of the gradients [18]. Assuming the
above condition is satisfied at most of the iterations, if two
batch sizes give a similar l2-norm of the averaged gradients, it
implies they have a similar maximum allowed variance of the
gradients and they likely have a similar convergence property.
In the later discussion, we assume Bs is set to the maximum
stable batch size found by the described method.

833

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

1
0

2

1
0

5

1
0

8

1
1

1

1
1

4

1
1

7

1
2

0

1
2

3

1
2

6

1
2

9

1
3

2

1
3

5

1
3

8

θ

Number of epochs

b=128

b=512

b=2048

adaptive (128 ~ 2048)

Fig. 3. The ratio of cost reduction to the distance between the initial
parameters and the current ones, θ, for ResNet20 training on Cifar10 datasets.
The proposed adaptive learning rate method keeps θ curve from being
increased after the first learning rate decay step at 80th epoch.

E. Adaptive Learning Rate Control

In Algorithm 1, the batch size increases to Bm most likely
before the training loss is saturated. If the cost is minimized
using such a large batch size, the model is easily attracted to
a sharp minimizer. The generalization problem of large batch
training has been already observed in many previous works
[18], [23], [24].

To alleviate such effect, we intentionally lower the cost
reduction speed after the first training cost saturation by
dramatically lowering the learning rate. Once the training cost
is saturated, one can decay the learning rate to further lower
the cost. The decayed learning rate enables to fine-tune the
parameters rather than exploring the parameter space, so that
it further lowers the training cost and ends up converging into
a minima. We consider step-wise learning rate decay with a
decay factor β. Once the training cost is saturated, we scale
down the learning rate to the initial learning rate µ0 first and
then multiply it by β. So, the effective learning rate decay
factor becomes Bs

Bm
β for the first decay step. For the later

decay steps, we use the fixed decay factor β only.
When the learning rate decays, as shown in Equation 2,

we can expect a faster convergence rate due to the lower
noise scale of the gradients. In our training algorithm, since
the batch size has been increased to Bm, the variance of the
gradients is lower than that of the small batch training. So,
the model will rapidly converge to a minima which has a poor
training cost. However, we found that such fast convergence
enables to maintain the generalization performance even using
the large batch size. Figure 3 shows the θ curves for ResNet-
20 training on Cifar10 dataset after the first saturation of
training cost. We see that θ of our proposed method does
not significantly increase after the first learning rate decay
step, while the other curves commonly increase. Note that our
proposed method achieves 90.78% validation accuracy using
up to 2048 batch size while the traditional SGD with the same
batch size achieves 46.29% after 140 epochs.

IV. PARALLEL TRAINING WITH ADAPTIVE BATCH SIZE

Our design is based on the data parallelism that distributes
data among processes while keeping the model parameters

duplicated. Since the minimum, indivisible data unit that can
be assigned to each process is a training sample, for instance
an image, we distribute the samples in each mini-batch evenly
among all the processes. In this case, the maximum number
of processes that can participate in the training is bounded by
the number of samples in each mini-batch.

A. Data Parallelism with Increasing Batch Size

Our proposed training algorithm increases the batch size
during the training. There are two possible design choices of
parallelization. The first is to employ the number of processes
equal to Bs, the starting batch size, so that the number of
local training samples per iteration increases as the batch size
increases. In this way, the number of inter-process communi-
cations for averaging gradients per epoch decreases and it ends
up having a higher scaling efficiency. The second option is to
start the training with Bs active processes and increase the
number of processes as the batch size increases. This design
choice exploits the improved degree of parallelism. In this
work, we chose the second option to employ as many workers
as possible and focus on improving the scaling efficiency by
overlapping the communications with the computations.

B. Overlap of Communication and Computation

In data parallel trainings, at the end of each iteration,
the local gradients are averaged across all processes so that
the model parameters are consistent before entering the next
iteration. Intuitively, the communication for such task can
be simply implemented by an MPI allreduce with the sum
reduction operator. Many existing parallelizations adopt this
approach [13]–[16], [21]. However, by breaking MPI allreduce
into MPI all-to-all and allgather, we can achieve a better
overlapping effect for averaging the gradients.

We divide the gradient averaging operations among pro-
cesses, so they can be performed in parallel. In other words,
each process is responsible to calculate the averages for 1/P
of gradients. The local gradients are first redistributed among
processes using an MPI all-to-all communication, so each
process ends up receiving P subsets of local gradients of size
G
P each, where G is the number of gradients in the layer and
P is the number of processes. Once the remote gradients are
received, the P gradient subsets are element-wisely averaged
into a global gradient subset of size G

P . The updated gradients
are then distributed among all the processes using an MPI
allgather communication. At the end, all processes obtain the
same globally averaged gradients.

Breaking the allreduce into an all-to-all and an allgather has
the following advantages. For a given layer k, its all-to-all can
be overlapped with the computation on calculating gradients
for layers (k−1) · · · 1 in the back-propagation phase. Once the
gradient sum for layer k is computed, an allgather is initiated,
which can overlap with the computation of activations for
layers 1 · · · (k − 1) in the feed-forward phase of the next
iteration. The allgather also can overlap with the gradient
summation for layers (k + 1) · · ·L, where L is the number
of layers in the network. Because the number of gradients

834

is usually large for deep CNNs, the cost of element-wise
summation is significant enough to provide more room for
communication overlap. In addition, our implmentation uses
the MPI-OpenMP programming model such that each MPI
process parallelizes computations using OpenMP within a
node. So, our approach enables the gradient summation to
employ more compute cores available in each node. If the MPI
allreduce approach were used, the gradients would be summed
by the MPI process on a single core, losing the advantage of
OpenMP multi-threading.

C. Multi-threading Implementation

We allocate one MPI process per compute node and use
OpenMP on each process to utilize all the compute cores
available in a node. For the matrix operations, we use In-
tel MKL library which efficiently utilizes KNL cores. We
employ a POSIX thread per compute node to handle all
the MPI communication calls. By making MPI calls in the
communication-dedicated thread, we explicitly forces the over-
lap of the computation and the communication. The commu-
nication thread makes blocking MPI communication function
calls. MPI standard defines the progress rule for asynchronous
communications, but MPI implementation is free to choose
whether to delay the operations till the complete functions,
such as MPI Wait and MPI Test [32]–[34]. In some MPI
implementations, we found that their asynchronous communi-
cations start only when MPI Wait or MPI Test is called. Due
to this finding, we chose to use a communication-dedicated
thread over asynchronous MPI communications.

For multi-threading management, we use POSIX thread
utilities for communication between the main and commu-
nication threads. Once the gradients are computed at each
layer, the main thread registers a communication request to
a shared queue and sends a signal to the communication
thread. Then, the communication thread receives the signal
and picks a request in a first-come-first-served manner to
perform the communication. Once the communication com-
pletes, the communication thread sends back a signal to the
main thread to notify that the requested communication is
finished. This mechanism is implemented using a pthread
conditional variable and a pthread mutex. Note that contention
to the mutex lock may only occur between the main and
communication thread, without any OpenMP threads involved.
To avoid the context switching and possible cold cache for the
communication thread, we pin the communication thread on a
physical core to prevent it from migrating to a different core.

V. RELATED WORKS

Recently, a few studies have shown that a large batch
size can be used for classification tasks without much loss
in accuracy [14], [16], [21], [22]. Layer-wise Adaptive Rate
Scaling (LARS) proposed in [22] adjusts the learning rate in
a layer-wise way based on the magnitude of the gradients.
Our proposed training strategy can be applied to the training
with LARS independently. In [22], the authors proposed a

parameter update rule based on momentum SGD. Our pro-
posed method does not affect the parameter update rule. By
applying LARS at line 6 in Algorithm 1, our training strategy
and LARS can be employed together without affecting each
other. Therefore, when the training with LARS yields a low
accuracy because of the batch size larger than the problem-
dependent threshold, our proposed method can be employed
and a higher accuracy can be expected.

Adaptive batch size approaches have also been proposed
in [17], [23], [29]. However, these adaptive batch methods
commonly control the gradient noise scale by adjusting batch
size. In other words, the small batch size should be used for
a sufficient number of epochs to produce a good accuracy
and it significantly lowers the degree of parallelism. In [35],
the authors adjust the batch size and learning rate together to
increase the batch size without accuracy loss. However, their
approach adjusts them based on a pre-defined schedule which
should be tuned by users, making it less practical.

VI. PERFORMANCE EVALUATION

We evaluate the proposed parallel CNN training strategy
using two image regression applications and a popular clas-
sification benchmark. We use EDSR [11] for image super-
resolution with DIV2K [20] dataset and image restoration with
Phantom [25] dataset. DIV2K is dataset from NTIRE2017
Super-Resolution Challenge [20], which contains 800 high-
quality 2K resolution pictures. Phantom is a randomized
version of the classical Shepp-Logan phantom [25], where
orientation, shape and size of each of the ten ellipsoids are
randomized. Phantom has 1600 training images and the size
of each image is 256 × 256. For classification experiments,
we use ResNet20 [1] and Cifar10 dataset. Cifar10 has 50,000
3-channel training images and each image size is 32× 32.

Our experiments were carried out on Cori, a Cray XC40
supercomputer at National Energy Research Scientific Com-
puting Center (NERSC). Each compute node contains an Intel
Xeon Phi Processor 7250 that has 68 cores with support for
4 hardware threads each (maximum 272 threads per node).
AVX-512 vector pipelines with a hardware vector length of
512 bits are available at each node. The system has the Cray
Aries high-speed interconnections with ‘dragonfly’ topology.

We compare the performance of our proposed training
algorithm with three different training methods. First, we
compare our training algorithm with the best-tuned fixed batch
size training. Second, as a representative fixed large batch size
method, we compare our training algorithm with the linear
scaling rule in [21]. Finally, we also compare with the adaptive
batch size approach proposed in [17], [35]. The authors in
[17] proposed to swap the learning rate decay schedule and
the batch size schedule. Similarly, the authors in [35] used a
pre-defined schedule for increasing the batch size.

A. Image Regression Experiments

Super-resolution is one of the classic computer vision prob-
lems, which aims to recover high-resolution images from low-
resolution images [3]–[6]. Recently, many CNNs have been

835

TABLE I
TRAINING CONFIGURATIONS FOR DIV2K TRAINING

configurations batch size (b) learning rate (µ) warmup
best batch size 16 0.0001 -

linear scaling rule 256 0.0016 gradual (5 epochs)
fixed µ, adaptive b 64 ∼ 256 0.0004 ∼ 0.0016 -
Proposed method 64 ∼ 256 0.0004 ∼ 0.0016 -

23.00

25.00

27.00

29.00

31.00

33.00

35.00

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

V
al

id
at

io
n

 P
SN

R
 (

d
B

)

Number of epochs

Fixed best batch size (B=16, μ=0.0001, 1020 epochs)
Fixed large batch size (B=256, μ=0.0016, 1340 epochs)
Fixed learning rate (B=64, 128, 256, μ=0.0004, 1100 epochs)
Proposed (Bs=64, Bm=256, K=10, 1140 epochs)

Fig. 4. Comparison of learning curves of EDSR training on DIV2K dataset
among various training strategies. The proposed training method achieves an
accuracy almost the same as that of the best-tuned fixed-size method.

designed for super-resolution, such as VDSR [9], DRRN [10],
and EDSR [11]. Image restoration is another representative
image regression problem which aims to recover original
images from noisy images. Many existing works use CNNs
for image denoising or compression artifact removal [3]–[6].
As we mentioned earlier, these applications typically use a
small batch size between 16 ∼ 64 that gives the best accuracy.
So, considering the ever-increasing available data size, it is
crucial to improve the degree of parallelism by enabling the
large batch size without a significant loss in accuracy.

We compare the proposed training algorithm with the same
three other training methods. Table I and Table II show
the training configurations for super-resolution and image
restoration experiments, respectively. We use Adam for both
applications. All the hyper-parameters were set to the same
values as used in [11]. We use Peak Signal-to-Noise Ratio
(PSNR) as the accuracy metric. PSNR measures the degree of
similarity of the estimated image to the original image.

When adjusting the batch size and the learning rate in
Algorithm 1 at line 12, we double them together after every
K epochs because such slow increment prevents the training
from diverging. Note that different increasing factors can be
applied to the batch size and the learning rate such as root
scaling rule depending on the problem.

For the super-resolution experiments, we randomly extract
a 48 × 48 patch from each training image to generate mini-
batches. The stop condition of the training is when the
validation PSNR is not increased more than 0.1 dB for 50
consecutive epochs. The left chart in Figure 6 shows the
DIV2K θ curve in the first 15 epochs. The θ peaks between
9th ∼ 10th epoch. We use K = 10 for our proposed adaptive
batch size method. We also set Bs = 64 since the batch

TABLE II
TRAINING CONFIGURATIONS FOR PHANTOM TRAINING

configurations batch size (b) learning rate (µ) warmup
best batch size 16 0.0001 -

linear scaling rule 128 0.0008 gradual (5 epochs)
fixed µ, adaptive b 32 ∼ 128 0.0002 ∼ 0.0008 -
Proposed method 32 ∼ 128 0.0002 ∼ 0.0008 -

33.00

38.00

43.00

48.00

53.00

58.00

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

1
3

9
0

1
4

5
0

V
al

id
at

io
n

 P
SN

R
 (

d
B

)

Number of epochs

Fixed best batch size (B=16, μ=0.0001, 930 epochs)
Fixed large batch size (B=128, μ=0.0008, 1390 epohs)
Fixed learning rate (B=32, 64, 128, μ=0.0002, 1270 epohs)
Proposed (Bs=32, Bm=128, K=60, 1130 epochs)

Fig. 5. Comparison of learning curves of EDSR training on Phantom dataset
among various training strategies. The proposed training method achieves an
accuracy comparable to the best-tuned fixed-size method, i.e. using B = 16.

size larger than 64 shows a significantly lower l2-norm. The
number of DIV2K training images is 800 and 256 is the
maximum power of 2 which allows more than one parameter
update per epoch. So, we set Bm = 256.

Figure 4 compares the DIV2K learning curves among the
four training methods whose configurations are given in Table
I. The training with our method converges in 1100 epochs
achieving a PSNR of 33.49 dB. The fixed best batch size
training converges in 1020 epochs and achieves a PSNR of
33.59 dB while the large batch size training with linear scaling
rule converges in 1340 epochs achieving a PSNR of 31.35 dB.
The adaptive batch method with a fixed learning rate converges
in 1140 epochs achieving a PSNR of 33.51 dB. Note that we
calculate 1-crop validation PSNR during the training due to
the significant evaluation time. So, the results can be slightly
different from reported in [11].

For image restoration experiments, we use a modified EDSR
which has 16 residual blocks and 32 × 32 input data size.
Figure 5 compares Phantom dataset validation accuracy among
all the training methods whose configurations are given in
Table II. We found that the maximum stable batch size, Bs for
Phantom is 32. The right chart in Figure 6 shows that θ peaks
between 55th ∼ 65th epoch (K = 60). Note that the training
with the linear scaling rule failed to converge in a reasonable
number of epochs when the batch size is larger than 128. So,
to compare with other methods, we also set Bm = 128.

Our training strategy achieves a PSNR of 52.47 dB in
1130 epochs. The best-tuned batch size training converges
in 930 epochs achieving a PSNR of 52.47 dB and the large
batch size training with linear scaling rule converges in 1390
epochs achieving a PSNR of 49.84 dB. The adaptive batch
size with a fixed learning rate training achieves a PSNR

836

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ

Number of epochs

B=16
B=32
B=64
B=128
B=256

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10 20 30 40 50 60 70 80 90 100

θ

Number of epochs

B=16
B=32
B=64
B=128
B=256

Fig. 6. The θ curves with varying batch sizes for EDSR training on DIV2K
(left) and a variant of EDSR training on Phantom (right). For DIV2K, we
chose Bs = 64 and its θ peaks at 9th ∼ 10th epoch. For Phantom, we
chose Bs = 32 and its θ peaks at 55th ∼ 65th epoch.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Tr
ai

n
in

g
ti

m
e

(h
o

u
rs

)

Number of nodes (cores)

Fixed batch size
(B=16)

Proposed method
(Bs=64, Bm=256, K=10)

Fixed learning rate
(B=64, 128, 256)

1

2

4

8

16

32

64

128

256

Sp
ee

d
u

p

Number of nodes (cores)

Linear

Fixed batch size
(B=16)
Proposed method
(Bs=64, Bm=256, K=10)
Fixed learning rate
(B=64, 128, 256)

Fig. 7. Strong scaling of EDSR training on DIV2K dataset: end-to-end
training time (left) and speedup (right). We used Bs = 64, Bm = 256,
and K = 10. Our method can use more compute nodes beyond 16 and up to
256, while ‘fixed best batch size’ method can only run up to 16 nodes, limited
by the batch size of 16. ‘fixed learning rate’ has a longer execution time than
our method due to the long period of training with small batch sizes. All the
three trainings achieve a similar accuracy (33.59 dB / 33.49 dB / 33.51 dB).

of 52.51 dB in 1270 epochs. In both super-resolution and
image restoration experiments, our proposed training strategy
provides comparable convergence accuracies to the best-tuned
batch size training. The performance results demonstrate that
the proposed adaptive batch size and learning rate method
allows to use a large batch size for as many epochs as possible
without a significant loss in generalization performance.

We also present the strong scaling performance to verify the
effectiveness of the proposed methods. Note that we do not
compare the performance against linear scaling rule methods,
as they yield a significantly lower accuracy. We consider a
direct comparison as unfair between two methods that produce
a significantly different accuracy. Figure 7 shows the end-to-
end training time (left) and the speedup (right) of EDSR train-
ing on DIV2K dataset. The best batch size training achieves
a speedup of 9.54 using 16 nodes. The adaptive batch size
with a fixed learning rate achieves a speedup of 71.40 using
up to 256 nodes. Our proposed method achieves a maximum
of speedup 81.71 and can run on up to 256 nodes. Figure
8 shows the performance of the modified version of EDSR
training on Phantom dataset. The best batch size training
achieves a speedup of 5.64 using 16 nodes. The adaptive batch
size with a fixed learning rate achieves a speedup of 30.79
using 128 nodes. Our proposed method achieves a maximum

0.0

2.0

4.0

6.0

8.0

10.0

12.0

8(544) 16(1088) 32(2176) 64(4352) 128(8704)

Tr
ai

n
in

g
ti

m
e

(h
o

u
rs

)

Number of cores

Fixed batch size
(B=16)

Proposed method
(Bs=32, Bm=128, K=60)

Fixed learning rate
(B=32, 64, 128)

1

2

4

8

16

32

64

128

Sp
ee

d
u

p

Number of nodes (cores)

Linear

Fixed batch size
(B=16)
Proposed method
(Bs=32, Bm=128, K=60)
Fixed learning rate
(B=32, 64, 128)

Fig. 8. Strong scaling of EDSR training on Phantom dataset: end-to-end
training time (left) and speedup (right). For our proposed method, we used
Bs = 32, Bm = 128, and K = 60. Our method can use more compute
nodes beyond 16 and up to 128, while ‘fixed best batch size’ method can only
run on up to 16 nodes, limited by the batch size of 16. All the three trainings
achieve a similar accuracy (52.47 dB / 52.47 dB / 52.51 dB).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25

0.5

1

2

4

8

16 (1088) 32 (2176) 64 (4352) 128 (8704) 256 (17408)

P
er

ce
n

ta
ge

 o
f

co
m

p
 (

B
 <

 B
m

)

En
d

-t
o

-e
n

d
 t

ra
in

in
g

ti
m

e
(h

o
u

rs
)

Number of nodes (cores)

comp (B < Bm)

linear

measured computation time

0

1

2

3

4

5

6

7

16 (1088) 32 (2176) 64 (4352) 128 (8704) 256 (17408)

Ex
ec

u
ti

o
n

 t
im

e
(h

o
u

rs
)

Number of nodes (cores)

comp (B < Bm)

comp (B = Bm)

comm

blocked

Fig. 9. The left is the computation time of EDSR training and the percentages
of process underutilized time. The right is the training timing breakdown.
These results correspond to the training shown in Figure 7.

of speedup 42.96 using 128 nodes. The experimental results
clearly show the advantage of being able to increase the batch
size. Compared to the adaptive batch size with a fixed learning
rate training, our method enables to use small batch sizes for
fewer epochs, which results in achieving a shorter training
time as well as a higher speedup.

B. Performance Analysis

Communication Cost Analysis — The main reason for
the speedup saturation is due to the increasing ‘blocked’ time,
as shown in Figure 9. In a typical strong scaling result,
the communication cost becomes higher and the per-process
computation reduces, as the number of processes increases.
When the communication is not entirely overlapped with the
computation, the main thread is blocked until the communica-
tion thread finishes the transfer of data required by the main
thread. For instance, when the number of processes is 128, the
communication time measured at the communication thread,
‘comm’, grows to be similar to the main thread’s computation
time and ‘blocked’ starts to become significant. When the
number of processes increases to 256, such effect becomes
even more significant.

Computation Cost Analysis — Another reason for the
speedup saturation is that the computation time is not linearly
reduced as the number of processes increases. From the right
chart of Figure 9, we observe that the computation time (‘comp
(B = Bm)’) does not linearly decrease starting from 64 nodes.

837

TABLE III
TRAINING CONFIGURATIONS FOR CIFAR10 TRAINING

configurations batch size (b) learning rate (µ) warmup
best batch size 128 0.1 -

linear scaling rule 2048 1.6 gradual (5 epochs)
fixed µ, adaptive b 256 ∼ 2048 0.2 ∼ 1.6 -
Proposed method 256 ∼ 2048 0.2 ∼ 1.6 -

0.00

0.50

1.00

1.50

2.00

2.50

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

Tr
ai

n
in

g
lo

ss

Number of epochs

Fixed best batch size (b=128)

Fixed large batch size (b=2048)

Fixed learning rate (b=256 ~ 2048)

Proposed method (b=256 ~ 2048)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

V
al

id
at

io
n

 a
cc

u
ra

cy
 (

%
)

Number of epochs

Fixed best batch size (b=128)
Fixed large batch size (b=2048)
Fixed learning rate (b=256 ~ 2048)
Proposed method (b=256 ~ 2048)

Fig. 10. Training loss (left) and validation accuracy (right) comparison for
ResNet20 training on Cifar10. The fixed large batch training and the adaptive
batch training with a fixed learning rate well minimize the training loss
while they significantly degrade the validation accuracy. Our proposed method
achieves a comparable accuracy to the best-tuned small batch training.

First, the gradient summation takes a constant amount of time
regardless of the number of processes. When averaging the
gradients, every process sums P gradient subsets and each is
of size G

P . Thus, the computation cost for the summation is
constant regardless of the number of processes. As the number
of processes increases, this computation takes a larger portion
of the total time. Second, when the volume of data assigned on
each process is not large enough, the kernel operations, such
as matrix multiplications, will not fully utilize the computation
power. For example, we found that the activation computation
at a convolution layer of EDSR for one sample takes ∼0.0026
seconds on a single KNL node while the same operation
for two samples takes only ∼0.0038 seconds. It indicates
that the hardware is underutilized when the workload is not
sufficiently large, a well-known effect for KNL CPUs [36],
[37]. Therefore, we suggest to assign each process at least two
training samples per iteration. Third, when the batch size is
smaller than the number of processes, our method replicates
the training on P

B process groups (or equivalently (P − B)
number of processes sitting idle). The left chart of Figure
9 also shows the percentage of computation time before the
training reaches Bm from the end-to-end training time.

C. Image Classification Experiments

To verify that the proposed training method generally works
for various applications, we also perform image classification
experiments. We train ResNet20, one of the most popular deep
CNN models, on Cifar10 dataset. Table III summarizes the
training configurations. We decay the learning rate after 80 and
120 epochs with a factor of 0.1. We found the maximum stable
batch size for Cifar10 is 256 (Bs = 256) and set Bm = 2048
which is the largest power of 2 smaller than 5% of the entire
training samples. For the batch size of 256, θ peaks at 5th

epoch as shown in Figure 2, so we set K = 5. For the

0.00

0.50

1.00

1.50

2.00

2.50

8 (544) 16
(1088)

32
(2176)

64
(4352)

128
(8704)

256
(17408)

Tr
ai

n
in

g
ti

m
e

(h
o

u
rs

)

Number of nodes (cores)

Fixed best batch size (B=128)

Proposed method (Bs=256, Bm=2048, K=5)

Fixed learning rate (B=256~2048, μ=0.2)

1

2

4

8

16

32

64

128

256

Sp
ee

d
u

p

Number of nodes (cores)

Linear
Fixed best batch size (B=128)
Proposed method (Bs=256, Bm=2048, K=5)
Fixed learning rate (B=256~2048, μ=0.2)

Fig. 11. The end-to-end training time (left) of ResNet20 on Cifar10 and
speedup (right) comparison. We stopped scaling when the execution time
increased. The proposed method out performs the others with a large margin.

adaptive batch training with a fixed learning rate, we fixed
the learning rate to 0.2 and doubled the batch size from 256
after every 30 epochs so that the batch size ends up reaching
2048. Figure 10 compare the training cost curves (left) and
the validation accuracy curves (right) among various training
methods. Our algorithm achieves a convergence accuracy
which is < 1% lower than that of the best-tuned small batch
training (91.51%±0.3 and 90.79%±0.2). Both the fixed large
batch training and the adaptive batch training with a fixed
learning rate effectively minimize the cost function, however
they significantly degrade the generalization performance.

The validation accuracy comparison in Figure 10 verifies
that the proposed adaptive batch size and learning rate control
methods effectively increase the batch size without a sig-
nificant loss in accuracy for classification problems as well.
Before the first learning rate decay step, the learning curve
fluctuates due to the increasing learning rate. However, the
validation accuracy increases dramatically after the learning
rate is adjusted at 80th epoch by the proposed method.

Figure 11 presents the strong scaling performance. We
stopped scaling up when the execution time increases. The
training with the best-tuned batch size (128) achieves a
speedup of 3.49 only due to the high ratio of communication to
computation. The adaptive batch training with a fixed learning
rate achieves the maximum speedup of 20.01 on 128 nodes.
Our proposed method achieves a speedup of 64.64 using 256
nodes thanks to the early increase of the batch size.

VII. CONCLUSIONS

In this paper, we proposed a parallel CNN training strategy
with adaptive batch size and learning rate. Our proposed
method adaptively adjusts the batch size based on the esti-
mated sharpness of the minimizer. We also presented a multi-
threaded implementation of data-parallelism which enables to
overlap the communication with computation. Our experimen-
tal results demonstrate that the proposed methods increase
the batch size without a significant accuracy loss so that the
training can scale up using more compute nodes. We believe
studying practical use-cases of the proposed adaptive batch
method in real-world deep learning applications can be an
interesting future work.

838

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) program. This work is also
supported in part by DOE awards DE-SC0014330 and DE-
SC0019358.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[3] C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 576–584, 2015.

[4] P. Svoboda, M. Hradis, D. Barina, and P. Zemcik, “Compression
artifacts removal using convolutional neural networks,” arXiv preprint
arXiv:1605.00366, 2016.

[5] W. Dong, P. Wang, W. Yin, and G. Shi, “Denoising prior driven deep
neural network for image restoration,” IEEE transactions on pattern
analysis and machine intelligence, 2018.

[6] X.-J. Mao, C. Shen, and Y.-B. Yang, “Image restoration using convolu-
tional auto-encoders with symmetric skip connections,” arXiv preprint
arXiv:1606.08921, 2016.

[7] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for
object detection,” in Advances in neural information processing systems,
pp. 2553–2561, 2013.

[8] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement
neural network for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4203–
4212, 2018.

[9] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1646–1654,
2016.

[10] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, p. 5, 2017.

[11] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 136–144, 2017.

[12] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[13] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

[14] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook, et al., “Cosmoflow:
using deep learning to learn the universe at scale,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, p. 65, IEEE Press, 2018.

[15] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov, et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 7, ACM, 2017.

[16] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, et al., “Exascale
deep learning for climate analytics,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, p. 51, IEEE Press, 2018.

[17] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t decay the learning
rate, increase the batch size,” arXiv preprint arXiv:1711.00489, 2017.

[18] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[19] L. Chen, H. Wang, J. Zhao, D. Papailiopoulos, and P. Koutris, “The
effect of network width on the performance of large-batch training,” in
Advances in Neural Information Processing Systems, pp. 9322–9332,
2018.

[20] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim,
S. Son, H. Kim, S. Nah, K. M. Lee, et al., “Ntire 2017 challenge on
single image super-resolution: Methods and results,” in Computer Vision
and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference
on, pp. 1110–1121, IEEE, 2017.

[21] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[22] Y. You, I. Gitman, and B. Ginsburg, “Scaling sgd batch size to 32k for
imagenet training,” arXiv preprint arXiv:1708.03888, 2017.

[23] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and
A. Storkey, “Three factors influencing minima in sgd,” arXiv preprint
arXiv:1711.04623, 2017.

[24] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks,”
in Advances in Neural Information Processing Systems, pp. 1731–1741,
2017.

[25] L. A. Shepp and B. F. Logan, “The fourier reconstruction of a head
section,” IEEE Transactions on nuclear science, vol. 21, no. 3, pp. 21–
43, 1974.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[29] L. Balles, J. Romero, and P. Hennig, “Coupling adaptive batch sizes
with learning rates,” arXiv preprint arXiv:1612.05086, 2016.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[31] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks,”
in Advances in Neural Information Processing Systems, pp. 1731–1741,
2017.

[32] S. Didelot, P. Carribault, M. Pérache, and W. Jalby, “Improving mpi
communication overlap with collaborative polling,” Computing, vol. 96,
no. 4, pp. 263–278, 2014.

[33] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and per-
formance analysis of non-blocking collective operations for mpi,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
p. 52, ACM, 2007.

[34] R. Brightwell, R. Riesen, and K. D. Underwood, “Analyzing the impact
of overlap, offload, and independent progress for message passing
interface applications,” The International Journal of High Performance
Computing Applications, vol. 19, no. 2, pp. 103–117, 2005.

[35] A. Devarakonda, M. Naumov, and M. Garland, “Adabatch: adap-
tive batch sizes for training deep neural networks,” arXiv preprint
arXiv:1712.02029, 2017.

[36] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. Dongarra, “High-performance matrix-matrix multiplications of
very small matrices,” in European Conference on Parallel Processing,
pp. 659–671, Springer, 2016.

[37] K. Kim, T. B. Costa, M. Deveci, A. M. Bradley, S. D. Hammond,
M. E. Guney, S. Knepper, S. Story, and S. Rajamanickam, “Designing
vector-friendly compact blas and lapack kernels,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 55, ACM, 2017.

839

