
Journal of Parallel and Distributed Computing 159 (2022) 10–23

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Improving scalability of parallel CNN training by adaptively adjusting

parameter update frequency

Sunwoo Lee ∗, Qiao Kang, Reda Al-Bahrani, Ankit Agrawal, Alok Choudhary, Wei-keng Liao

Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 April 2020
Received in revised form 19 August 2021
Accepted 20 September 2021
Available online 29 September 2021

Keywords:
Deep learning
Data parallelism
Communication cost
Parameter update frequency

Synchronous SGD with data parallelism, the most popular parallelization strategy for CNN training,
suffers from the expensive communication cost of averaging gradients among all workers. The iterative
parameter updates of SGD cause frequent communications and it becomes the performance bottleneck.
In this paper, we propose a lazy parameter update algorithm that adaptively adjusts the parameter
update frequency to address the expensive communication cost issue. Our algorithm accumulates the
gradients if the difference of the accumulated gradients and the latest gradients is sufficiently small.
The less frequent parameter updates reduce the per-iteration communication cost while maintaining the
model accuracy. Our experimental results demonstrate that the lazy update method remarkably improves
the scalability while maintaining the model accuracy. For ResNet50 training on ImageNet, the proposed
algorithm achieves a significantly higher speedup (739.6 on 2048 Cori KNL nodes) as compared to the
vanilla synchronous SGD (276.6) while the model accuracy is almost not affected (<0.2% difference).

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Recently, Convolutional Neural Network (CNN) has become one
of the most popular machine learning techniques. CNNs have
achieved great successes in a variety of applications such as im-
age classification [14,32], image regression [25,35], object detection
[34,45], natural language processing [24,43], and scientific applica-
tions [10,19,28]. However, training a deep CNN is a computation-
ally intensive task that can take hours or even days. For instance,
training ResNet50 [14] on ImageNet [9] using a single GPU (NVIDIA
M40) takes about two weeks [42]. For large scale deep learning ap-
plications, efficient parallelization is crucial to finish the training in
a reasonable amount of time.

Synchronous Stochastic Gradient Descent (SGD) [17] with data
parallelism is the most popular parallel neural network training
strategy. The algorithm evenly distributes each batch of training
samples (called mini-batch) to all workers and processes them in-
dependently. Then, the locally computed gradients are averaged
among all the workers using inter-process communications. In
data parallel training, the local gradient size is fixed to the model
size regardless of the number of processes. As scaling up, thus,

* Corresponding author.
E-mail address: slz839@ece.northwestern.edu (S. Lee).
https://doi.org/10.1016/j.jpdc.2021.09.005
0743-7315/© 2021 Elsevier Inc. All rights reserved.
the computational workload per process proportionally decreases
while the communication cost increases. Many previous works
showed such an increasing communication time in their experi-
ments [21,22,38]. Especially, when accelerators are employed, such
as GPU, Intel Xeon Phi, or TPU, the communication to computa-
tion ratio becomes higher at each iteration. Given a fixed network
bandwidth, the faster the computation for each mini-batch, the
higher portion of the iteration time the communication time takes
up.

Many researchers have studied how to overlap the communi-
cations with the computations to improve the scalability [13,22,37,
38]. Since the gradients do not have data dependency across layers,
the communication for averaging the gradients at a layer and the
gradient computations at other layers can be performed simulta-
neously. However, the next mini-batch can be processed only after
the parameters are updated using the gradients computed from
the current mini-batch. Thus, all the communications posted at
each iteration should be finished before starting the next itera-
tion. If the communication time is longer than the computation
time within each iteration, a part of the communication time will
be exposed making all the processes blocked until the communica-
tions are finished. Therefore, in order to achieve a good speedup of
the parallel training, the per-iteration communication time should
be reduced so that the exposed communication time is minimized
keeping all the processes busy.

https://doi.org/10.1016/j.jpdc.2021.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.09.005&domain=pdf
mailto:slz839@ece.northwestern.edu
https://doi.org/10.1016/j.jpdc.2021.09.005

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23
In this paper, we discuss how to address the expensive per-
iteration communication cost in parallel training by delaying the
parameter update at a part of model parameters. Since the gra-
dients are computed from the output side layers in the back-
propagation phase, only the communications at a few input side
layers are likely exposed causing a blocking time. We propose
to adjust the parameter update frequency such that the param-
eters at those input side layers are less frequently updated than
the other layers. Instead of updating the parameters at every it-
eration, our lazy update method accumulates the gradients if the
difference of the direction between the accumulated gradients and
the latest gradients is bounded by a sufficiently small angle on
the inner product space. The parameter update interval is adap-
tively adjusted using a constant back-off algorithm at run-time.
This adaptive update frequency control enables to find the max-
imum update interval which allows the model to keep moving
towards minimizing the cost function. The gradient compression
method proposed in [26] similarly accumulates the gradients, how-
ever, the compression method only considers the magnitude of the
gradients, based on a heuristics: “larger gradients are more impor-
tant than the others”. Our work explores the performance impact
of the gradient accumulation in a layer-wise manner considering
not only the magnitude but also, more importantly, the direction
on the parameter space.

Our training strategy has several advantages: First, the inter-
process communications are less frequently performed at the lay-
ers to which our lazy update method is applied, and thus a better
scaling performance can be achieved. Second, the proposed lazy
update method automatically adjusts the parameter update in-
terval during training without requiring users to tune any extra
hyper-parameters. Finally, the proposed algorithm determines the
lazy update interval based on the observed degree of noise in the
gradients at run-time so that it can be applied to parallel training
independently of optimizers or hyper-parameter settings such as
mini-batch size.

To evaluate the performance of the proposed training algorithm,
we conduct image classification and regression experiments and
analyze the performance results on KNL nodes of Cori supercom-
puter at NERSC. We verify the effectiveness of the proposed train-
ing method across several network architectures (Wide-ResNet20,
ResNet50, and EDSR), datasets (CIFAR10, ImageNet, and DIV2K),
optimizers (mini-batch SGD and Adam). Our experimental results
demonstrate that, by having a different parameter update fre-
quency across layers, the communication time can be significantly
reduced while maintaining the model accuracy. For ImageNet clas-
sification with ResNet50, our method improves the speedup of the
parallel training from 50.96 to 115.11 using up to 256 compute
nodes with a negligible effect on the validation accuracy (< 0.1%
difference).

We also study the impact of the proposed training algorithm
on the large batch training performance. The large batch size im-
proves the degree of parallelism by having more training samples
per mini-batch. However, the batch size does not affect the per-
iteration communication cost. Regardless of the batch size, as a
nature of strong scaling, the ratio of computation to communica-
tion is supposed to be reduced as more processes are employed.
We empirically verify that our proposed method can be applied
to large-batch training by presenting and analyzing the large-batch
training performance of ResNet50. For ResNet50 training with a
batch size of 8192, our proposed method improves the speedup
from 276.59 to 739.56 using up to 2048 nodes, while achieving
almost the same accuracy to the reported accuracy (< 0.2% differ-
ence) in [11].
11
2. Background and related works

2.1. Mini-batch SGD-based CNN training

In this paper, we consider minimization problems of the form

min
w∈Rd

F (w) = 1

n

n∑

i=1

f (w, xi), (1)

where w ∈ Rd is the parameter vector of the given network, x is
the training dataset of size n, and f (w, xi) is a cost function. In
this paper, we will refer to mini-batch SGD by SGD for short. SGD
computes a stochastic gradient of the cost function f with respect
to the model parameters w from a random subset of training sam-
ples B using Equation (2).

∇ fB(w) = 1

m

∑

i∈B
∇ f (w, xi), (2)

where m is the mini-batch size. Then, the parameters are updated
by Equation (3).

wi = wi−1 − μ∇ fB(wi), (3)

where μ is the learning rate. The algorithm repeats these two
steps until the cost function f is minimized.

2.2. Parallelization strategies

Synchronous SGD with data parallelism is the most popular
parallel CNN training algorithm used in many applications. The al-
gorithm evenly distributes each mini-batch to all workers and each
worker locally processes the assigned training samples. Then, the
local gradients are averaged among all the workers using inter-
process communications. Many existing works use allreduce oper-
ation for aggregating and summing up the local gradients.

In parallel training, the communications at each layer can over-
lap with the computations at other layers. Since the gradients do
not have data dependency across layers, the communication at one
layer and the gradient computation at other layers can be per-
formed simultaneously. Once the gradients are computed at each
layer in the backpropagation phase, a non-blocking communica-
tion is posted so that the communication overlaps with the later
backward computations. Many existing works exploit the overlap
of the communications with the computations in parallel training
[13,19,22,28,37,38].

Asynchronous SGD (ASGD) has been proposed in [8] which
tackles the scalability issue of mini-batch SGD. ASGD allows multi-
ple mini-batches to be concurrently processed at the cost of having
a certain degree of gradient asynchrony. However, the number of
asynchronous workers should be sufficiently small to guarantee
the convergence, which is impractical in large scale applications.
Sparse Aggregation SGD is proposed in [7], which sparsely aver-
ages the parameters among workers after multiple local updates.
The algorithm effectively lowers the inter-process communication
frequency and a better scalability can be expected, however the
convergence accuracy is still largely affected by the number of
workers.

Instead of designing a new optimization algorithm, some re-
searchers proposed to sparsify or quantize the gradients to re-
duce the communication cost [1,2,29,33,39,40]. Similarly, some
researchers proposed gradient compression techniques [6,12,26].
However, the gradient sparsification methods proposed in [1,33]
have a user-tunable threshold which is used to drop out small
gradients. In practice, tuning an additional hyper-parameter is not
a negligible extra work for large-scale deep learning applications.

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23
Algorithm 1 Mini-batch SGD with Adaptive Lazy Parameter Update
(b: the number of layers to which the lazy update method is ap-
plied. k: the number of iterations for accumulating the gradients.)

1: w ← w0, g ← 0, k ← 1
2: while stop condition is not met do
3: for i ← 1 · · · n

m do
4: B ← ith mini-batch of size m.
5: ∇ fB(wi) ← Compute_Gradient(f , B, wi).
6: for j ← 1 · · · l do
7: if j > b then
8: Update wi, j with ∇ fB(wi, j). � Eq. (3)
9: else

10: Accumulate ∇ fB(wi, j) to g j . � Eq. (4)
11: if (i mod k) is 0 then
12: Update wi, j with g j . � Eq. (5)

13: if (i mod k) is 0 then
14: k = Calculate_Interval(g , ∇ fB(wi), b).
15: g ← 0.

In addition, these works either do not consider the extra com-
putational cost or present a limited performance improvement
due to the expensive extra computations. For instance, the gradi-
ent quantization method proposed in [2] shows limited speedups
(1.1 ∼ 2.1) while the data precision is reduced from 32-bit to 4-bit.
The weight sharing technique in [12] performs K-Means data clus-
tering algorithm off-line. The gradient compression technique in
[26] consists of a set of processes such as quantization, encoding,
and clipping. As pointed out in [38], these gradient compression
techniques also need to balance the trade-off between the accu-
racy and the communication cost.

Recently, a few large batch training techniques have been pro-
posed. You et al. proposed Layer-wise Adaptive Rate Scaling (LARS)
[41]. Goyal et al. and Hoffer et al. introduced linear scaling rule
[11] and root scaling rule [16] of mini-batch size and learning
rate, respectively. All these large-batch training techniques have
showed that the batch size can be increased to a certain problem-
dependent threshold without a significant loss in accuracy. Larger
batch size implies fewer parameter updates within each epoch,
and thus fewer communications for averaging gradients among all
workers. However, the batch size does not affect the communica-
tion cost for averaging gradients at each iteration. As the number
of processes increases, the communication time increases while
the per-process computation workload is proportionally reduced.
So, regardless of the batch size, the communication time ends up
being dominant over the computation time and the speedup is
saturated. In this paper, we focus on how to improve the scaling
efficiency by reducing the communication cost for processing each
mini-batch, regardless of the mini-batch size.

3. CNN training with lazy parameter update

In this section, we propose a mini-batch SGD-based CNN train-
ing algorithm which adaptively adjusts the parameter update fre-
quency. We begin with describing the lazy parameter update
method.

gi = gi−1 + ∇ fB(wi) (4)

wi+k = wi − μgi+k (5)

where ∇ fB(wi) is the stochastic gradient of a cost function f
with respect to wi , the parameters at iteration i, gi+k is the ac-
cumulated gradients from iteration i to i + k, and k is the lazy
update interval. At every iteration, the gradients computed from a
mini-batch are accumulated using Equation (4). After k iterations,
the parameters are updated with the accumulated gradients using
Equation (5).
12
Algorithm 1 shows a mini-batch SGD-based CNN training algo-
rithm with the described lazy update method. The algorithm re-
peatedly traverses over n training samples until the stop condition
is satisfied at line 2. Given the batch size m, the algorithm pro-
cesses n

m mini-batches sequentially at line 3. For each mini-batch,
the gradients of the cost function f are computed with respect to
the model parameters at line 5. Note that we refer the input side
of network as ‘bottom’ and the output side as ‘top’. The parameters
at the top (l − b) layers are updated every iteration using Equation
(3) at line 8, where l is the number of layers in the model. The
gradients at the bottom b layers are accumulated using Equation
(4) at line 10. The lazy update interval k is initially set to 1 and
re-calculated after every lazy update at line 14.

When 1 ≤ b < l, Algorithm 1 partitions the model into two
parts and the parameters of them are updated at different frequen-
cies. The backpropagation algorithm can be considered as a dy-
namic programming of multi-layer perceptrons. The parameters of
each layer are adjusted to minimize its own error. Since the errors
are back-propagated through all the layers, the principle of opti-
mality holds in the backward direction and the backpropagation
algorithm effectively minimizes the cost function that is attached
at the end of the model. In Algorithm 1, the consecutive top side
layers, either (l − b) or l, are updated at every iteration. Thus, it is
guaranteed that the parameters of each layer have been updated
more than any of its bottom layers. This condition still holds the
principle of optimality in dynamic programming, and Algorithm 1
can effectively minimize the cost function when 1 ≤ b < l.

The lazy update interval k plays a key role in reducing the com-
munication cost in parallel training as well as achieving a high
accuracy. The longer the lazy update interval, the more sparser
the communications for averaging gradients, which result in a bet-
ter scalability. On the other hand, the accumulated gradients g in
Equation (5) becomes noisier as more gradients are accumulated.
Note that this is because we keep updating the top l − b layers
every iteration. Assuming m training samples for each mini-batch
are randomly extracted from the dataset, the k sets of gradients
that are accumulated by Equation (4) can be considered as inde-
pendent random variables. Each of them is approximately normally
distributed with mean

E[∇ f (w)] = 1

n

n∑

i=1

∇ f (w, xi) = ∇ F (w), (6)

where ∇ F (w) is the optimal gradient with respect to the param-
eters w , xi is a training sample, and n is the number of train-
ing samples. Thus, the expected accumulated gradient at iteration
(i +k) is E[gi+k] = ∑k

j=1 ∇ F (wi+ j). The expected optimal gradient
at iteration (i + k) is E[∇ fB(wi+k)] = ∇ F (wi+k). We can consider
the accumulated gradients gi+k as noisy when the difference be-
tween E[∇ fB(wi+k)] and E[gi+k] is large. Intuitively, the higher
the degree of noise, the slower the convergence rate.

3.1. Bounding gradient noise with respect to direction

To keep the difference between E[∇ fB(wi+k)] and E[gi+k] from
becoming too large, Algorithm 1 controls the lazy update interval
at line 14 such that the gradients are accumulated only until g is
still in a descent direction with respect to the latest parameters.

Proposition 1. A sufficient condition for the accumulated gradient gi+k

to be in a descent direction with respect to the parameters at iteration
(i + k) is as below.

‖gi+k − ∇ F (wi+k)‖ < ‖gi+k‖ (7)

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 1. Example of the gradients on 2-D vector space. With Inequality (8), gi+k and ∇ fB(wi+k) in both the left and right figures are considered as the same ‘descent direction’.
With Inequality (9), in contrast, the right side figure shows the angle between gi+k − ∇ fB(wi+k) and ∇ fB(wi+k) which is smaller than π

2 and the two vectors are not
considered as the same descent direction. Inequality (9) becomes true only when ∇ fB(wi+k) is within the blue circle as shown in the left side figure. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)
Proof. gi+k is the descent direction if and only if a condition be-
low is true:

(gi+k)
T ∇ F (wi+k) > 0

Considering the accumulated gradients gi+k and the optimal gra-
dients ∇ F (wi+k) are two vectors, the above condition guarantees
that the angle between the two vectors in the inner product space
is smaller than π

2 so that they can be considered as the same ‘de-
scent’ direction. Beginning from the proposed Inequality (7),

‖gi+k − ∇ F (wi+k)‖ < ‖gi+k‖
‖gi+k − ∇ F (wi+k)‖2 < ‖gi+k‖2

‖gi+k‖2 − 2(gi+k)
T ∇ F (wi+k) + ‖∇ F (wi+k)‖2 < ‖gi+k‖2

(gi+k)
T ∇ F (wi+k) >

1

2
‖∇ F (wi+k)‖2 ≥ 0

So, when Inequality (7) holds, gi+k is a descent direction with re-
spect to wi+k . �

However, the left-hand side of Inequality (7) is prohibitively ex-
pensive to compute since the optimal gradient ∇ F (wi+k) is com-
puted from the entire training samples. To address this problem,
we replace the optimal gradient on the left-hand side with the
current stochastic gradient ∇ fB(wi+k). Note that, as shown in
Equation (6), each stochastic gradient is a random variable with
mean of ∇ F (w). The classical convergence analysis of SGD usually
assumes that the stochastic gradients have a bounded variance σ 2

[5]. Thus, Inequality (7) can be approximated by a relaxed condi-
tion with a bounded difference as below.

‖gi+k − ∇ fB(wi+k)‖ < ‖gi+k‖ (8)

Since ∇ fB(wi+k) is already computed at line 5 in Algorithm 1, In-
equality (8) can be computed without extra computations.

Inequality (8) enables to check the direction of the accumulated
gradients with a feasible computational cost. However, ∇ fB(wi+k)

is a biased estimator due to its variance. If the variance is large,
the direction of the accumulated gradients can be much different
from the optimal gradients while Inequality (8) still holds. We pro-
pose another practical sufficient condition which alleviates such an
effect as follows.

‖gi+k − ∇ fB(wi+k)‖2 + ‖∇ fB(wi+k)‖2 < ‖gi+k‖2 (9)

By expanding the left hand side, we can get an inequality,

(gi+k)
T ∇ fB(wi+k) > ‖∇ fB(wi+k)‖2 > 0,
13
which provides the same condition of gi+k as Inequality (8). We
define θ as the angle between two vectors, gi+k − ∇ fB(wi+k)

and ∇ fB(wi+k). The l2-norm of the stochastic gradients is most
likely smaller than that of the accumulated gradients. Under this
condition, ‖gi+k − ∇ fB(wi+k)‖2 + ‖∇ fB(wi+k)‖2 is smaller than
‖gi+k‖2 only when θ is larger than π

2 . Fig. 1 illustrates the pro-
posed condition on the simplified 2-D vector space. The blue circle
shows the region in which θ ≥ π

2 . Inequality (9) becomes true only
when ∇ fB(wi+k) is within the blue region so that the angle θ is
larger than π

2 . So, this condition can be considered as a stricter
condition than Inequality (8) for having gi+k with a descent direc-
tion.

One potential issue of Inequality (9) is that, as k grows up, the
blue circle shown in Fig. 1 is enlarged and it becomes easier for
∇ fB(wi+k) to be inside of the circle. In order to check the direc-
tion of the accumulated gradients without being affected by k, we
use the averaged accumulated gradients instead.

‖1

k
gi+k − ∇ fB(wi+k)‖2 + ‖∇ fB(wi+k)‖2 < ‖1

k
gi+k‖2 (10)

By using the averaged accumulated gradients 1
k gi+k , the blue circle

in Fig. 1 does not grow as k increases, and thus the angle can be
checked more robustly. If ‖∇ fB(wi+k)‖2 is larger than ‖ 1

k gi+k‖2,
we use the following Inequality instead.

‖1

k
gi+k − ∇ fB(wi+k)‖2 + ‖1

k
gi+k‖2 < ‖∇ fB(wi+k)‖2 (11)

Inequality (10) and (11) equally check if the two gradients, gi+k
and ∇ fB(wi+k), are close to each other.

3.2. Bounding gradient noise with respect to magnitude

To minimize the effect of the lazy updates on the convergence,
the magnitude of the accumulated gradients also should be taken
into account when adjusting the parameter update frequency. We
assume F has Lipschitz-continuous gradients, that is, there is a
constant L > 0 such that

‖∇ F (u) − ∇ F (v)‖ ≤ L‖u − v‖ ∀u, v ∈ Rd. (12)

As shown in [3,4], the change in F is bounded by

F (u) − F (v) ≤ ∇ F (v)T (u − v) + L

2
‖u − v‖2. (13)

From the above Inequality, we can get the bounded change of F
for the lazy update as follows.

F (wi) − F (wi+k) ≤ ∇ F (wi+k)
T (wi − wi+k) + L ‖wi − wi+k‖2
2

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23
By inserting Equation (5) into the above Inequality,

F (wi) − F (wi+k) ≤ μ∇ F (wi+k)
T (gi+k) + Lμ2

2
‖gi+k‖2.

Considering E[gi+k] = ∑k
j=1 ∇ F (wi+ j),

F (wi) − F (wi+k) < μ‖gi+k‖2 + Lμ2

2
‖gi+k‖2 =

(μ + Lμ2

2
)‖gi+k‖2.

(14)

Likewise, in SGD without the lazy update method, the change
in F for k iterations is bounded as follows.

F (wi) − F (wi+k) ≤
k∑

j=1

(μ∇ F (wi+ j)
T ∇ fB(wi+ j)

+ Lμ2

2
‖∇ fB(wi+ j)‖2)

≈ k(μ + Lμ2

2
)‖∇ fB(wi+k)‖2

(15)

The above approximation is under an assumption that the magni-
tude of gradients is not significantly different among k iterations.

If the right-hand side of Inequality (14) is smaller than that of
Inequality (15), SGD with the lazy update method can converge
more slowly than without the lazy update method. To avoid such
a potential slow convergence, we propose to check the following
condition when adjusting the parameter update frequency.

k‖∇ fB(wi+k)‖2 < ‖gi+k‖2 (16)

Note that Inequality (16) is under a strong assumption that
the magnitude of stochastic gradients is not significantly differ-
ent across k iterations. In practice, if the batch size is small, the
stochastic gradients have a high variance and the magnitude of
the gradients can be unstable among k iterations. So, satisfying
Inequality (16) cannot solely guarantee a sufficiently low degree
of noise in the accumulated gradient. In our training algorithm,
therefore, both Inequality (9) and (16) are taken into account when
adjusting the parameter update frequency.

3.3. Adaptive lazy update interval

To strictly force the lazy update to be a descent direction, the
state of the accumulated gradients should be checked at every iter-
ation so as to stop the accumulation before the gradients become
too noisy. However, such frequent checks will incur an expensive
extra computational cost. Furthermore, we empirically found that
the accumulated gradients violate Inequality (10) and (16) after a
sufficiently large number of accumulations.

We design an adaptive lazy update interval calculation method
which sparsely re-calculates the lazy update interval based on In-
equality (10) and (16). As shown in Algorithm 1 at line 1, the lazy
update interval k is initialized to 1 at the beginning of the train-
ing. During the training, k increases by 1 if both Inequality (10)
and (16) are true. On the other hand, the interval is reduced by 1
if both Inequality (10) and (16) are not satisfied.

This constant back-off algorithm enables to sparsely check the
state of the accumulated gradients and automatically makes the
lazy update interval stay around the maximum value that allows
descent direction gradients. Note that k is adjusted by 1, which is
the minimum granularity of the interval adjustment. With a larger
step size, k will approach to the maximum allowed interval faster,
and thus a better scaling efficiency can be expected. On the other
hand, the larger step size can give a larger difference between the
14
Algorithm 2 Calculate_Interval(g, ∇ fB(w), b, k).
1: angle ← false
2: magnitude ← false
3: b′ ← layer with the largest |w| among bottom b layers.
4: diff ← ‖ 1

k g − ∇ fB(w)‖2 at layer b′ .
5: normg ← ‖ 1

k g‖2 at layer b′ .
6: norm f ← ‖∇ fB(w)‖2 at layer b′ .
7: if (diff +norm f) < normg then
8: angle ← true

9: if (k · norm f) < normg then
10: magnitude ← true

11: if angle is true and magnitude is true then
12: Increase k by 1.
13: else if angle is false and magnitude is false then
14: Decrease k by 1.

left-hand side and the right-hand side in both Inequality (10) and
(16), which implies a slower convergence. In this work, we focus
on minimizing the accuracy drop while improving the scalability.
So, we propose to use the minimum granularity of the interval
adjustment.

We also propose to calculate Inequality (10) and (16) from a
single layer that has the largest number of parameters among the
bottom b layers. If they are computed from the whole parameters
of the bottom b layers, one layer that satisfies the conditions by
a huge margin can cancel out other layers’ violations. Note that,
due to the non-linearity between layers caused by non-linear acti-
vation functions or pooling layers, the gradients at different layers
do not have a strong correlation. By calculating the two conditions
from a single largest layer, we can achieve a more reliable interval
adjustment as well as a cheaper computational cost.

3.4. Parallel implementation

Distributed gradient computation – In data parallel training,
the communications for averaging the gradients at one layer and
the gradient computations at other layers can be performed simul-
taneously since the gradients do not have data dependency across
layers. However, if the overall communication time is longer than
the backward computation time, a part of communications may
not be hidden behind the computations causing a blocking time
between every two consecutive iterations. In this work, we set b to
the number of bottom layers whose communications cannot over-
lap with any computations. In practice, b can be found by checking
how many communications have not been started when the back-
propagation computation is completed at the bottom layer.

Equation (17) shows how the accumulated gradient gi+k is
computed in parallel training.

gi+k =
P∑

p=1

g p
i+k =

P∑

p=1

k∑

j=1

∇ f p
B(wi+ j), (17)

where P is the number of workers, ∇ f p
B(w) is the local stochas-

tic gradients computed from m
P training samples by worker p, and

g p is the locally accumulated gradients at worker p. On the right-
hand side of Equation (17), the first summation is performed by
inter-process communications (typically allreduce operations) and
the second summation is the local accumulation based on Equation
(4). Since |g| and |∇ fB(w)| are the same, the overall communica-
tion cost within k iterations is reduced to 1

k . Therefore, the bigger
the k, the lower the communication cost.

Software framework – We implemented a software frame-
work for neural network training in C language. The framework is
specifically designed for parallel training on CPU-based distributed
memory platforms. The implementation details can be found in
our previous work [21]. We use Intel Math Kernel Library (Intel

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 2. A schematic time-flow chart for synchronous SGD with and without lazy update method. This example assumes a network with two layers (0 and 1). (a) shows the
vanilla synchronous SGD without lazy update and (b) shows the synchronous SGD with lazy update. FF and BP indicate feedforward and backpropagation, respectively. UP
indicates the parameter update. AC is the gradient accumulation that corresponds to Equation (4).
MKL) for the kernel functions such as matrix operations. We em-
ploy MPI-OpenMP programming model such that each MPI process
runs on one node and the process performs the kernel operations,
such as matrix multiplications, using OpenMP. This design option
is due to the following two reasons. First, training a neural network
requires a large amount of memory space to keep the intermedi-
ate data such as activations, errors, and gradients. Therefore, it is
a common practice that only one process runs on each CPU node
so that all the memory space is fully utilized by the process. On
GPU systems, the common practice is to run as many processes as
the number of GPUs per node for the same reason. Second, our
design option minimizes the local data size per node in all the
gradient communications. Because each process computes a fixed
number of local gradients regardless of the number of processes,
the data exchanged across the nodes proportionally increases as
more processes run on each node. Therefore, depending on the al-
lowed network bandwidth at each node, the communication time
can increase if many processes run on each node.

Overlap of computation and communication – Fig. 2 shows
a schematic illustration of the vanilla synchronous SGD without
lazy update (a) and the synchronous SGD with lazy update (b).
These illustrations show how the communications can be over-
lapped with the computations during parallel training. FF, BP, UP,
and AC denote feedforward, backpropagation, parameter update,
and gradient accumulation, respectively. COMM indicates the gradi-
ent communication. The postfix digit of each operation means the
layer ID. In this example, we consider a network with two layers,
and thus the layer ID is either 0 or 1. Once the gradients at layer
1 is computed (BP 1), the corresponding communication (COMM 1)
is posted so that the communication time is overlapped with the
backpropagation time at layer 0. At each iteration, the communi-
cations are posted twice, and a part of the communication time is
exposed (blocking time) if the total communication time is longer
than the backpropagation time and the parameter update time. In
(a), the same pattern is repeated across all the iterations, and thus
the blocking time takes up a large portion of the whole training
time. In (b), the lazy update algorithm skips updating layer 0 ac-
cumulating the gradients. Because (b) does not have COMM 0 at
iteration i, the training can proceed to the iteration i + 1 with-
out having a blocking time. When updating the layer 0 at iteration
15
i + 1, a communication is posted for layer 0 to average the ac-
cumulated gradients among all the workers. So, this iteration has
exactly the same computations and communications as the vanilla
synchronous SGD.

There are several possible design options for implementing
the overlap of the computations and communications. First, the
gradient averaging algorithm we employed [21] can be imple-
mented using MPI asynchronous API such as MPI_Iallgather
and MPI_Alltoall. Many modern MPICH implementations sup-
port asynchronous progress of these collective MPI communica-
tions. Second, a helper thread can be employed to use MPI syn-
chronous API explicitly overlapping the communications with the
computations. Our software framework is implemented using a
POSIX thread that is dedicated to the communications. The im-
plementation details can be found in our previous works [21,23].
Third, any third-party communication libraries can be employed
for asynchronous communications. For instance, one can consider
using Casper, an adaptive asynchronous progress method designed
for parallel applications [31]. As long as the requested communica-
tions are immediately started in background, a similar performance
gain can be expected regardless of the design choice. Note that,
the proposed lazy update method is readily applicable to any im-
plementations because Algorithm 1 and 2 are independent of the
underlying communication patterns.

4. Performance evaluation

We evaluate the performance of the proposed parallel CNN
training algorithm using open benchmark datasets, CIFAR-10, Im-
ageNet, and DIV2K. All experiments were carried out on Cori, a
Cray XC40 supercomputer at National Energy Research Scientific
Computing Center (NERSC). Each compute node has an Intel Xeon
Phi Processor 7250, Knights Landing (KNL), that has 68 cores. AVX-
512 vector pipelines with a hardware vector length of 512 bits are
available at each node. In all our experiments, we used the ‘cache’
mode of MCDRAM. The system has Cray Aries high-speed inter-
connections with ‘dragonfly’ topology. When building our software
framework on Cori, we used the system default Intel C++ compiler
(19.0.3) and cray-MPICH (7.7.6) on Cori. Before evaluating the per-
formance of our proposed lazy update method, we first present

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 3. The scaling performance comparison between TensorFlow + Horovod and PCNN, our own software framework [23]. We trained ResNet20 on CIFAR-10 using synchronous
SGD and compared the average epoch time (sec) and the speedup on Cori KNL nodes. We see that PCNN slightly outperforms TensorFlow + Horovod mainly due to the overlap
of computation and communication.
the scaling performance comparison between our software frame-
work and TensorFlow (2.2.0) + Horovod (0.19.0), one of the most
popular parallel training software packages. Both our framework
and Horovod are built based on the system default cray-MPICH li-
brary. We trained ResNet20 using synchronous SGD and compared
the average epoch time. Fig. 3 presents the scaling performance
comparison. This comparison demonstrates that our scaling perfor-
mance study is based on a reasonable baseline performance. The
same experimental result can be found in our previous work [23].

We compare scaling performance among four different parallel
training settings. First, ‘No overlap’ represents data parallel training
without overlapping. In this setting, the gradient communications
are posted after computing all the gradients, and thus the entire
communication time is exposed. Horovod is one of the most pop-
ular software framework that falls into this setting [30]. Second,
‘Without LazyUp’ indicates data parallel training with overlapping.
We employed an overlapping strategy that allows to overlap the
communications with not only the backward computations but
also the forward computations at the next iteration, proposed in
[21]. A similar overlapping strategy was proposed in [38]. Third,
‘With LazyUp’ is data parallel training that employs the lazy update
method. The communications are overlapped with computations
using the same algorithm as ‘Without LazyUp’. Finally, ‘Comp only’
is the computation only performance. We consider this computa-
tion timings as the ideal performance we can achieve in parallel
training.

Note that we do not compare the performance between the
proposed method and gradient quantization/sparsification meth-
ods. These methods zero out small gradients or replace the similar
gradient values with a single representative value based on the
gradient properties such as magnitude of each gradient or statis-
tical distribution of the absolute gradient values. In our proposed
method, the gradients are not modified but accumulated at a part
of model layers. We consider the gradient quantization and sparsi-
fication methods and our proposed method are orthogonal tech-
niques. In other words, we can apply both of them to parallel
training without any conflicts, expecting a better scaling perfor-
mance. Therefore, we do not directly compare the performance
between them.

4.1. CIFAR-10 classification

CIFAR-10 has 50,000 training images and each image size is
32 × 32. We present the performance of Wide-ResNet20 training
for CIFAR-10 classification. Wide-ResNet20 is a variant of ResNet20,
which has an increased width of residual blocks compared to
the original model architecture. In this experiment, we double
16
the number of filters at all the convolution layers. All the hyper-
parameter settings are the same as shown in [44]. We use mini-
batch SGD with the batch size of 128, the initial learning rate of
0.1, and the momentum factor of 0.9. The learning rate decreases
by a factor of 5 after 60, 80, and 120 epochs. The training is per-
formed for 200 epochs in total. We use up to 64 compute nodes
in which the baseline execution time starts to increase. We found
that the communications at the bottom 6 layers do not overlap
with any computations on 64 nodes, so we set b = 8.

Fig. 4 presents the training loss (left) and the validation accu-
racy (right). We performed the parallel training on 64 KNL nodes
and collected the learning curves. We can observe that the lazy
update method provides almost the same convergence accuracy as
the original mini-batch SGD (Without Lazy Update: 94.23 ± 0.1%,
With Lazy Update: 94.36 ± 0.2%). Note that the reported accuracy
of similar Wide-ResNet series in [44] is 93.58% ∼ 94.27%. Fig. 5
shows the strong scaling performance. First, ‘No overlap’ shows a
significantly longer execution time than the others. The difference
between ‘No overlap’ and ‘Comp only’ can be considered as the
overall communication time. Our method reduces the average exe-
cution time per epoch from 64.05 seconds to 42.47 seconds on 64
nodes. We can see that ‘With LazyUp’ and ‘Comp only’ timings are
almost the same, which means the communication cost is effec-
tively reduced by the proposed method.

One noticeable observation is that the computation time does
not linearly scale up. As the number of workers increases, the
number of local training samples is proportionally reduced in data
parallelism. It is already known that a sufficiently large amount
of workload is needed to fully utilize the computation resources
in each KNL node [18,27]. In our experiments, we found that In-
tel MKL shows a poor scaling performance when the number of
local training samples is lower than 16. Another factor that af-
fects the scaling efficiency is the model size. The input data size
of Wide-ResNet20 for CIFAR-10 classification is 32 × 32 and the
number of filters at the first few convolution layer is 16 only. Such
a small model size causes small matrix operations which cannot
fully-utilize the computation power.

4.2. ImageNet classification

ImageNet is a large-scale image dataset for classification, that
consists of 1.2 millions of high-quality images with varying sizes.
We train ResNet50 on ImageNet and compare the performance
between with and without the lazy update method. We use mini-
batch SGD with the batch size of 256, the initial learning rate of
0.1, and the momentum factor of 0.9. The learning rate is reduced
by a factor of 10 after 30, 60, and 80 epochs as shown in [11]. The

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 4. Training loss curves (left) and validation accuracy curves (right) of Wide-ResNet20 training on CIFAR-10. Both the training loss and the validation accuracy are almost
not affected by the proposed lazy update method (Without LazyUp: 94.23 ± 0.1%, With LazyUp: 94.19 ± 0.1%).

Fig. 5. Execution time and speedup of parallel Wide-ResNet20 training on CIFAR-10. The proposed method effectively reduce the communication time so that it achieves
almost the same execution time to the computation-only time.
training is scaled up to 256 nodes where the training time without
the proposed method starts to increase. We found that the com-
munications at the bottom 24 ∼ 25 layers do not overlap with the
computations on 256 nodes, so we set b = 25.

Fig. 6 shows the training loss (left) and the validation accu-
racy (right). We performed the parallel training on 128 KNL nodes
and collected the learning curves. Our proposed training method
quickly increases the validation accuracy in the early epochs and
then it ends up being saturated to a similar accuracy to the base-
line (Without LazyUp: 75.89 ± 0.2%, With LazyUp: 75.81 ± 0.2%).
Note that our baseline accuracy is slightly higher than that in [15]
(75.3%) and lower than that in [11] (76.26%). Considering the long
training time, we employed only the basic data augmentation as
shown in [41], such that each image is re-scaled to 256 ×256 and a
random 224 × 224 patch is extracted from it. So, our validation ac-
curacy is slightly lower than that reported in [11] achieved by rich
data augmentation. Fig. 7 shows the average execution time per
epoch (left) and the speedup (right). The proposed method reduces
the execution time from 0.62 hours to 0.27 hours. We see that
the execution time of the proposed method is almost the same
as the computation-only time. As a result of the reduced param-
eter update frequency at the bottom 25 layers, the per-iteration
communication time is effectively reduced, and thus ‘With LazyUp’
achieves a similar speedup to ‘Comp only’.

4.3. DIV2K image super-resolution

We perform image super-resolution using Enhanced Deep
Super-Resolution (EDSR) [25] and DIV2K dataset. EDSR is a deep
CNN which has 32 residual blocks and 256 filters per layer. DIV2K
17
is a dataset from NTIRE2017 Super-Resolution Challenge [36],
which contains 800 high-quality 2K resolution pictures. We use
Adam with a batch size of 64 and a learning rate of 0.0004. All
the other hyper-parameters are set to the same values as shown
in [25]. For the regression accuracy, we use Peak Signal-to-Noise
Ratio (PSNR) which measures how much different the given two
images are. The training is scaled up to 64 nodes where the num-
ber of local training samples becomes 1. The communications at
the bottom 14 layers do not overlap with the computations on 64
nodes, so we set b = 14.

Fig. 8 presents the training loss curves (left) and the valida-
tion PSNR curves (right). We performed the parallel training on 64
KNL nodes and collected the learning curves. Our training method
achieves a comparable validation PSNR (33.54 ± 0.1 dB) to the
baseline (33.55 ± 0.1 dB). Fig. 9 shows the execution time per
epoch and speedup. The training with our method takes 31.23 sec-
onds per epoch while the baseline takes 56.06 seconds. Like the
other experiments, we see that the proposed method reduces the
communication cost and the scaling efficiency is improved.

4.4. Performance analysis and discussion

Impact of the number of lazy update layers on accuracy – We
set b to the number of layers whose communications do not over-
lap with any computations due to the high ratio of communication
to computation. Thus, the value of b is affected by the factors
that determine the ratio of communication to computation, such
as hardware configurations and hyper-parameter settings. To in-
vestigate the impact of the value of b on the training results, we
compare the learning curves of ImageNet training across different

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 6. Training loss (left) and validation accuracy (right) of ResNet50 training on ImageNet. The proposed method increases the validation accuracy faster, however both
curves end up being saturated to a similar accuracy (Without LazyUp: 75.89 ± 0.2%, With LazyUp: 75.81 ± 0.2%).

Fig. 7. Execution time and speedup of parallel ResNet50 training on ImageNet. Our proposed algorithm achieves a speedup of 115.11 on 256 nodes while the baseline peaks
on 128 nodes achieving a speedup of 50.96.
b values. We use three b settings, 12, 25, and 37. ResNet50 has 50
layers with tunable parameters in total. So, these three b settings
roughly represent 25%, 50%, and 75% of the parameters, respec-
tively. Fig. 10 presents the training loss (left) and the validation
accuracy (right). We first see that all the three b settings provide
a similar convergence training loss. In contrast, the larger the b,
the lower the convergence validation accuracy. The three b set-
tings give a validation accuracy of 75.86 ± 0.1%, 75.81 ± 0.2%, and
75.33 ± 0.2%, respectively.

As b increases, more parameters are updated using the accu-
mulated gradients that are noisy. As explained in Section 3.1, the
accumulated gradients are noisier than the stochastic gradients
computed from a single mini-batch. Although Inequality (10) and
(16) bound the degree of noise, we can expect a lower quality of
updates as more parameters are updated using the accumulated
gradients. However, even when the lazy update method is applied
to about 75% of parameters, the validation accuracy is still compa-
rable to that of the baseline (< 0.5% difference). This experimental
result demonstrates that the proposed lazy update method can be
generally applied to different systems regardless of the ratio of
computations to communications.

Adaptive lazy update interval – Algorithm 1 repeatedly adjusts
the lazy update interval based on Inequality (9) and Inequality
(16). Fig. 11 shows the average lazy update interval k within each
epoch of (a) CIFAR-10, (b) ImageNet, and (c) DIV2K training. The
average lazy update interval among the whole training epochs is
about 10, 18, and 5 for the three datasets, respectively. Consider-
ing the number of iterations per epoch, 390 for CIFAR-10, 5,004 for
ImageNet, and 50 for DIV2K, such large update intervals mean that
the parameter update frequency at the bottom side layers is re-
18
markably reduced, and thus the per-iteration communication cost
is expected to be reduced.

Timing breakdowns – We analyze how the proposed method
affects the computation time and communication time. The gradi-
ent accumulation, Equation (4), has a cheaper computational cost
than the regular parameter update shown in Equation (3). So, the
only extra computational cost of our method comes from the lazy
update interval computation in Algorithm 2. The computational
complexity of Algorithm 2 is O (|wb′ |), where b′ is the layer with
the largest number of parameters among the bottom b layers. Ta-
ble 1 shows the timing breakdown of the average computation
time per epoch. Compared to the feed-forward, backpropagation,
and parameter update times, the interval calculation time takes up
almost a negligible portion of the total computation time.

Table 2 shows the timing breakdown of the average execution
time per epoch. The ‘regular’ columns show the timings at kth it-
eration while the ‘lazy’ columns show the timings at all the other
iterations (0, · · · , k − 1). We see that the communication time is
significantly reduced when the gradients are accumulated for k − 1
iterations. In our implementation, the communications at the top
(l − b) layers overlap with the backpropagation computations. The
‘Overall’ row shows the actual end-to-end execution time which
is the sum of the computation time and the exposed communi-
cation time. If all the communications are overlapped with the
computations ideally, the ‘Overall’ timing becomes as short as the
computation time. That is, the shorter the ‘Overall’ time, the bet-
ter the scaling efficiency. Note that the communication time at kth

iteration is almost the same as that of the baseline because |gi+k|
and | fB(wi+k)| are the same at the bottom b layers.

Scalability of computation – In all our experiments, we observe
that the computation-only timings do not provide linear speedup.

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 8. Training loss (left) and validation accuracy (right) of EDSR training on DIV2K dataset. Both the training loss and the validation accuracy are almost the same for the
whole training.

Fig. 9. Execution time and speedup of parallel EDSR training on DIV2K. Our proposed lazy update method improves the speedup from 25.01 to 44.67 on 64 KNL nodes.
As the number of workers increases, the number of local training
samples is proportionally reduced in data parallelism. It is already
known that a sufficiently large amount of workload is needed to
fully utilize the computation resources in each KNL node [18,27].
In our experiments, we found that Intel MKL BLAS library shows
a poor scaling performance when the number of local training
samples is lower than 16. Another factor that affects the scaling
efficiency is the model size. For example, in Wide-ResNet20 train-
ing, the input data size is 32 × 32 and the number of filters at
the first few convolution layer is 16 only. Such a small model size
causes small matrix operations which cannot fully-utilize the com-
putation power.

Potential drawbacks of lazy update method – In order to
present a holistic view of our study, we discuss the potential draw-
backs of the lazy update method. First, Algorithm 1 spends an ex-
tra memory space to keep the accumulated gradients g at the bot-
tom b layers (

∑b
i=1 |gi | floating-point numbers). However, consid-

ering the rich memory space of modern HPC systems, this mem-
ory consumption can be considered as negligible. For instance,
ResNet50 has ∼ 25.6 millions of parameters that take 98 MB of
memory space while each Cori KNL node has 96 GB DDR4 mem-
ory space. Moreover, the extra memory space is smaller than the
whole model size because b < l. Second, the lazy update method
can cause a minor validation accuracy drop. The impact of the de-
layed updates on the model accuracy heavily depends on the input
data. Although the noise of the accumulated gradient is bounded
in both its direction and magnitude, our theoretical analysis is fo-
cused only on the training loss. Our future work includes analyzing
the impact of the lazy update method on the generalization per-
formance.
19
Table 1
Timing Breakdown of Computation Time (sec).

- CIFAR-10 ImageNet DIV2K

of nodes 64 256 64

Feed-forward 9.23 190.98 8.89
Backprop 27.38 544.43 18.30
Update 6.51 163.14 3.74
Interval Calc. 0.27 7.77 0.20

Total 43.49 906.32 31.13

Table 2
Timing Breakdown of Overall Execution Time (sec).

- CIFAR-10 ImageNet DIV2K

of nodes 64 256 64

Update type regular lazy regular lazy regular lazy
Comp 42.01 43.81 900.47 908.49 30.08 32.01
Comm 72.34 42.21 2101.48 900.37 51.39 27.39

Overall 77.66 44.49 2432.24 958.4 56.07 32.27

4.5. Large batch training

Increasing the batch size is an intuitive way to improve the de-
gree of parallelism. A large batch size means that each mini-batch
can be distributed to more processes and concurrently processed.
Recently, several large-scale scientific applications used large batch
sizes to scale up the training [10,19,20,28]. However, the batch size
does not affect the communication cost for averaging the gradients
at each iteration. As the number of processes increases, the ratio
of computation to communication within each iteration drops by
the nature of the strong scaling, and the communication time ends

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 10. Learning curves of ResNet50 training on ImageNet with varying b values. b = 12, b = 25, and b = 37 give a validation accuracy of 75.86 ± 0.1%, 75.81 ± 0.2%, and
75.33 ± 0.2%, respectively.

Fig. 11. The lazy update intervals measured in (a) CIFAR-10, (b) ImageNet, and (c) DIV2K training. The three interval curves correspond to the results shown in Fig. 4, Fig. 6,
and Fig. 8, respectively. For all the three cases, the interval is much larger than 1, which means the parameters are less frequently updated at the bottom b layers.
up being dominant over the computation time. Thus, in order to
achieve a good scaling efficiency, the expensive per-iteration com-
munication problem should be addressed regardless of the batch
size.

We report the large batch training learning curves and scaling
performance and then analyze the impact of our proposed lazy
update method on the large batch training. There are two possible
learning rate settings for large batch training, linear scaling rule
[11] and root scaling rule [16]. Goyal et al. empirically showed that
the batch size and learning rate can be proportionally increased
until a problem-dependent threshold without a significant loss in
accuracy. Hoffer et al. theoretically explained that the variance of
stochastic gradients stays the same if the learning rate is increased
by a square root of the ratio of the increased batch size to the base
batch size. However, it has been shown that the root scaling rule
yields a significantly lower validation accuracy for AlexNet training
with a batch size of 8, 192 [16] (about 4% accuracy difference). So,
in this paper, we consider the large batch training with the linear
scaling rule as a baseline and compare it to the large batch training
with the proposed method.

Fig. 12 shows the learning curve comparison between with and
without the lazy update method. The batch size is set to 8, 192 and
the initial learning rate is 3.2. The learning rate decays by a factor
of 10 after 30, 60, and 80 epochs. The gradual learning rate warm-
up technique is used in the first 5 epochs as explained in [11].
Our parameter update rule is the classical update rule which mul-
tiplies the learning rate after adding the momentum term to the
gradients. So, we do not apply the momentum correction method
proposed in [11]. We can see that the proposed training method
achieves a comparable validation accuracy (75.22 ± 0.1%) to the
baseline (75.41 ± 0.1%). Note that, for the lazy update method, b is
20
set to 24, which means the lazy update method is applied to the
24 bottom layers. We see that the training with the lazy update
method achieves almost the same training and validation curves
to the baseline. The average update interval at the bottom 24 lay-
ers is between 5 and 6.

Fig. 13 presents the scaling performance of large batch train-
ing for ImageNet classification. We scale the training up to
2, 048 nodes (139, 264 cores) where the baseline stops scaling.
First, without overlapping the communications with the computa-
tions (‘No overlap’), the speedup is flattened from 256 processes.
When the communications are overlapped (‘Without LazyUp’), the
speedup is improved, however the scaling still stops from 512
processes. By applying our proposed method (‘With LazyUp’), the
scaling efficiency is effectively improved and it achieves a speedup
of 739.56 on 2, 048 nodes. The speedup of the computation time
(‘Comp only’) is 1208.90 on 2, 048 nodes.

Discussion – The increased batch size improves the degree of
parallelism. However, as the number of processes increases, it be-
comes more challenging to achieve a good scaling efficiency due
to the increased communication cost. For example, let us consider
a case in which the number of local training samples per pro-
cess is 8. If the training with a mini-batch size of 256 is scaled
up to 32 processes, each process works on 8 samples per itera-
tion and the achieved speedup is 22.4 (70% scaling efficiency) even
without overlapping the communications. If the batch size is in-
creased to 8192 and the training is scaled up to 1024 processes,
each process handles the same 8 samples per iteration. However,
the achieved speedup is only 171.4 (16.7% scaling efficiency). Al-
though each process has the same computational workload per
iteration, the large batch training averages the gradients across a
larger number of processes, and the communication cost is signif-

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23

Fig. 12. The training loss (left) and top-1 validation accuracy of ResNet50 training with a batch size of 8, 192. Both the training and validation curves do not show a large
difference (75.41 ± 0.1% vs 75.22 ± 0.1%).

Fig. 13. The scaling performance of ResNet50 training with a batch size of 8, 192. The training scales up to 2, 048 processes on 2, 048 Cori KNL nodes. ‘With LazyUp’ shows
a significantly improved scalability than ‘Without LazyUp’.
icantly increased. This scaling efficiency issue can be alleviated by
applying our proposed method. As shown in Fig. 13, the lazy up-
date method lowers the update frequency at the bottom layers and
the per-iteration communication cost is significantly reduced. This
result demonstrates that the proposed method effectively improves
the scaling efficiency regardless of the mini-batch size.

In our ImageNet training with a batch size of 8192, the up-
date interval k moves between 5 and 6 during the whole training.
This means that the parameters at the bottom 24 layers are up-
dated using the accumulated gradients computed from 40K ∼ 48K
training samples. This result implies that, by having a different up-
date frequency across layers, we can break the problem-dependent
threshold of batch size that degrades the generalization perfor-
mance.

5. Conclusion

In this paper, we proposed a parallel CNN training algorithm
that adjusts the parameter update frequency at a part of model
layers at run-time. In this study, we get an insight that a fixed
same parameter update frequency at all the layer may not be
needed for minimizing the cost function. Our experimental re-
sults demonstrate that the lower parameter update frequency at
the input side layers than the output side layers does not much
affect the convergence accuracy while significantly reducing the
per-iteration communication cost in parallel training. We also em-
pirically proved that the proposed method effectively improves the
scaling efficiency of the large batch training as well. Our approach
is to control the parameter update frequency based on the de-
gree of noise in the gradients during the training. So, although
21
we studied the scaling performance of parallel CNN training, the
lazy update method can be applied to other types of neural net-
works such as fully-connected network or recurrent neural net-
work. If a small accuracy drop is acceptable by users, the proposed
training strategy can be a practical option for large-scale deep
learning-based applications. In addition, we could observe that our
proposed training method increases the validation accuracy more
rapidly than the classical mini-batch SGD training before decaying
the learning rate. We believe that explaining this symptom and
finding a way of keeping the good generalization performance un-
til the convergence can be an interesting future work.

CRediT authorship contribution statement

Sunwoo Lee: Conceptualization, Investigation, Methodology,
Software, Writing – original draft. Qiao Kang: Conceptualization,
Writing – review & editing. Reda Al-Bahrani: Conceptualization,
Writing – review & editing. Ankit Agrawal: Supervision, Writing
– review & editing. Alok Choudhary: Supervision. Wei-keng Liao:
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This material is based upon work supported in part by the U.S.
Department of Energy, Office of Science, Office of Advanced Sci-

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23
entific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program award numbers DE-SC0021399 and
DE-SC0019358, and the NIST award 70NANB19H005.

References

[1] A.F. Aji, K. Heafield, Sparse communication for distributed gradient descent,
preprint, arXiv:1704 .05021, 2017.

[2] D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, Qsgd: communication-
efficient sgd via gradient quantization and encoding, in: Advances in Neural
Information Processing Systems, 2017, pp. 1709–1720.

[3] L. Balles, J. Romero, P. Hennig, Coupling adaptive batch sizes with learning
rates, preprint, arXiv:1612 .05086, 2016.

[4] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine
learning, SIAM Rev. 60 (2018) 223–311.

[5] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,
2004.

[6] C.Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, K. Gopalakrishnan, Adacomp:
adaptive residual gradient compression for data-parallel distributed training,
in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[7] G. Cong, O. Bhardwaj, M. Feng, An efficient, distributed stochastic gradient
descent algorithm for deep-learning applications, in: 2017 46th International
Conference on Parallel Processing (ICPP), IEEE, 2017, pp. 11–20.

[8] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q.V. Le, et al., Large scale distributed deep networks, in: Advances in
Neural Information Processing Systems, 2012, pp. 1223–1231.

[9] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale
hierarchical image database, in: CVPR09, 2009.

[10] W. Dong, M. Keceli, R. Vescovi, H. Li, C. Adams, T. Uram, V. Vishwanath, B.
Kasthuri, N. Ferrier, P. Littlewood, Scaling distributed training of flood-filling
networks on hpc infrastructure for brain mapping, preprint, arXiv:1905 .06236,
2019.

[11] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tul-
loch, Y. Jia, K. He, Accurate, large minibatch sgd: training imagenet in 1 hour,
preprint, arXiv:1706 .02677, 2017.

[12] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding, preprint, arXiv:
1510 .00149, 2015.

[13] S.H. Hashemi, S.A. Jyothi, R.H. Campbell, Tictac: accelerating distributed deep
learning with communication scheduling, preprint, arXiv:1803 .03288, 2018.

[14] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 770–778.

[15] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, M. Li, Bag of tricks for image clas-
sification with convolutional neural networks, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 558–567.

[16] E. Hoffer, I. Hubara, D. Soudry, Train longer, generalize better: closing the gen-
eralization gap in large batch training of neural networks, in: Advances in
Neural Information Processing Systems, 2017, pp. 1731–1741.

[17] J. Kiefer, J. Wolfowitz, et al., Stochastic estimation of the maximum of a regres-
sion function, Ann. Math. Stat. 23 (1952) 462–466.

[18] K. Kim, T.B. Costa, M. Deveci, A.M. Bradley, S.D. Hammond, M.E. Guney, S.
Knepper, S. Story, S. Rajamanickam, Designing vector-friendly compact blas and
lapack kernels, in: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ACM, 2017, p. 55.

[19] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh,
M. Matheson, J. Deslippe, M. Fatica, et al., Exascale deep learning for climate
analytics, in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, IEEE Press, 2018, p. 51.

[20] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M.M.A. Patwary, T. Malas, N.
Sundaram, W. Bhimji, M. Smorkalov, et al., Deep learning at 15pf: supervised
and semi-supervised classification for scientific data, in: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis, ACM, 2017, p. 7.

[21] S. Lee, A. Agrawal, P. Balaprakash, A. Choudhary, W.K. Liao, Communication-
efficient parallelization strategy for deep convolutional neural network train-
ing, in: 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC), IEEE,
2018, pp. 47–56.

[22] S. Lee, D. Jha, A. Agrawal, A. Choudhary, W.k. Liao, Parallel deep convolu-
tional neural network training by exploiting the overlapping of computation
and communication, in: 2017 IEEE 24th International Conference on High Per-
formance Computing (HiPC), IEEE, 2017, pp. 183–192.

[23] S. Lee, Q. Kang, S. Madireddy, P. Balaprakash, A. Agrawal, A. Choudhary, R.
Archibald, W.k. Liao, Improving scalability of parallel cnn training by adjust-
ing mini-batch size at run-time, in: 2019 IEEE International Conference on Big
Data (Big Data), IEEE, 2019, pp. 830–839.

[24] H. Li, Deep learning for natural language processing: advantages and chal-
lenges, Nat. Sci. Rev. (2017).
22
[25] B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, Enhanced deep residual networks
for single image super-resolution, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 136–144.

[26] Y. Lin, S. Han, H. Mao, Y. Wang, W.J. Dally, Deep gradient compression: reducing
the communication bandwidth for distributed training, preprint, arXiv:1712 .
01887, 2017.

[27] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, J. Don-
garra, High-performance matrix-matrix multiplications of very small matrices,
in: European Conference on Parallel Processing, Springer, 2016, pp. 659–671.

[28] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He, T.
Kärnä, D. Moise, S.J. Pennycook, et al., Cosmoflow: using deep learning to learn
the universe at scale, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, IEEE Press, 2018,
p. 65.

[29] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu, 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns, in: Fifteenth
Annual Conference of the International Speech Communication Association,
2014.

[30] A. Sergeev, M.D. Balso, Horovod: fast and easy distributed deep learning in
TensorFlow, preprint, arXiv:1802 .05799, 2018.

[31] M. Si, A.J. Pena, J. Hammond, P. Balaji, M. Takagi, Y. Ishikawa, Dynamic adapt-
able asynchronous progress model for mpi rma multiphase applications, IEEE
Trans. Parallel Distrib. Syst. 29 (2018) 1975–1989.

[32] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, preprint, arXiv:1409 .1556, 2014.

[33] N. Strom, Scalable distributed dnn training using commodity gpu cloud com-
puting, in: Sixteenth Annual Conference of the International Speech Communi-
cation Association, 2015.

[34] C. Szegedy, A. Toshev, D. Erhan, Deep neural networks for object detection, in:
Advances in Neural Information Processing Systems, 2013, pp. 2553–2561.

[35] Y. Tai, J. Yang, X. Liu, Image super-resolution via deep recursive residual net-
work, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3147–3155.

[36] R. Timofte, E. Agustsson, L. Van Gool, M.H. Yang, L. Zhang, B. Lim, S. Son,
H. Kim, S. Nah, K.M. Lee, et al., Ntire 2017 challenge on single image super-
resolution: methods and results, in: Computer Vision and Pattern Recognition
Workshops (CVPRW), 2017 IEEE Conference on, IEEE, 2017, pp. 1110–1121.

[37] H. Wang, S. Guo, R. Li, Osp: overlapping computation and communication in
parameter server for fast machine learning, in: Proceedings of the 48th Inter-
national Conference on Parallel Processing, 2019, pp. 1–10.

[38] S. Wang, A. Pi, X. Zhou, Scalable distributed dl training: batching communica-
tion and computation, in: Proc. of AAAI, 2019.

[39] J. Wangni, J. Wang, J. Liu, T. Zhang, Gradient sparsification for communication-
efficient distributed optimization, in: Advances in Neural Information Process-
ing Systems, 2018, pp. 1299–1309.

[40] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, H. Li, Terngrad: ternary gra-
dients to reduce communication in distributed deep learning, in: Advances in
Neural Information Processing Systems, 2017, pp. 1509–1519.

[41] Y. You, I. Gitman, B. Ginsburg, Large batch training of convolutional networks,
preprint, arXiv:1708 .03888, 2017.

[42] Y. You, Z. Zhang, C.J. Hsieh, J. Demmel, K. Keutzer, Imagenet training in minutes,
in: Proceedings of the 47th International Conference on Parallel Processing,
2018, pp. 1–10.

[43] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep learning based
natural language processing, IEEE Comput. Intell. Mag. 13 (2018) 55–75.

[44] S. Zagoruyko, N. Komodakis, Wide residual networks, preprint, arXiv:1605 .
07146, 2016.

[45] S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-shot refinement neural network
for object detection, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2018, pp. 4203–4212.

Sunwoo Lee received his B.S. degree and M.S. de-
gree in Computer Engineering from Hanyang Univer-
sity, South Korea. He is currently a Ph.D. candidate in
the Department of Electrical and Computer Engineer-
ing at Northwestern University. Sunwoo Lee’s research
interests lie in scalable large-scale deep learning algo-
rithms and its applications.

Qiao Kang received his first-class B.S. degree in
Computer Science and Statistics from the University of
St. Andrews. He is currently a Ph.D. candidate in the
Department of Electrical and Computer Engineering at
Northwestern University. Qiao Kang’s research inter-
ests lie in High-Performance Computing and spatio-
temporal anomaly detection.

http://refhub.elsevier.com/S0743-7315(21)00183-0/bib497CD9568782F23F4C2146E55A40DB72s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib497CD9568782F23F4C2146E55A40DB72s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib75997DD4E7A4020FF6C89F96CFC936E1s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib75997DD4E7A4020FF6C89F96CFC936E1s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib75997DD4E7A4020FF6C89F96CFC936E1s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib94B791F85A0A4577BA4200BFD03D68E8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib94B791F85A0A4577BA4200BFD03D68E8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib4D29EA5F748C4CFDA37434CE76A5E788s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib4D29EA5F748C4CFDA37434CE76A5E788s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibB9E9DD1FA31D98CF8EB1B96E735550BAs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibB9E9DD1FA31D98CF8EB1B96E735550BAs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib618AC7483526D02A11633487CCACC0E4s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib618AC7483526D02A11633487CCACC0E4s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib618AC7483526D02A11633487CCACC0E4s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib783D2A1CF3B891680A8C491761143BB0s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib783D2A1CF3B891680A8C491761143BB0s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib783D2A1CF3B891680A8C491761143BB0s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibBF74FB18E6ECB48CFFA67A7FABFAF367s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibBF74FB18E6ECB48CFFA67A7FABFAF367s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibBF74FB18E6ECB48CFFA67A7FABFAF367s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibAB7528D62A2B9F57059A10201D4BE650s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibAB7528D62A2B9F57059A10201D4BE650s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib3F7FBF64483495BB6F1A92855FF5E0A3s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib3F7FBF64483495BB6F1A92855FF5E0A3s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib3F7FBF64483495BB6F1A92855FF5E0A3s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDBE9C72DB501F482374DE5C316883B4As1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDBE9C72DB501F482374DE5C316883B4As1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDBE9C72DB501F482374DE5C316883B4As1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib49637A908B316FF59DFB00E989EA48B2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib49637A908B316FF59DFB00E989EA48B2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibD53410E0224382FF99153246A679F83Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibD53410E0224382FF99153246A679F83Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibD53410E0224382FF99153246A679F83Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib40263223BECF790F8198E5EC0AEEA408s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib40263223BECF790F8198E5EC0AEEA408s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib40263223BECF790F8198E5EC0AEEA408s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib63A9F0EA7BB98050796B649E85481845s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib63A9F0EA7BB98050796B649E85481845s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib63A9F0EA7BB98050796B649E85481845s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2C1E227ADCDF78BAD718A758CD4004BEs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2C1E227ADCDF78BAD718A758CD4004BEs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDA3D89D67790658C60AD3BA52CE7F1ECs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDA3D89D67790658C60AD3BA52CE7F1ECs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDA3D89D67790658C60AD3BA52CE7F1ECs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibDA3D89D67790658C60AD3BA52CE7F1ECs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibAFD3C6269A35E9CAD3342E268437888Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibAFD3C6269A35E9CAD3342E268437888Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibAFD3C6269A35E9CAD3342E268437888Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibAFD3C6269A35E9CAD3342E268437888Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib05AD21E7BF7D55BDC64A49124A35EF9Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib05AD21E7BF7D55BDC64A49124A35EF9Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib05AD21E7BF7D55BDC64A49124A35EF9Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib05AD21E7BF7D55BDC64A49124A35EF9Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib05AD21E7BF7D55BDC64A49124A35EF9Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib7A933C7B91D1083C2F18C8ACBEB4C5FBs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib7A933C7B91D1083C2F18C8ACBEB4C5FBs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib7A933C7B91D1083C2F18C8ACBEB4C5FBs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib7A933C7B91D1083C2F18C8ACBEB4C5FBs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibEADE6B53F6AD9467CCE3FC451E6FD72Cs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibEADE6B53F6AD9467CCE3FC451E6FD72Cs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibEADE6B53F6AD9467CCE3FC451E6FD72Cs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibEADE6B53F6AD9467CCE3FC451E6FD72Cs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib1C5DCD10931A62D19CC6EBFC0CF010B9s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib1C5DCD10931A62D19CC6EBFC0CF010B9s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib1C5DCD10931A62D19CC6EBFC0CF010B9s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib1C5DCD10931A62D19CC6EBFC0CF010B9s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib33D15702291057AAF571DAC521ED771Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib33D15702291057AAF571DAC521ED771Bs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib23FDD4EAEC95B262954C2B9CB2C875D2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib23FDD4EAEC95B262954C2B9CB2C875D2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib23FDD4EAEC95B262954C2B9CB2C875D2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2592F43E402BFE902D864312FD85F05Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2592F43E402BFE902D864312FD85F05Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2592F43E402BFE902D864312FD85F05Ds1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibA5B17C098B69A8E66D9489F73A82CAE2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibA5B17C098B69A8E66D9489F73A82CAE2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibA5B17C098B69A8E66D9489F73A82CAE2s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib51BDAF4F95C09C1C644EE4D4B4C7FA2Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib51BDAF4F95C09C1C644EE4D4B4C7FA2Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib51BDAF4F95C09C1C644EE4D4B4C7FA2Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib51BDAF4F95C09C1C644EE4D4B4C7FA2Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib51BDAF4F95C09C1C644EE4D4B4C7FA2Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib721101166F81FB0AEBCEF55946019470s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib721101166F81FB0AEBCEF55946019470s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib721101166F81FB0AEBCEF55946019470s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib721101166F81FB0AEBCEF55946019470s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib33B6DC63DB6B68A508557ABB66D372A8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib33B6DC63DB6B68A508557ABB66D372A8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2D6B19FF78E61CDEA1470AFA856EFB23s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2D6B19FF78E61CDEA1470AFA856EFB23s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2D6B19FF78E61CDEA1470AFA856EFB23s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2202EF49C3AF5C3B6072B0C9DCB9D70Cs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib2202EF49C3AF5C3B6072B0C9DCB9D70Cs1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib4DE2DBE09D79F1F720A76E73395B8C86s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib4DE2DBE09D79F1F720A76E73395B8C86s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib4DE2DBE09D79F1F720A76E73395B8C86s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib47BD046D8D0459D1FE008B1455579AC3s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib47BD046D8D0459D1FE008B1455579AC3s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib53A70361FD5E3FBD9944BBA505CC7CC8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib53A70361FD5E3FBD9944BBA505CC7CC8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib53A70361FD5E3FBD9944BBA505CC7CC8s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibBFE197BE6736650DC178D1F385550726s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibBFE197BE6736650DC178D1F385550726s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibBFE197BE6736650DC178D1F385550726s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib168F16447A4960E5AE998BC7304889B0s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib168F16447A4960E5AE998BC7304889B0s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib6FFCDC70DF32EE375936C08567EAE799s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib6FFCDC70DF32EE375936C08567EAE799s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib6FFCDC70DF32EE375936C08567EAE799s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib24D757DF7D5169EE738EA2559CE91A4Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib24D757DF7D5169EE738EA2559CE91A4Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib24D757DF7D5169EE738EA2559CE91A4Es1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibC1573785B915B5E19E0EAE29EF9D9F72s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibC1573785B915B5E19E0EAE29EF9D9F72s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibC74A5A985BF5E8276CCFF28FDF42E289s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibC74A5A985BF5E8276CCFF28FDF42E289s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bibC74A5A985BF5E8276CCFF28FDF42E289s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib673D851D810C6F8F8CBA17FACA5F43E7s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib673D851D810C6F8F8CBA17FACA5F43E7s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib31D6E16A7947A007DB7F35E56A33E806s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib31D6E16A7947A007DB7F35E56A33E806s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib64B2EC33D7C71A2D660C5BF7C8324801s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib64B2EC33D7C71A2D660C5BF7C8324801s1
http://refhub.elsevier.com/S0743-7315(21)00183-0/bib64B2EC33D7C71A2D660C5BF7C8324801s1

S. Lee, Q. Kang, R. Al-Bahrani et al. Journal of Parallel and Distributed Computing 159 (2022) 10–23
Reda Al-Bahrani received his B.S. in Computer Sci-
ence from King Fahd University of Petroleum and
Minerals, Saudi Arabia and M.S. in eCommerce Tech-
nology from DePaul University. He recently obtained
a Ph.D. from the Department of Electrical and Com-
puter Engineering at Northwestern University. Reda
Al-Bahrani’s research interests lie in the area machine
learning and its applications.

Ankit Agrawal (Ph.D. 2009, B.Tech. 2006) is a
Research Associate Professor in the Department of
Electrical and Computer Engineering at Northwest-
ern University, USA. He specializes in interdisciplinary
big data analytics via high performance data mining,
based on a coherent integration of high-performance
computing and data mining to develop customized
solutions for big data problems.

Prof. Alok Choudhary is both a professor and an
entrepreneur. Dr. Alok Choudhary is the founder of
4C insights, a data science and AI software company.
Prof. Alok Choudhary’s research over the last decades
focused on big data science, supercomputing, scalable
data mining, Machine Learning, AI and their applica-
tions in sciences (e.g. climate understanding, astro-
physics, designing materials etc.), medicine and busi-
ness applications.

Prof. Wei-keng Liao is a Research Professor in the
Department of Electrical and Computer Engineering at
Northwestern University. His research interests are in
the area of high-performance computing, parallel I/O,
parallel file systems, data mining, and data manage-
ment for large-scale scientific applications.
23

	Improving scalability of parallel CNN training by adaptively adjusting parameter update frequency
	1 Introduction
	2 Background and related works
	2.1 Mini-batch SGD-based CNN training
	2.2 Parallelization strategies

	3 CNN training with lazy parameter update
	3.1 Bounding gradient noise with respect to direction
	3.2 Bounding gradient noise with respect to magnitude
	3.3 Adaptive lazy update interval
	3.4 Parallel implementation

	4 Performance evaluation
	4.1 CIFAR-10 classification
	4.2 ImageNet classification
	4.3 DIV2K image super-resolution
	4.4 Performance analysis and discussion
	4.5 Large batch training

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

