
Search Space Preprocessing in Solving Complex Optimization Problems

Ruoqian Liu, Ankit Agrawal, Wei-keng Liao, Alok Choudhary
EECS Department

Northwestern University
Evanston, IL USA

{rll943,ankitag,wkliao,choudhar}@eecs.northwestern.edu

Abstract—
We look at the complexity placed by big search spaces,

dominated by the number of variables and domain of each
variable, in search and optimization problems. While a large,
even infinite, search domain impairs the effectiveness and
efficiency of search, a complex structure of constraints further
increases the difficulty in that the search space becomes highly
irregular. We propose in this position paper that data mining
and dimension reduction techniques have a potential in ad-
dressing the pressing issues in both combinatorial optimization
and continuous optimization. By preprocessing the original
search space, data mining can help boost the speed of search
by guiding the search effort to a reduced, more promising area.

Keywords-optimization; complexity reduction; data mining;
dimension reduction;

I. INTRODUCTION

Big data means more than just the volume of existing,
collected data. Complexity can occur from the existence of
a large problem space, dominated by the number of features
and domains of features, from which decisions, solutions,
and answers are to be discovered. A problem space is the
stretch of the complete set of data that can possibly happen
in this problem. Performing searches in a large problem
space is a common practice, whether it is to find a satisfiable
solution (e.g. in a constraint satisfaction problem), a best
solution (e.g. in an optimization problem), or an answer to a
question (e.g. in a decision problem). The larger the problem
space, the larger the set of candidate solutions, which can be
enumerated (if possible) and presented prior to the search, or
generated during runtime along the search. Either way, the
challenges incurred by variable/feature dimension, function
nonlinearity, structural heterogeneity, etc., which complicate
the size and shape and hence obscure the solution space,
hinder the search efficiency and effectiveness. In some
problems, the solution space is continuous and enumeration
is not even an option.

Nearly all learning and inference problems can be for-
mulated as an optimization problem, with a set of variables
each having its own domain, finite or infinite, and together
forms a problem (or solution) space containing all possible
solutions, an objective function that allows us to evaluate
the quality of each candidate solution, and optionally, a set
of constraints placed upon the variables. In an engineering
application, the variables are control parameters that describe

the design. The objective function is expressed to stand for
a certain system cost, convergence error (to minimize), or
profit, stability, utility (to maximize). The constraints of the
variables might originate from physical limitations, technical
difficulties, economic and feasibility considerations, and so
on. An example in chemical engineering sees optimization
needs in the design of a chemical plant in the production
of polymer gasoline [1]. In automotive engineering, a ve-
hicle simulation model is designed and the objective is to
save fuel consumption by controlling battery power, engine
speed, motor speed, etc. [2]. Other optimization applications
are seen in biological engineering (e.g. optimal enzyme
activation in metabolic networks), industrial and production
(e.g. composite structure optimization), material informatics
(e.g. optimizing a material’s property by choosing the right
structure), etc. The general goal is to look for a solution (or
multiple solutions) within a defined space which produces
the desired value of the function. Some special classes of
optimization problems can have analytical algorithms devel-
oped, such as in linear programming, integer programming,
etc., but most of the general optimization problems have to
generally rely on the simple and straightforward, search.

We look at two types of search and optimization prob-
lems: the combinatorial optimization and the continuous
optimization, each can be further complicated with imposed
constraints. Both classes of problems can be associated
with enormous search space that does not appear to admit
tractable solution algorithms exist. Therefore we are forced
to rely on searches such as the local search (for combi-
natorial optimization) and gradient or other heuristic based
search (for continuous optimization), and population-based
methods such as genetic algorithms and particle swarm
optimization.

The efficiency and effectiveness of search can be impaired
greatly by the complexity of the search space, which depends
on the variable domain, number of variables, and constraint
structure. The search strategy adopted also matters, for that
among a number of paths towards the real optimum, a good
strategy directs to the shortest one.

We propose that concepts from data mining and dimension
reduction can be used to preprocess the search space so as to
pre-design a premium search path suggesting the least search
effort. Data mining and optimization are two inseparable



and collaterally connected areas. Although what we have
seen mostly is a data mining problem formulated into an
optimization core and ended up using optimization tools to
solve for parameters, in this paper we attempt to answer
an inverse question: Can data mining, more specifically,
dimension reduction techniques, be used in large scale
optimization problems to ease the curse of dimensionality?

A downright implantation of feature selection into search
algorithms can be inappropriate, for that the number of
variables in the search problem can hardly be “reduced”. The
outcome of a search is an assignment, where each variable is
associated with a value. Discarding some of the variables, or
forming new variables as combinations of old ones, as what
common feature selection and extraction methods do, is not
going to be applicable, unless proper hypotheses are made,
for example, noisy variables exist in the original formulation
and it is our purpose to eliminate them. Problems with such
hypotheses are not our focus in this paper.

We propose, on the other hand, a preprocessing of the
search space of the original problem so as to gain knowl-
edgable insights and learn a better searching path than what
traditional heuristics offer. The search space preprocessing
performs the following major steps:
• Collect, from the problem space, a set of prototypical

variable-objective data instances, for data mining pur-
pose.

• Learn, from the collected data, an optimal search order
of variables.

• Learn, from the collected data, a reduced domain for
each variable, which together forms a reduced search
space for the problem.

• Learn, from the collected data, a set of best initial
assignments for the search to be restarted with.

• Regard the learned search order and the reduced search
space as the new, enhanced circumstance for the search.
Perform an informed search with it.

The rest of the paper is organized as follows. We begin
by introducing the background and related work of the
two areas, optimization and data mining, in Section II
and Section III. We also identify key issues in traditional
algorithms and present rooms of improvements. Section IV
goes into the methodology of the proposed framework, and
explains each of our four key processes. Finally in Section V
we conclude the paper and specify the key substances of
future deployment.

II. SOLVING OPTIMIZATION AS A SEARCH

Optimization is about finding the “absolute best” decision
which corresponds to the minimum (or maximum) of a
function, while satisfying certain constraints. Without loss
of generality, we focus on maximization problems in this
context. Most optimization problems in the world, except for
those formulated under special conditions and constraints,
have to rely on the act of search to find the solution.

Based on the type of solutions, optimization problems
can be roughly divided into discrete optimization, or combi-
natorial optimization, and continuous optimization. In turn,
searches are to perform on either a finite set of solutions,
or an infinite space of continuous values. The latter is not
necessarily more difficult, since the finite set of the former
can be so big that it cannot simply be enumerated. For
example, the search of a series of chess moves in order to
maximize the winning score.

The two classes of problems share part of the nomen-
clature as follows. An optimization problem consists of
a set of variables X = {x1, . . . , xn}, a set of domains
D = {D1, . . . , Dn}, a set of constraints C = {f1, . . . , fm},
and an objective function f0(X). A solution of the problem
is an assignment of a value to every variable in X such that
every constraint in C is satisfied.

A. Combinatorial Optimization

In a combinatorial optimization problem, domain Di is a
finite set of values that can be assigned to variable xi. The
combined set of assignments, considering the satisfaction
of C, forms a solution space Σ of possible solutions σ.
The objective function f0 is able to evaluate the quality of
each candidate solution. Our aim is to find the solution that
achieves the maximum quality.

σ∗ = arg max
σ∈Σ

f0(σ). (1)

The available means for solving a combinatorial optimiza-
tion problem depend on the form of the solution space Σ, as
well as the type of the objective. For some problems there
exists a closed-form expression of the optimum. However, in
our study, we focus on the type of problems that do not have
efficient algorithms (polynomial time complexity) to find the
optimum, either they are NP-hard, or they do not even have
any theoretical analysis of their complexity. As a result, they
are forced to rely on searches to locate the optimum, where
the search space is the same as the solution space Σ of the
problem. The search is usually heuristic-based, and usually
has no guarantees of actually finding the optimum.

Local search is a class of such algorithms that explores
the search space by moving from one candidate solution
to another, until a solution deemed optimal is found or a
time bound is elapsed. The candidate solution is also called
search states. The algorithms keep tract of a current state,
and several neighboring states regarded as “similar” to the
current one. Neighboring states are generated by making
small modifications to the current state. Similar states are
viewed as adjacent to each other in the search space. A
search path in the search space is formed by taking small
steps to move from one current state to a neighboring state
which is made the current state at the next step. Variants of
local search algorithms, including the hill climbing, beam
search, Tabu search [3], etc., mainly differ in one or more
of the key procedures:



• How to generate a neighboring state from a current one,
more specifically,
– which variable do we select to modify,
– how do we modify the selected variable.

• How to escape a suboptimal convergence with, say,
restarts.

Each of these key procedures allows room of improvement
with data mining tools, as we will explore in the methodol-
ogy section.

Another popular algorithm for discrete optimization prob-
lems is called branch and bound search, which searches
the space of partial assignments, beginning with the empty
assignment, and assigning variables in X one at a time, in
some order. The search space is presented as a tree where
internal nodes represent incomplete assignments and leaf
nodes stand for complete ones, which may or may not be
optimal. The algorithm traverses the tree, in a depth-first
manner, keeping the cost of the best solution found so far.
For each branch traversed, the upper and lower estimated
bounds on the optimal solution is checked, and the branch is
discarded if it cannot produce a better solution than the best
one found so far by the algorithm. Several key procedures
in this algorithm can be further studied by data mining:
• How to select a variable xi in the step of branching;
• During branching, once selected xi, in what order each

value in Di is used to extend the current assignment;
• How to estimate a better upper bound and lower bound.
The idea of using data mining to obtain insightful in-

formation on these issues is discussed in the methodology
section.

B. Continuous Optimization

In a continuous optimization problem, X ∈ Rn and
the objective and constraint functions fi : Rd → R, i =
0, . . . ,m. Our aim, again, is to maximize f0 and the problem
can be expressed as:

maximize f0(X)
subject to fi(X) ≤ bi, i = 1, . . . ,m.

The constants b1, . . . , bm are the limits, or bounds, for
the constraints. The domain Di is also a bound of values,
and can now be combined into C. Again, we are looking
into problems for which closed-form analytical solutions
cannot be found. Moreover, in many practical problems there
exist multiple local maxima, which obscure the actual global
maxima. Such type of problems is also of our interest of
study. The search of maximum in these problems is very
analogous to the discrete local search. We begin with an
initial X0, which can be an arbitrary choice, say, a random
guess, and move to a better and better solution.

The most common approach is gradient descent, or in the
maximization case, gradient ascent. At each update, we take
a step in the direction of the steepest ascent, following the
slope of the changing f0, in order to increase the value of

f0. Unlike hill-climbing, in the common gradient ascent all
variables are updated at the same time.

Moreover, the performance of gradient ascent depends on
the choose of the learning step η. If η is too large, the
algorithm overshoots the maximum in each iteration, while
too small a η renders the convergence too slow. Thus, rooms
of improvement in continuous optimization algorithms are:
• How to choose an initial X0 intelligently;
• How to use an ordered variable to perform the update;
• How to take into consideration the constraints during

the update;
• How to adaptively choose the step size η at each step.
We will discuss the use of data mining techniques to

attend to these issues.

III. DATA MINING AND DIMENSION REDUCTION

The literature is rich about using optimization to solve
data mining problems, but not so much for the inverse prob-
lem: incorporating data mining into optimization searches.
Even for the limited related work, the setup is rather differ-
ent. Clustering methods have been used to select promising
starting points for optimization algorithms [4], [5] from
randomly generated candidate starting points. In [6] Support
Vector Machine (SVM) is employed to learn the relationship
between the starting point of an algorithm and the final
outcome, so as to bypass the fitness evaluation that could be
expensive. A new realm of Bayesian global optimization [7]
deals with expensive cost functions where evaluating the
objective function is costly or even impossible, and the
derivatives and convexity properties are unknown. However,
those methods only work for low-dimension optimization
problems.

Dimension reduction is an important task in data mining
that tackles problem with large dimensions. High dimen-
sionality in optimization has been approached recently. In [8]
statistical and machine learning ideas are used to change the
formulation of the constraints with techniques like Principal
Component Analysis (PCA). The setting is that the true
constraint parameters lie in a low-dimensional space, but this
special structure is obscured by the added noise. However
in our setup we do not impose hypotheses to the original
problem and tend to keep variables exactly as they are.

IV. SEARCH SPACE PREPROCESSING

We consider using dimension reduction techniques to
preprocess the vast search space, so as to enhance the search
process in optimization, particularly in the high dimensional
and complex regime. We attempt to have the search force
focused in a concentrated, more promising path and prune
the irrelevant effort.

The search space of an optimization problem, whether
discrete or continuous, is dominated by three factors: the
number of variables n, the combined size of domains D of
variables, and the structure formed by the constraints. Each



constraint function can be viewed as a hyperplane in the
problem space, and together with the objective function they
form a polyhedron that is equivalent to the search space. The
more complex the structure of constraints, the more irregular
in shape the polyhedron and hence the more difficult for a
search path to form.

Our proposed search space preprocessing contains four
major components. The functionalities of each component
are introduced below, and further explained in following
subsections, with regards to the two classes of optimization
problems.

1) Dataset construction. For data mining techniques to
work, we first need to have access to a set of data that
contain valid variable assignments and the correspond-
ing objective function value (or goodness of it). In such
a dataset, each instance is an assignment along with
the evaluation score of the assignment. Each column
accounts for a variable xi, and an additional column
acts as the class label in supervised learning.

2) Search order reduction. With feature selection methods
in dimension reduction, an ordered list of variables
can be formed based on their influence and impact
towards the function value. To search with such an
informed order one has more advantage than to search
with random, or no order.

3) Search domain reduction. Each variable has its own
domain specified, which can be reduced by means of
data mining. A smaller search domain theoretically
speeds up the search.

4) Initial point selection. The initial point at restarting,
a general procedure in search to avoid local optima,
is often determined by a random guess, which has no
guarantee of ending up with yet another local optima.
Data mining can help determining a better initial point,
by learning from a collection of multiple initial points
and where they end.

After search space preprocessing completes with these
four steps, search becomes a much promising endeavor, for
that the space is reduced and a pre-planned searching path is
deployed. The following subsections explains in more detail,
the design of each step and the application in the two classes
of optimization in concern.

A. Dataset Construction

This step can be regarded as a preparation for the study
of the search space. Simply we need data to perform data
mining. For discrete problems, such a data can be a subset
of the solution set Σ, only each solution σ will be associated
with a score, given by an evaluation of the objective function
f0(σ). For continuous problems, obtaining such a data
requires drawing points from the polyhedra of feasible space.

Although the solution set and the problem space are there,
ready for us to draw instances from, the construction of
a useful data set is not as easy as one would speculate.

On the one hand, we want the data to be distinguishably
significant in that it contains instances with the most wanted
(highest or lowest depending on whether it is maximization
or minimization) function values. Randomized instances are
not as representative. A proposed solution is to transform
the problem into the regime of computational geometry,
where a polyhedra represents the feasible space, and the
vertices of the polyhedra are extreme values of the function.
Therefore, to obtain a set of extreme values is to extract the
vertices. This procedure is called vertex enumeration [9] in
computational geometry.

On the other hand, the acquisition of assignments can
be obstructed by the complexity in constraints. When the
number of constraints m is high, the number of vertices is
high. In this case, building a representation of the entire
feasible polyhedra is not an easy exercise. We propose
to use Lagrangian relaxation to relax a part of the con-
straints and construct a loosened polyhedra to place data
points. Lagrangian relaxation is a common procedure to
generate variable bounds during optimization with complex
constraints. It is generally accepted that a solution to the
relaxed problem is an approximate solution to the original
problem, therefore it is safe to claim that a critical point of
the relaxed problem is an approximate critical point of the
original problem, and should provide as useful information.

B. Search Order and Domain Reduction

The essential idea of preprocessing the search space is
to reduce it. Therefore, these two-fold reduction is the
centerpiece of the proposed work. First of all, the n variables
can form a ranked list as a result of feature selection. Second,
the searchable domain of each variable can be reduced
(or formed if that variable is unbounded) by classification
schemes.

Feature selection methods in data mining, such as Infor-
mation Gain, Chi-square, and SVM evaluator, study the vari-
able relations towards the target, through either calculating
a metric or building a classifier. Some outputs a rank of the
variables which can be used as an ordered searching path.

The search domain of each variable can be reduced
by building a rule-based classifier with data labeled from
two classes, with relatively high values represented by the
symbol “H” and the contradictory class labeled as “L”.
We propose to use rule-based classifiers because they are
easily traversed and thresholds are clearly attained. After a
classifier is constructed, we look for the rules with “H” if
our purpose is to maximize. Each rule should contain “IF”
clauses with variables and value thresholds. The thresholds
of variables in the critical rules can be used as new bounds
for the corresponding variable.

C. Initial point selection

Restarting is a common procedure in a lot of search
algorithms, especially for non-convex problems with mul-



tiple local maxima. Aiming to escape a plateau caused by
local maxima, one often restarts with another initial point to
conduct a new search. The initial point is often determined
rather carelessly, by a simple randomization. We argue that
a learned, verified, deliberately selected initial point to start
the search with can be of great value to the search result
and efficiency.

Such a learning can be performed on a collected data set
of multiple starting points of assignments, each with (the
goodness of) where and how it ends. Classification models
can be trained to differentiate good starting points from bad
ones, therefore during the search, the selection of starting
points can become well informed, and redundant and futile
search paths can be avoided.

V. CONCLUSION

Search and optimization in big data realm is becoming
more and more challenging due to the increasing size
and complexity of the problem space, which indicates an
enormous number of candidates of solution, contained in
a highly obscured irregular space. The high dimensions in
variables and large complexity in constraints can render
traditional search methods time consuming and ineffective.

Optimization has been a principal act in machine learning
and data mining ever since the very beginning of develop-
ment of regression analysis back in the 1800s. For exam-
ple, linear regression is about finding the right coefficient
assignment to optimize a least squares error. The act of
search has been a general procedure in solving optimization
problems where an analytical solution can hardly be found.
As an interesting turn of events, we consider that data
mining can also serve to assist the optimization search
by preprocessing the search space, with variable relations
analysis, search space reduction, searching path refinement,
and initial condition validation.

This position paper pursues precisely this avenue, with a
structure that incorporates ideas from computational geome-
try, machine learning, data mining and dimension reduction.
The proposed method, search space preprocessing, is to
be deployed prior to the search, to construct an enhanced
condition by reordering the search path, reducing the search
domain, and knowledgeably select initial points to restart
from.

Our approach attempts to reduce the search space and
direct the searching effort to a concentrated, more promising
area. Unlike a usual data mining problem where data is
always given, what we have in an search and optimization
problem is only a constrained function. To be able to
perform data mining techniques to gain informative insights,
we design a data construction technique based on vertex
enumeration and Lagrangian relaxation, so that significant
and representative data instances are attained. Based on
the constructed data, we design a strategy for refining the
search path and reducing the search region using feature

selection and classification techniques. For searches that
require multiple restarts to escape from local optima, we
provide means to differentiate good starting points from
bad ones, so that one can choose informedly each round
of restart.

To successfully deploy the designed approach in future
work, one needs to verify the effectiveness of each of the
four steps with empirical study. For example, is a polarized
data set, containing only instances of “extremely high” and
“extremely low” objective values a better learning base
than, say, a random set? Is the variable order generated by
feature selection meaningful? Which feature selection should
we use under different circumstances? In using rule-based
classifiers to extract a reduced domain for each variable,
how to deal with contradictory bounds from different rules?
And finally, how much improvement in search speed and
accuracy considering the overhead of preprocessing is worth
evaluation.

ACKNOWLEDGMENT

This work is supported in part by the following grants:
NSF awards CCF-1029166, ACI-1144061, IIS-1343639, and
CCF-1409601; DOE award DESC0007456; AFOSR award
FA9550-12-1-0458; NIST award 70NANB14H012.

REFERENCES

[1] P. Friedman and K. Pinder, “Optimization of a simulation
model of a chemical plant,” Industrial & Engineering Chem-
istry Process Design and Development, vol. 11, no. 4, pp. 512–
520, 1972.

[2] J. Park, Z. Chen, L. Kiliaris, M. L. Kuang, M. A. Masrur, A. M.
Phillips, and Y. L. Murphey, “Intelligent vehicle power control
based on machine learning of optimal control parameters
and prediction of road type and traffic congestion,” Vehicular
Technology, IEEE Transactions on, vol. 58, no. 9, pp. 4741–
4756, 2009.

[3] F. Glover and M. Laguna, Tabu search. Springer, 1999.

[4] A. R. Kan and G. Timmer, “Stochastic global optimization
methods part i: Clustering methods,” Mathematical program-
ming, vol. 39, no. 1, pp. 27–56, 1987.

[5] ——, “Stochastic global optimization methods part ii: Multi
level methods,” Mathematical Programming, vol. 39, no. 1,
pp. 57–78, 1987.

[6] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and
M. Sciandrone, “Machine learning for global optimization,”
Computational Optimization and Applications, vol. 51, no. 1,
pp. 279–303, 2012.

[7] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on
bayesian optimization of expensive cost functions, with appli-
cation to active user modeling and hierarchical reinforcement
learning,” arXiv preprint arXiv:1012.2599, 2010.

[8] H. Xu, C. Caramanis, and S. Mannor, “Statistical optimization
in high dimensions,” in International Conference on Artificial
Intelligence and Statistics, 2012, pp. 1332–1340.

[9] H. Edelsbrunner, Algorithms in combinatorial geometry.
Springer, 1987, vol. 10.


