
Communication-Efficient Parallelization Strategy for Deep Convolutional Neural
Network Training

Sunwoo Lee∗, Ankit Agrawal∗, Prasanna Balaprakash†, Alok Choudhary∗, and Wei-keng Liao∗
∗EECS Department, Northwestern University, Evanston, USA

†Argonne National Laboratory, Lemont, USA
Email: ∗{slz839, ankit, choudhar, wkliao}@eecs.northwestern.edu, †pbalapra@anl.gov

Abstract—Training Convolutional Neural Network (CNN)
models is extremely time-consuming and the efficiency of its
parallelization plays a key role in finishing the training in
a reasonable amount of time. The well-known synchronous
Stochastic Gradient Descent (SGD) algorithm suffers from high
costs of inter-process communication and synchronization. To
address such problems, asynchronous SGD algorithm employs
a master-slave model for parameter update. However, it can
result in a poor convergence rate due to the staleness of the
gradient. In addition, the master-slave model is not scalable
when running on a large number of compute nodes. In this
paper, we present a communication-efficient gradient averaging
algorithm for synchronous SGD, which adopts a few design
strategies to maximize the degree of overlap between compu-
tation and communication. The time complexity analysis shows
our algorithm outperforms the traditional allreduce-based
algorithm. By training the two popular deep CNN models,
VGG-16 and ResNet-50, on ImageNet dataset, our experiments
performed on Cori Phase-I, a Cray XC40 supercomputer at
NERSC show that our algorithm can achieve 2516.36× speedup
for VGG-16 and 2734.25× speedup for ResNet-50 using up to
8192 cores.

Keywords-Convolutional Neural Network; Deep Learning;
Parallelization; Distributed-Memory Parallelization

I. INTRODUCTION

Deep Convolutional Neural Network (CNN) has been
used in many applications such as visual recognition [1], [2],
speech recognition [3], [4], natural language processing [5],
[6] and various scientific applications [7], [8], [9], showing
promising learning capabilities. Over time, the networks
are becoming deeper and larger in order to fulfill the
ever increasing demands on acquiring better classification
results [10]. Adding more hidden layers into the network
architecture allows the model to be flexible in learning better
abstract hierarchical features from the training data. Modern
deep CNN models have tens of layers and some of them
can have even more than a hundred layers. Furthermore, the
amount of available training data also increases in a faster, if
not the same, pace. Training a model on such large datasets
can take days or even weeks, making it impractical.

Considering the increasing model and data size, paral-
lelizing CNNs is imperative to finish the model training in
a reasonable amount of time. However, designing a scalable
parallel CNN is challenging due to the inherent nature

of sequential data dependency of the training algorithm.
One of the most popular algorithms for training CNNs is
Stochastic Gradient Descent (SGD) [11]. The algorithm runs
iteratively such that the model parameters are updated until it
converges to an optimum. Due to the data dependency of the
model parameters between any two consecutive iterations,
parallel SGD may suffer from an expensive inter-process
communication cost.

Recently, researchers have put much effort into improving
the scalability of parallel SGD algorithm. The traditional
synchronous SGD guarantees the optimal parameter up-
date at the cost of low parallel efficiency due to frequent
synchronizations. Asynchronous SGD was developed to
address such performance bottleneck, however it does not
guarantee convergence unless the number of workers is
sufficiently small [12], [13]. An alternative is a hybrid
approach that mixes both synchronous and asynchronous
algorithms [7]. To deal with the low efficiency issue, large
mini-batch training techniques have been proposed in [14],
[15]. By increasing the mini-batch size, the computation
to communication ratio can be raised as the time spent on
parameter updates within each epoch is relatively reduced.
The large mini-batch size can adversely affect convergence
rate, however the proposed techniques recover it by actively
adjusting the learning rate at the run time so that it achieves
the similar level of classification result to that of the standard
size (relatively small) mini-batch training.

In this paper, we present a parallelization strategy for deep
CNN training, which is based on synchronous SGD and
data-parallelism. Our parallelization strategy aims to reduce
the communication time during the process of each mini-
batch by re-designing the gradient averaging algorithm. We
relocate the intermediate data across all the workers before
computing the gradients so that each worker computes the
gradient sums for a distinct subset of the model parameters.
Then, the computed gradient sums are aggregated across all
the workers using allgather operation. The time complex-
ity of our new communication mechanism is considerably
lower than that of the traditional allreduce-based gradient
averaging method. The proposed design also enables each
worker to update only a subset of model parameters lo-
cally so that the computation for parameter update can

47

2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC)

978-1-7281-0180-4/18/$31.00 ©2018 IEEE
DOI 10.1109/MLHPC.2018.000-4

scale linearly. Additionally, we overlap the communication
with the computation to further improve the performance
scalability. The communication time is overlapped with
the computation time at other layers in both feed-forward
and backpropagation stages and it results in improving the
speedup.

To evaluate the proposed algorithms, we conducted image
classification on ImageNet[1] dataset, which is a popular and
standard benchmark for deep learning, and compare the per-
formance against the traditional allreduce-based approach.
We measured the execution time and speedup for training
two popular CNN models, VGG-16 [2] and ResNet-50 [16].
All the experiments were performed on Cori Phase-I, a Cray
XC40 parallel computer with Intel Haswell nodes. Com-
pared to the allreduce-based approach, our algorithms show
significantly improved speedups, achieving up to 2516.36×
speedup for VGG-16 and 2734.25× speedup for ResNet-50
when running on up to 8192 cores using the mini-batch size
of 256.

The rest of the paper is organized as follows. Section 2
summarizes the definition of CNN and the traditional paral-
lelization strategies. Section 3 describes our parallelization
strategy in detail. Section 4 presents the experimental results
and the comparison of our proposed parallelization strategy
and the existing works. Finally, in Section 5, we conclude
our study.

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe background on deep
learning and the existing parallelization strategies.

A. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of ar-
tificial neural network which includes convolution layers
[17]. The convolution layers enable the model to exploit
the spatially-local correlation in the input images by using
the local connectivity pattern. The local connectivity pattern
is called a filter. Figure 1 illustrates the typical structure of
a CNN model. Given the input data at the first layer, a few
convolution layers extract the abstract features. Then, a set
of fully-connected layers perform the classification based on
the information provided by the convolution layers. Each
convolution layer can be followed by a pooling layer to
ignore less-important information. All the layers except the
pooling layers may have different activation functions such
as sigmoid, hyperbolic tangent (tanh), or Rectified Linear
Unit (ReLU) [18].

B. Mini-Batch Stochastic Gradient Descent

The most popular optimization technique for training
CNNs is Mini-Batch Stochastic Gradient Descent (SGD).
Mini-Batch SGD is a variant of the traditional SGD [11].
A model is trained on a small subset of the given dataset
(known as mini-batch) iteratively until it converges to an

CNN

… …

Input Layer
(Input Images)

Convolution Layer

Pooling Layer Fully-Connected Layer

Output Layer
(Softmax Layer)

Feature Map (Filter)

Full Connection

Local Connection

Figure 1: The structure of a CNN model. The model consists
of convolution layers, pooling layers, and fully-connected
layers.

optima. The entire dataset is randomly shuffled before par-
titioned into mini-batches so as to avoid the overfitting.

The training consists of two stages, feed-forward and
backpropgation. In the feed-forward stage, the input data is
evaluated to compute activations, going through the model
layers in a forward direction. Then, in the backpropagation
stage, the errors are calculated based on the output activa-
tions at the output layer and the errors are propagated in
a backward direction to adjust the parameters. Once the
activations and errors are computed, the gradient of the
cost function with respect to the parameters is computed at
each layer. The parameters are subtracted by the averaged
gradients multiplied by a learning rate. The activations,
errors and gradients are computed using Equation 1, 2, and
3 respectively. Algorithm 1 presents the simplified version
of the training algorithm.

aln = σ(

|W |−1∑
i=0

wl
ia

l−1
n+i + bln) (1)

eln =

|W |−1∑
i=0

wl+1
i el+1

n−i (2)

∆wl
n =

|X|−|W |∑
i=0

elia
l−1
n+i, (3)

where aln, bln, and eln are the nth activation, bias, and error
in layer l, respectively, wl

i is an weight on the ith connection
between layer l and layer l−1, |W | is the number of weights
in the filter between the l − 1th layer and lth layer, |X| is
the number of neurons in the l − 1th layer, and σ is the
activation function. At the first layer, al−1n+i is the input data.

We define a few notations to analyze the complexity of
algorithm: N is the largest number of neurons among all
the layers, L is the total number of layers in the model,
M is the number of mini-batches, and K is the size of
each mini-batch. Since the maximum feature map size in
the convolution layers is N , the complexity of processing

48

Algorithm 1 Mini-Batch SGD CNN Training Algorithm
(M : the number of mini-batches, L: the number of layers

1: for each mini batch m = 0, ...M − 1 do
2: Initialize ∆W = 0

3: Get the mth mini batch, Dm.
4: for each layer l = 0, ...L− 1 do
5: Calculate activations Al based on Dm.
6: for each layer l = L− 1, ...0 do
7: Calculate errors El.
8: Calculate weight gradients ∆W l.
9: for each layer l = 0, ...L− 1 do

10: Update parameters, W l and Bl.

each image at a layer is O(N2). Algorithm trains L layers
on MK images. Therefore, the complexity of an epoch of
training is O(LMKN2).

C. Existing Parallelization Strategies

1) Synchronous SGD: Synchronous SGD can be imple-
mented using either model-parallelism or data-parallelism
[19]. If a model is distributed on multiple workers and each
worker contributes to the assigned partial model only, it is
called model-parallelism. On the other hand, if each mini-
batch is distributed on multiple workers and the model is
trained by the averaged information across all the workers,
it is called data-parallelism. In both approaches, the gradients
are computed in a synchronous way so that the parameter
updates are always optimal. Recently, data-parallelism is
prefered over model-parallelism due to the less frequent
synchronizations. In model-parallelism, the activations and
errors at each layer should be aggregated across all the
workers before starting the next layer computation due to
the data dependency across the layers. In contrast, in data-
parallelism, the gradients are aggregated and summed up
at each iteration. The data dependency exists only across
two consecutive iterations and it results in having less
frequent synchronizations. Many existing works adopt data-
parallelism[7], [20], [21], [22].

2) Asynchronous SGD: Asynchronous SGD (ASGD) has
been proposed to address the poor scalability issue of
synchronous SGD. The most popular asynchronous training
algorithm is Downpour SGD [10]. The model parameters
are located in a parameter server and all the workers con-
tribute to the shared model parameters in an asynchronous
way. Each worker processes a mini-batch and sends the
computed gradients to the parameter server. All the workers
are assigned with different mini-batches and they work on
the assigned mini-batches independently of each other. In
this way, the scalability is significantly improved since the
workers only perform point-to-point communications with
the parameter server. However, due to the asynchrony across
the workers, every worker has a certain degree of gradient

staleness and it results in lowering the convergence rate.
3) Training with Large Mini-Batch size: Using a large

batch size can improve the scalability of parallel SGD
algorithm. Since the ratio of the computation to the com-
munication increases, it results in improving the scalability.
However, the larger batch size also adversely affects the clas-
sification accuracy. To tackle the large batch size, Goyal et
al. [15] and You et al. [14] proposed a few techniques which
improve the classification results by dynamically tuning the
hyper-parameters such as learning rate or momentum factor
in a more fine-grained way. The techniques in [15], [14]
enable the large batch trainings to achieve the reasonable
level of classification results while enjoying the improved
scalability.

III. PARALLELIZATION STRATEGY

In this section, we describe our parallelization strategy for
deep CNN training. We begin with a high-level description
of the communication-efficient gradient averaging algorithm.
Then, we analyze the theoretical communication cost and
compare it to the optimal cost of the traditional algorithms.
Based on the proposed algorithm, we also propose a scalable
model parameter update method and a strategy for overlap-
ping computation and communication.

A. Communication-Efficient Gradient Averaging

For the later discussion, we first define a few notations:
P is the number of workers, K is the mini-batch size, N
is the number of neurons at a layer, N ′ is the number of
neurons at the previous layer, D is the number of filters at a
convolution layer and F is the size of each filter. Note that
our discussion considers only a single layer since the same
analysis can be applied to all the layers in the same way.

1) Fully-Connected Layers: In data-parallelism, the stan-
dard way of averaging the gradients at a fully-connected
layer can be defined as follows: Given the current layer’s
error matrix of size N×K

P and the previous layer’s activation
matrix of size N ′ × K

P , compute the gradient matrix of
size N ×N ′ by multiplying the two matrices (one may be
transposed depending on the data layout). Then, sum up the
gradient matrix across all the nodes using allreduce opera-
tion. Finally, the gradient sums are averaged by multiplying
the reciprocal of K to all the elements.

In our gradient averaging algorithm, instead of computing
a N × N ′ gradient matrix for K

P training samples at each
node, we relocate the activations and errors across the nodes
and calculate a partial gradient matrix of size N × N ′

P for
K training samples at each node. First, the activations are
scattered across all the nodes using all-to-all operation. The
size of the scattered activation matrix is K × N ′

P . Second,
the errors are gathered across all the nodes using allgather
operation. The size of the gathered error matrix is K ×N .
Then, the two matrices are multiplied to be a N× N ′

P matrix
which is the partial gradient sums for K training samples.

49

𝐸

𝐾

𝑃

𝑁

𝑁′

𝐴
𝐾

𝑃

𝑁′

𝑃

𝐴′𝐾𝐸′

𝐾

𝑁

allgather

all-to-all

× ∆𝑊′𝑁

𝑁′

𝑃

= ∆𝑊

𝑁′

𝑁
allgather

Figure 2: Communication-efficient gradient calculation.
Given an error matrix E of size N × K

P and an activation
matrix A of size N ′ × K

P , E is gathered and A is scattered
across all the nodes. Then, the gathered error E′ is multiplied
by the scattered activation A′ to compute the partial gradient
∆W ′ of size N × N ′

P . Finally, the partial gradient matrix is
gathered across all the nodes and each node ends up having
N ×N ′ gradient matrix ∆W .

Finally, the gradient sums are gathered across all the nodes
using allgather operation and each node ends up having N×
N ′ gradient sums. Figure 2 illustrates the proposed gradient
averaging algorithm.

2) Convolution Layers: The standard way of averaging
the gradients at a convolution layers is as follows: As
shown in Equation 3, the gradient matrix of size D × F is
computed by multiplying activations and errors within the
local reception field. Then, the gradient matrix is summed
up across all the nodes using allreduce operation. Finally,
the gradients are averaged by multiplying the reciprocal of
K to all the elements.

Instead of performing a single allreduce, we sum up the
gradients using two communication steps and one compu-
tation step. First, we scatter the gradient matrix using all-
to-all operation and each node becomes to have P sub-
matrices (each of size D

P × F). Second, the P sub-matrices
are summed up within each node to have a single sub-matrix
of size D

P × F . Finally, the sub gradient sums are gathered
across all the nodes using allgather operation. Figure 3
illustrates the proposed approach.

B. Theoretical Cost

In our theoretical cost analysis, we use the cost model
used in many previous works [23], [24], [25].

T = sα+ wβ, (4)

where s is the number of messages, w is the overall
message size, α is the latency per message, and β is
the reciprocal bandwidth. We follow all the assumptions
described in [24].

In this discussion, we refer to the theoretical communica-
tion cost for the collective communications shown in Table
1. n in the table is the overall data size. Note that the costs
are calculated for the long message algorithms in [24], [26]

∆𝑊𝑝

∆𝑊0

∆𝑊1

∆𝑊𝑃−1

…

∆𝑊′

∆𝑊

all-to-all allgather

summing up
gradients

𝐷

𝐹
𝐷

𝑃

𝐷

𝐹

Figure 3: Three-step reduction for gradient averaging at con-
volution layers. First the local gradients ∆W p are scattered
across all the nodes. The received partial gradient matrices
are summed up and then gathered across all the nodes to
obtain the entire gradient sums ∆W .

Table I: Theoretical cost of communication patterns for large
messages.

Communication pattern Latency Bandwidth
(s) (w)

reduce-scatter P − 1 n(P − 1)/P
all-to-all P − 1 n(P − 1)/P
allgather P − 1 n(P − 1)/P

and it is higher than the theoretical lower bounds. (pair-wise
exchange algorithm is used for reduce-scatter and all-to-all
while ring algorithm is used for allgather).

1) Fully-Connected Layers: The proposed gradient aver-
aging algorithm for fully-connected layers has three commu-
nication steps, all-to-all for activations, allgather for errors
and another allgather for the partial gradient sums. Based
on Table 1, the communication costs, Ts, Tg1, and Tg2 are
computed as following equations. The overall communica-
tion cost at a fully-connected layer, Tf is the sum of the
three costs.

Ts = (P − 1)α+
N ′K

P 2
(P − 1)β (5)

Tg1 = (P − 1)α+
NK

P
(P − 1)β (6)

Tg2 = (P − 1)α+
NN ′

P
(P − 1)β (7)

Tf = Ts + Tg1 + Tg2 (8)

In MPICH, allreduce is implemented with two different
algorithms, the binomial tree algorithm for short messages
(≤ 2KB) and Rabenseifner’s algorithm for long messages (>
2KB) [27], [24]. The communication costs are calculated as
followings.

Tbinomial = log(P)α+ log(P)nβ (9)

50

TRabenseifner = 2log(P)α+ 2
P − 1

P
nβ, (10)

where n is the overall message size. Since the gradient
size at a layer of modern CNNs is most likely larger
than 2KB, we only consider Rabenseifner’s algorithm in
this discussion. In practice, due to the large data size, the
bandwidth term wβ is dominent over the latency cost term
sα. So, we focus on the second term in Equation 4. We can
derive the following condition by comparing the bandwidth
terms of Equation 8 and 10. Note that n in Equation 10 is
NN ′.

N ′K

P
+NK < NN ′ (11)

If the above condition is satisfied, our gradient averag-
ing method guarantees a cheaper communication cost than
allreduce based approach. Note that, in modern CNNs, K
is most likely smaller than N or N ′ and the condition is
satisfied.

2) Convolution Layers: As explained, our gradient av-
eraging algorithm for convolution layers consists of three
steps, all-to-all operation, accumulating matrices, and all-
gather operation. The overall communication cost at a con-
volution layer, Tc, is calculated by the following equation.

Tc = 2(P − 1)α+ 2
DF

P
(P − 1)β (12)

Rabenseifner’s algorithm is implemented in MPICH using
a reduce-scatter operation followed by an allgather opera-
tion. Since n in Equation 10 is DF at a convolution layer,
the bandwidth term w is same as that of Tc. However, our
approach has three practical benefits: First, our approach
enables to efficiently sum up the gradients using multiple
threads. To the best of our knowledge, most of the MPI
implementations do not support multi-threaded internal com-
putation. In data-parallelism, since the entire gradients are
averaged at each iteration, the multi-threaded reduction can
make a significant performance improvement. Second, the
communication time can be overlapped with the computation
time across different reductions. Since our approach sepa-
rates the computation step and the communication step, the
computation time can overlap the communication time of
other reductions. The overlapping strategy will be discussed
in the following sub-section in detail. Finally, each workers
can locally update only a part of model parameters. The
scalable model update is also discussed in the following sub-
section.

C. Scalable Model Parameter Update

The cost of model parameter update is easily overlooked,
however it can be a significant performance bottleneck in
parallel CNN training. In our proposed gradient averaging
algorithm, at both convolution layers and fully-connected

feed-forward
layer 0

feed-forward
layer 1

alltoall
activations

layer 0

backprop
layer 1

backprop
layer 0

alltoall
activations

layer 1

allgather
errors
layer 1

allgather
errors
layer 0

feed-forward stage

back-propagation stage

gradient
calculation

layer 0

gradient
calculation

layer 1

model
update
layer 0

allgather
param
layer 0

allgather
param
layer 1

model
update
layer 1

… conv. layers …

Figure 4: An example of the ideal overlapping of 2 layers
such that the computation time at each layer is sufficiently
large to overlap the communication time. After the errors
are back-propagated through all the fully-connected layers,
process the convolution layers first. Then, calculate the
average gradients, update the partial model parameters, and
post allgathers for the updated model parameters.

layers, the final communication step is allgather. We take
advantage of the communication pattern to reduce the com-
putation complexity of model parameter update. Instead of
exchanging the gradient sums, we locally update the partial
model parameters at each worker and perform allgather for
the updated model parameters. In this way, the computation
complexity of parameter update is O(NN ′

P) without any
extra communications.

In allreduce-based gradient averaging algorithm, all the
workers end up having the gradient sums for the entire
model parameters. Then, the parameters can be updated
in two different ways. On the first hand, the entire model
parameters are updated at each worker. In this case, the
computation complexity of parameter update is O(NN ′)
which is not scalable. On the other hand, each worker can
update a distinct subset of the parameters and the updated
parameters are aggregated across all the workers. In this
case, the computation complexity is O(NN ′

P) but the extra
allgather should be performed after the update. Most of
the existing works perform the former method while Intel
distribution of Caffe [28] supports the latter one. To further
reduce the communication cost, Intel Caffe also supports a
gradient averaging algorithm which uses reduce-scatter and
allgather. The algorithm enables the O(NN ′

P) computation
complexity of the parameter update, however the overall
communication cost of reduce-scatter algorithm is the same
as that of the allreduce-based algorithm.

D. Overlapping Computation and Communication

Overlapping computation and communication is an es-
sential technique for improving the scalability. We present
an overlapping strategy based on the proposed gradient
averaging algorithm.

51

backprop
layer 1

gradient
calculation

layer 0

back-propagation stage

reduce-scatter
layer 1

allgather
gradient

sums
layer 1

allreduce

(a)

(b)

model
update
layer 0

model
update
layer 1

reduce-scatter
layer 0

allgather
gradient

sums
layer 0

backprop
layer 1

gradient
calculation

layer 0

alltoall
layer 1

sum
grads
layer1

sum
grads
layer0

alltoall
layer 0

model
update
layer 0

model
update
layer 1

allgather
param
layer 0

allgather
param
layer 1

gradient
calculation

layer 1

backprop
layer 0

gradient
calculation

layer 1

backprop
layer 0

Figure 5: An example of overlapping computation and
communication at convolution layers. (a) shows the allreduce
approach and (b) shows the proposed two-step communica-
tions. (b) enables computation and communication overlaps
across layers.

1) Fully-Connected Layers: The proposed gradient aver-
aging algorithm has three communication steps at a fully-
connected layer. First, once the activations are ready, an all-
to-all is posted in the feed-forward stage. The communi-
cation time is overlapped with the computation time until
it comes back to the layer in the backpropagation stage.
Second, an allgather is posted when the errors are computed
and the communication time is overlapped with the later
backpropagation time. When these two communication steps
are finished, the matrix A′ and E′ in Figure 2 are ready
and the gradient sums are computed. Based on the scalable
model update technique we proposed, a part of model
parameters are updated by each worker using the local
gradient sums. Finally, an allgather is posted to exchange
the new parameters across all the workers. The communica-
tion time is overlapped with the gradient computation and
parameter update times at other layers. Figure 4 illustrates
the overlapping strategy.

It is worth noting that the final allgathers are posted in
the forward order while the errors and the gradients are
computed in the backward order. This inversed order enables
to overlap the final allgather time with the feed-forward
computation time at the next iteration. While the activations
are computed at a layer, the communications for later layers
can be performed simultaneously since the model parameters
have no data dependency across layers.

2) Convolution Layers: At convolution layers, we over-
lap the computation time for summing up the gradients
and the allgather communication time. As explained, the
gradients are averaged with two communication steps at
each convolution layer. Between the two communications,
the local gradients should be summed up and each worker
ends up having the global gradient sums of a subset of

model parameters. Since the gradients do not have data
dependency across different layers, the computation time can
be overlapped with the final step communication at other
layers. Figure 5 shows example time-flow charts. Figure
5.(a) is the allreduce-based approach and Figure 5.(b) is the
proposed two-step communications for averaging gradients.

IV. EVALUATION

In order to evaluate our proposed algorithms, we compare
it to other parallelization strategies. Recently, there are many
open-source software frameworks, that support distributed-
memory parallel training, such as TensorFlow [29], Intel
Caffe [28], PyTorch [30], and Horovod [31]. Most of them
adopt the traditional allreduce-based gradient averaging al-
gorithm. Intel Caffe supports a gradient averaging algorithm
which uses reduce-scatter and allgather operations. PyTorch
and Horovod use ring-allreduce algorithm which utilizes the
network bandwidth more efficiently than the other allreduce
algorithms [32]. Since all the open-source frameworks use
different data structures, computation algorithms, and com-
munication libraries, instead of comparing them directly, we
implement the representative parallelization strategies and
compare our parallelization strategy with them. Note that
we do not compare the classification accuracy since we only
consider synchronous-parallel SGD which guarantees the
optimal parameter update. For our evaluation, we perform
ImageNet classification which is the de facto benchmark for
deep learning study.

A. Experimental Settings

We perform the experiments on Cori, a Cray XC40
supercomputer at the National Energy Research Scientific
Computing Center. Each Haswell node has two sockets and
each socket contains a 16-core Intel Haswell processor at
2.3GHz. The system has Cray Aries high speed intercon-
nections with ‘dragonfly’ topology.

We use ImageNet-1K dataset [33] for our experiments.
ImageNet has 1.2 million 3-channel(RGB) images of various
sizes for training and 50,000 images for validation. We
isotropically rescaled all the images such that the shorter
side has 256 pixels. Then, we randomly cropped them to
224×224. Finally, all the pixels are subtracted by the mean
value.

We use two representative CNN models: VGG-16 and
ResNet-50. VGG-16 is a regular CNN model proposed
by VGG group in Oxford [2]. The model consists of 8
convolution layers followed by 3 fully-connected layers. The
number of parameters is 138 million in total. ResNet-50
is one of the most popular residual network which is a
variant of the regular CNN [16]. The model consists of 49
convolution layers and 1 fully-connected layer. The overall
number of parameters is 25.5 million. We use the mini-
batch size of 256 which has been used by the original model
designers in [2], [16].

52

Single-Node Performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Caffe Intel Caffe PCNN

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

128

256

512

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Caffe Intel Caffe PCNN

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

128

256

512

Figure 6: Single-node execution time for processing a single
mini-batch. VGG-16 model (left) and ResNet-50 (right) with
varying mini-batch sizes. The performance is measured on
a Haswell node of Cori.

We implemented a software framework for deep CNNs
in C language. Intel parallel MKL library is used for
kernel functions such as matrix operations and all the non-
kernel loops are parallelized with OpenMP. We used MPI
for the distributed-memory parallelization. To maximize
the overlapping, we use POSIX thread library and has a
communuication-dedicated thread which calls the blocking
MPI functions.

In our software framework, a single MPI process runs
on each node and each process employs shared-memory
programming model to utilize all the cores within a node.
This programming model allows to have only a single model
in the memory space on each node. When spawning threads
using OpenMP, we use all 32 physical cores in each node.
We calculate the speedup based on the number of cores.
Since the mini-batch size in our experiments is 256, using
data-parallelism, we use up to 256 nodes (8192 cores in
total).

B. Results

We begin with reporting the single node performance
of our software framework. In the later experiments, we
calculate the speedup with respect to the number of compute
cores using these single node execution times. We compare
our software framework, Parallel CNN (PCNN), with the
original Caffe [28] as well as the intel distribution of
Caffe. Caffe is one of the most popularly used open-source
frameworks for deep learning. Intel Caffe is a highly opti-
mized version of Caffe for utilizing the Intel CPU hardware
features. We believe this comparison can demonstrate that
our parallel performance study is based on the reasonable
level of the single node performance.

Figure 6 presents the single node performance with vary-
ing mini-batch sizes. The left-side and right-side charts show
VGG-16 and ResNet-50 execution times respectively. The
performance was measured on a Haswell node of Cori. Note
that we only consider the execution time for processing
a single mini-batch since the same workload is repeated
for all the mini-batches. The execution time is the average

Comm Emulation

0

0.05

0.1

0.15

0.2

0.25

64 128 256 512 1024 2048 4096 8192

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(s

e
c)

Number of cores

allreduce

ring-allreduce

proposed method

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

64 128 256 512 1024 2048 4096 8192

C
o

m
m

u
n

ic
at

io
n

 t
im

e
(s

e
c)

Number of cores

all-to-all

allgather1

allgather2

Figure 7: Communication time comparison (left) and com-
munication timing breakdown (right). Our approach is com-
pared with allreduce in MPICH as well as ring-allreduce.
The overall data size is 392MB (the gradient size at the
first fully-connected layer of VGG-16 model). Our proposed
method has a shorter communication time than the other two
methods.

of 5 times of measurements. We see that PCNN shows a
comparable single node performance to Intel Caffe.

1) Communication-Efficient Gradient Averaging: We first
compare our proposed gradient averaging algorithm with the
traditional allreduce-based algorithm. In order to compare
the communication time only, we emulate the communica-
tion patterns using MPI primitive functions and compare
the overall communication times. The traditional allreduce-
based data-parallelism is implemented using MPICH allre-
duce as well as ring-allreduce. The reduce-scatter algorithm
in MPICH allreduce [26], the circular algorithm in ring-
allreduce [32], and our proposed algorithm are implemented
using MPI Send and MPI Recv functions.

In VGG-16, the first fully-connected layer has
102,760,448 weight parameters (392 MB) which take
up about 77% of the overall parameters. We measure
the communication times for averaging the gradients
at the layer and compare the timings among different
averaging approaches. Figure 7 shows the experimental
results. The left-side chart is the overall communication
time comparison and the right-side chart is the timing
breakdown of our algorithm. We see that our proposed
algorithm significantly reduces the communication time.
For the first fully-connected layer in VGG-16, the number
of activations at the previous layer N ′ is 25,088, the
number of errors at the current layer N is 4,096, the mini-
batch size K is 256. So, the layer satisfies the condition,
N ′K
P + NK < NN ′, and our algorithm takes a shorter

communication time compared to the other algorithms.
The timing breakdown on the right-side shows how much
time is spent for each of the three communication steps in
our algorithm. This result demonstrates that the proposed
algorithm has a communication complexity of O(1) for all
the three communication steps as explained in Section 3.

2) Strong Scaling Results: To evaluate the impact of
the proposed algorithms on scalability, we measure end-to-
end execution time for processing a single mini-batch and

53

Speedups

32

64

128

256

512

1024

2048

4096

8192

32 64 128 256 512 1024 2048 4096 8192

Sp
ee

d
u

p

Number of cores

Linear
allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

32

64

128

256

512

1024

2048

4096

8192

32 64 128 256 512 1024 2048 4096 8192

Sp
ee

d
u

p

Number of cores

Linear
allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

Figure 8: Strong scaling results for VGG-16 (left) and
ResNet-50 (right) models. The mini-batch size is 256. ‘allre-
duce’ is the traditional allreduce-based data-parallelism and
‘pcnn’ is the proposed parallelization strategy. The speedups
are measured using up to 8192 cores.

End-to-end execution time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

512 1024 2048 4096 8192

En
d

-t
o

-e
n

d
 e

xe
cu

ti
o

n
 t

im
e

(s
e

c)

Number of cores

allreduce_no_overlap allreduce

pcnn_no_overlap pcnn

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

512 1024 2048 4096 8192

En
d

-t
o

-e
n

d
 e

xe
cu

ti
o

n
 t

im
e

(s
e

c)

Number of cores

allreduce_no_overlap allreduce

pcnn_no_overlap pcnn

Figure 9: End-to-end execution time for processing a single
mini-batch. VGG-16 (left) and ResNet-50 (right). The mini-
batch size is 256. The results show that ‘pcnn’ outperforms
the other approaches.

speedup with respect to the number of cores. We use VGG-
16 and ResNet-50 models for this experiment and the mini-
batch size of 256.

All the open-source frameworks have different overlap-
ping strategies. For example, Tensorflow overlaps the allre-
duce time with backpropagation time only whereas Intel
Caffe overlaps the communication time using not only
the backpropagation time but also the feed-forward time
at the next iteration. So, we chose the best overlapping
strategy among them and reproduced it using allreduce-
based averaging algorithm. We categorized all the paral-
lelization strategies into 4 cases: ‘allreduce no overlap’,
‘allreduce’, ‘pcnn no overlap’, and ‘pcnn’. ‘allreduce’ is
the implementation of the overlapping strategy used in Intel
Caffe, which utilizes the backpropagation time, feed-forward
time and model update time for overlapping. The allreduce
is posted right after the local gradients are computed at each
layer. ‘pcnn’ is our software framework which uses all the
proposed algorithms. Figure 8 presents the speedup compar-
ison among the four parallelization strategies. We see that,
for both models, ‘pcnn’ shows a clear improvement over
the others. For VGG-16, ‘pcnn’ achieves up to 2516.36×
speedup while ‘allreduce’ achieves up to 559.12× speedup.
For ResNet-50, ‘PCNN’ achieves up to 2734.25× speedup
while ‘allreduce’ achieves up to 1572.01× speedup. Figure

Measurable Communication Times

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256 512 1024 2048 4096 8192

M
ea

su
ra

b
le

 c
o

m
m

u
n

ic
at

io
n

 t
im

e
(s

ec
)

Number of cores

allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

64 128 256 512 1024 2048 4096 8192

M
ea

su
ra

b
le

 c
o

m
m

u
n

ic
at

io
n

 t
im

e
(s

ec
)

Number of cores

allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

Figure 10: Measurable communication time comparison.
VGG-16 (left) and ResNet-50 (right). The mini-batch size
is 256. If the communication time is entirely overlapped
with the computation time, the measurable communication
time would be zero. ‘pcnn’ always shows lower measurable
communication time than that of ‘allreduce’.

9 shows the execution times for both models. The charts
present the results from 512 cores (16 nodes) to clearly
show the difference among the four cases. ‘pcnn’ always out
performs ‘allreduce’ and the proposed overlapping strategy
further reduces the execution time and it results in achieving
the higher speedup.

3) Overlapping Computation and Communication: As
explained in Section 3, overlapping computation and com-
munication plays a key role in our parallelization strategy. If
the computation time is not long enough to hide the entire
communication time, the next computation time should
wait for the communication to be finished. We define this
delay as ‘measurable communication time’. To evaluate the
degree of overlap, we compare the measurable communi-
cation time at each layer among different parallelization
strategies. We have the same four parallelization strategies:
‘allreduce no overlap’, ‘allreduce’, ‘pcnn no overlap’, and
‘pcnn’.

Figure 10 shows the measurable communication times in
VGG-16 training (left) and ResNet-50 training (right). On
both charts, we clearly see that the measurable communica-
tion time is reduced by the overlapping. In VGG-16 training,
the overall communication time is considerably reduced by
our gradient averaging method at the fully-connected layers
and the degree of overlap is also affected by the reduced
communication time. ‘pcnn’ starts to have non-zero measur-
able communication time on 2048 cores while ‘allreduce’
does on 512 cores. In ResNet-50 training, the measurable
communication time of ‘pcnn’ is almost zero on 2048 cores,
which means that a linear speedup can be expected. In Figure
8, on the right chart, ‘pcnn’ achieves a linear speedup on
2048 cores. In contrast, ‘allreduce’ has non-zero measurable
communication time on 1024 cores. The results demonstrate
that our proposed methods effectively improve the degree of
overlap.

54

C. Discussion

1) Impact on different types of CNNs: Depending on
the type of neural network and the model architecture, our
proposed algorithms can affect the scalability differently.
First, the proposed gradient averaging algorithm reduces the
theoretical communication cost at fully-connected layers.
So, if a model has many fully-connected layers, more
performance improvement can be expected. In this paper,
we used a regular CNN (VGG-16) as well as a residual
network (ResNet-50). Compared to the regular CNNs, the
residual networks likely have fewer fully-connected layers.
In Figure 8, VGG-16 shows a clearer speedup difference
between ‘pcnn’ and ‘ allreduce’ than ResNet-50. Second,
the proposed overlapping strategy hides each communication
time behind the computation time at other layers. If a
model has a higher ratio of computation to communication,
more communication time can be overlapped, and a higher
speedup would be achieved. In Figure 10, ResNet-50 shows
a larger difference of measurable communication time be-
tween ‘pcnn’ and ‘pcnn no overlap’ than VGG-16.

2) Large-Batch Training: As briefly introduced in Sec-
tion 1, a few techniques for large-batch training [15], [14]
have been proposed recently. The techniques enable to
increase the mini-batch size to up to 32K and it enables
to achieve a higher speedup of parallel training. Given a
fixed number of training images, the large-mini-batch size
reduces the number of iterations to process the entire training
dataset. Therefore, the overall number of communications at
each epoch is reduced, which results in achieving the higher
scalability. In this paper, we aim to improve the scalability in
a different way. Given a fixed mini-batch size, our proposed
algorithms reduce the communication time within each
iteration. If Inequality 11 is satisfied, the proposed gradient
averaging algorithm guarantees the lower communication
cost at fully-connected layers than that of the allreduce-based
approach. So, our approach can also improve the scalability
of the large-batch trainings. In addition, our overlapping
strategy will further improve the scalability regardless of
the mini-batch size. Since the large mini-batch size raises
the ratio of computation to communication, a higher degree
of overlap can be expected.

V. CONCLUSION

In this paper, we reported the performance of our proposed
algorithms for distributed-memory parallel CNN training.
The experimental results demonstrate that the proposed
algorithms make CNN training more scalable. The gradient
averaging algorithm reduces the theoretical communication
cost as well as the computation complexity of the param-
eter update. Our overlapping strategy further improves the
scalability by maximizing the overlap of the computation
and the communication in the proposed gradient averaging
algorithm. We demonstrated that our proposed algorithms
can be applied to not only the standard CNNs but also

the more recently proposed residual networks. Since the
proposed algorithms are general parallelization techniques
for neural networks, we believe they can be applied to
any kinds of large-scale neural network trainings in many
different applications.

VI. ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, Scientific Discov-
ery through Advanced Computing (SciDAC) program. This
work is also supported in part by NSF awards CCF-1409601,
DOE awards DE-SC0007456, DE-SC0014330, and NIST
award 70NANB14H012. This research used resources of the
National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(Argonne). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf
of the Government. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” IEEE Transactions on audio,
speech, and language processing, vol. 20, no. 1, pp. 30–42,
2012.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[5] R. Collobert and J. Weston, “A unified architecture for natural
language processing: Deep neural networks with multitask
learning,” in Proceedings of the 25th international conference
on Machine learning. ACM, 2008, pp. 160–167.

55

[6] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very
deep convolutional networks for text classification,” in Pro-
ceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1,
Long Papers, vol. 1, 2017, pp. 1107–1116.

[7] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas,
M. M. A. Patwary, T. Malas, N. Sundaram, W. Bhimji,
M. Smorkalov et al., “Deep learning at 15pf: supervised and
semi-supervised classification for scientific data,” in Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017,
p. 7.

[8] F. Gieseke, S. Bloemen, C. van den Bogaard, T. Heskes,
J. Kindler, R. A. Scalzo, V. A. Ribeiro, J. van Roestel, P. J.
Groot, F. Yuan et al., “Convolutional neural networks for
transient candidate vetting in large-scale surveys,” Monthly
Notices of the Royal Astronomical Society, vol. 472, no. 3,
pp. 3101–3114, 2017.

[9] D. Ushizima, C. Yang, S. Venkatakrishnan, F. Araujo,
R. Silva, H. Tang, J. V. Mascarenhas, A. Hexemer, D. Parkin-
son, and J. Sethian, “Convolutional neural networks at the
interface of physical and digital data,” in Applied Imagery
Pattern Recognition Workshop (AIPR), 2016 IEEE. IEEE,
2016, pp. 1–12.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale
distributed deep networks,” in Advances in neural information
processing systems, 2012, pp. 1223–1231.

[11] H. Robbins and S. Monro, “A stochastic approximation
method,” The annals of mathematical statistics, pp. 400–407,
1951.

[12] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel
stochastic gradient for nonconvex optimization,” in Advances
in Neural Information Processing Systems, 2015, pp. 2737–
2745.

[13] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware async-sgd for distributed deep learning,” arXiv preprint
arXiv:1511.05950, 2015.

[14] Y. You, I. Gitman, and B. Ginsburg, “Large batch training
of convolutional networks. arxiv preprint,” arXiv preprint
arXiv:1708.03888, 2017.

[15] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch sgd: training imagenet in 1 hour,” arXiv preprint
arXiv:1706.02677, 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT press, 2016.

[19] A. Krizhevsky, “One weird trick for parallelizing convo-
lutional neural networks,” arXiv preprint arXiv:1404.5997,
2014.

[20] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer,
“Firecaffe: near-linear acceleration of deep neural network
training on compute clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 2592–2600.

[21] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Srid-
haran, D. Kalamkar, B. Kaul, and P. Dubey, “Distributed
deep learning using synchronous stochastic gradient descent,”
arXiv preprint arXiv:1602.06709, 2016.

[22] N. Strom, “Scalable distributed dnn training using commodity
gpu cloud computing,” in Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

[23] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G.
Payne, and J. Watts, “Interprocessor collective communication
library (intercom),” in Scalable High-Performance Computing
Conference, 1994., Proceedings of the. IEEE, 1994, pp. 357–
364.

[24] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of
collective communication operations in mpich,” The Interna-
tional Journal of High Performance Computing Applications,
vol. 19, no. 1, pp. 49–66, 2005.

[25] R. W. Hockney, “The communication challenge for mpp: Intel
paragon and meiko cs-2,” Parallel computing, vol. 20, no. 3,
pp. 389–398, 1994.

[26] R. Thakur and W. D. Gropp, “Improving the performance
of mpi collective communication on switched networks,”
11/2002 2002.

[27] R. Rabenseifner, “A new optimized mpi reduce algorithm,”
1997.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolu-
tional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al.,
“Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in pytorch,” 2017.

[31] A. Sergeev and M. D. Balso, “Horovod: fast and easy
distributed deep learning in TensorFlow,” arXiv preprint
arXiv:1802.05799, 2018.

[32] A. Gibiansky. (2017, feb) Bringing hpc techniques to deep
learning. http://research.baidu.com/bringing-hpc-techniques-
deep-learning/.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

56

