
IOPin: Runtime Profiling of Parallel I/O in HPC
Systems

Seong Jo Kim∗, Seung Woo Son†, Wei-keng Liao†, Mahmut Kandemir∗, Rajeev Thakur‡, and Alok Choudhary†

∗ Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
{seokim,kandemir}@cse.psu.edu

† Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60208, USA
{sson,wkliao,choudhar}@eecs.northwestern.edu

‡ Mathematics and Computer Science
Argonne National Laboratory

Argonne, IL 60439, USA
thakur@mcs.anl.gov

Abstract—Many I/O- and data-intensive scientific applications
use parallel I/O software to access files in high performance. On
modern parallel machines, the I/O software consists of several
layers, including high-level libraries such as Parallel netCDF
and HDF, middleware such as MPI-IO, and low-level POSIX
interface supported by the file systems. For the I/O software
developers, ensuring data flow is important among these software
layers with performance close to the hardware limits. This task
requires understanding the design of individual libraries and
the characteristics of data flow among them. In this paper,
we propose a dynamic instrumentation framework that can be
used to understand the complex interactions across different I/O
layers from applications to the underlying parallel file systems.
Our preliminary experience indicates that the costs of using the
proposed dynamic instrumentation is about 7% of the application
execution time.

I. INTRODUCTION

Users of high-performance computing (HPC) systems often
find that the main performance-limiting factor for applications
is the storage systems, not the CPU, memory, or network.
That is, I/O behavior is the primary factor that determines the
overall performance of many HPC applications. Therefore, un-
derstanding complex parallel I/O operations and the involved
issues is critically important to meet the requirements for a
particular system or decide an I/O solution to accommodate
expected workloads.

Unfortunately, understanding I/O behavior is not trivial
since it is a result of complex interactions between the hard-
ware and a number of software layers, collectively referred to
as the I/O software stack. Figure 1 illustrates a typical I/O stack
for an HPC system. At the lowest level is the storage hardware.
Above the storage hardware are the parallel file systems, such
as PVFS [1], GPFS [2], Lustre [3], and PanFS [4]. The roles of
the parallel file system are to manage the data on the storage
hardware, to present the data as a directory hierarchy, and
to coordinate accesses to files and directories. The MPI-IO
library [5] sits on top of the parallel file systems. It provides
a standard I/O interface and a suite of optimizations such as
data caching, process coordination, and so on [6], [7], [8], [9],
[10], [11].

While the MPI-IO interface is effective and advantageous
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Fig. 1. Parallel I/O software stack

thanks to its performance and portability, it does not sup-
port structured data abstraction for scientific applications. To
provide such structured data format, high-level I/O libraries
(e.g., Parallel netCDF [12] and HDF5 [13]) are added on top
of MPI-IO. As shown in Figure 1, a parallel I/O application
may directly call an MPI-IO library or a POSIX I/O function
to access the disk-resident data sets, as an alternative. Since
the interactions among these layers are complex and unpre-
dictable, understanding and characterizing those interactions
must precede performance tuning and optimization for the
HPC applications.

One approach to understanding I/O behavior is to let ap-
plication programmers or scientists manually instrument the
I/O software stack. Unfortunately, this approach is extremely
difficult and error-prone. In fact, instrumenting even a single
I/O call may necessitate modifications to numerous files to
trace it from the application to multiple I/O software layers
below. Worse, a high-level I/O call from the application pro-
gram can be fragmented into multiple calls (sub-calls) in the
MPI library, which is severely challenging. Since most parallel
scientific applications today are expected to run on large-scale
systems with hundreds of thousands of processors in order to
achieve better resolution, even collecting and analyzing trace
information from them are laborious and burdensome.

Motivated by these observations, we have developed a dy-
namic performance visualization and analysis tool for parallel
I/O, called IOPin. Instead of manually instrumenting appli-
cations and other components of the I/O stack, we leverage
a lightweight binary instrumentation using probe mode in
Pin [14] to implement our current prototype. That is, our tool



performs the instrumentation with minimal overhead in the
binary code of the MPI library and the underlying parallel file
system at runtime. Therefore, our tool provides the language-
independent instrumentation targeting scientific applications
written in C/C++ and Fortran. Furthermore, our tool requires
neither source code modification nor recompilation of the
application and the I/O stack components.

A unique aspect of our implementation is that it provides
a hierarchical view for parallel I/O. In our implementation,
each MPI I/O call has a unique identification number in the
MPI-IO layer and is passed to the underlying file system with
trace information. This mechanism helps associate the MPI
I/O call issued from the applications with its sub-calls in the
PVFS layer in a systematic way. In addition, our tool provides
detailed I/O performance metrics for each I/O call, including
I/O latency at each I/O software stack layer, the number of
disk accesses, disk throughput, the number of I/O calls issued
to the PVFS server.

The rest of this paper is organized as follows. Related
work is discussed in Section II and background for Pin
framework is given in Section III. An overview of our dynamic
instrumentation scheme is presented in Section IV, and the
technical details and computation methodology are explained
in Section V. An experimental evaluation of the tool is
presented in Section VI, followed by our concluding remarks
in Section VII.

II. RELATED WORK

Over the past decade, a lot of static/dynamic code instru-
mentation tools have been developed and tested that target
different machines and applications. Static instrumentation
generally inserts some sort of probe code into the program at
compile time. Dynamic instrumentation, on the other hands,
intercepts the execution of binary at different points of execu-
tion and inserts instrumentation code at runtime. ATOM [15]
statically instruments the binary code through rewriting at
compile time. Static instrumentation is also supported in [16]
to trace parallel I/O calls from the MPI library to PVFS
servers. HP’s Dynamo [17] monitors an executable’s behavior
through interpretation and dynamically selects hot instruction
traces from the running program. DynamoRIO [18] is a binary
package with an interface for both dynamic instrumentation
and optimization. In comparison, Daikon [19] uses instrumen-
tation to extract program invariants.

Several techniques have been proposed in the literature
to reduce instrumentation overheads. Dyninst [20] and Para-
dyn [21], designed for dynamic instrumentation, employ fast
breakpoints to reduce the overheads incurred during instru-
mentation. INS-OP [22] is also a dynamic instrumentation
tool that applies transformations to reduce the overheads in
the instrumentation code.

Tools such as CHARISMA [23], Pablo [24], and Tuning
and Analysis Utilities (TAU) [25] collect and analyze file
system traces [26]. Darshan [27] captures I/O behavior such as
file access patterns in applications, and Vampir [28] provides
an analysis framework for MPI applications. Stack Trace

Analysis Tool (STAT) [29] is designed to help debug large-
scale parallel programs. HPCToolkit [30] also uses sampling
for measurement and analysis of program performance.

For the MPI-based parallel applications, several tools have
been developed, such as MPI Parallel Environment (MPE) [31]
and mpiP [32].

Our work differs from these efforts primarily because we
provide a dynamic instrumentation framework to entirely trace
parallel I/O from the MPI library to the underlying parallel file
system. Our Pin-based implementation inserts instrumentation
and analysis code, and profiles the parallel I/O performance at
runtime. Further, we support various analytical functionalities
and metrics such as latency, disk throughput, the number of
disk accesses to investigate detailed I/O behavior.

III. BACKGROUND

Pin is a software system that performs runtime binary instru-
mentation of Linux and Window applications. The goal of Pin
is to provide an instrumentation platform for implementing a
variety of program analysis tools for multiple architectures. In
Pin, one may add analysis routines to the application process
and write instrumentation routines to determine where the
analysis routines are called. Pin also provides a limited ability
to alter the program behavior by allowing an analysis routine
to overwrite the registers and memory.

Instrumentation is performed by a just-in-time (JIT) com-
piler. Pin intercepts the execution of the first instruction of
the executable and generates (“compiles”) new code for the
straight-line code sequence starting at this instruction. It then
transfers control to the generated sequence. The generated
code sequence is almost identical to the original one, but
Pin ensures that it regains control when a branch exits the
sequence. After regaining control, Pin generates more code
for the branch target and continues execution. Every time JIT
fetches some code, Pintool has the opportunity to instrument
it before it is translated for execution. Our initial evaluation of
parallel I/O applications in JIT mode shows that the incurred
overhead ranges from 38.7% to 78% of the total application
execution time with the process counts of 32, 64, 128, and
256.

Application binary is also instrumented in Pin probe mode.
This mode employs Pin to insert probes at the start of specified
routines. Here, a probe is a jump instruction that overwrites
an original instruction in the application. Before the probe
is inserted, the first few instructions of the specified routine
are relocated. Pin copies and translates the original bytes of
the application binary and then the probe redirects the flow
of control to the replacement function. After instrumentation
the control flow returns to the original function. Therefore,
the application and the replacement routine are run natively
in probe mode. This improves performance, but also puts
more responsibility on the tool writer. In this work, IOPin
is implemented in probe mode.

IV. OVERVIEW OF DYNAMIC INSTRUMENTATION

The main goal behind this work is to understand the I/O
characteristics of parallel applications, by detecting a “critical



PVFS 

Client

MPI-IO 

Library

MPI_File_write_all

MPI_File_write_all

PVFS_sys_io

PVFS 

Sever io_start_flow flow_callback

trove_write_callback_fn

disk

Client-side

Pin Process

Server-side

Pin Process

High-level I/O 

Lib. or App.

Client Log 

Manager

Sever Log 

Manager

Fig. 2. Overview of our dynamic instrumentation framework. The client Pin
process creates trace information for the MPI library and PVFS client at the
boundary of each layer, and send it to the client log manager. The server Pin
process produces trace information—the latency spent in the server, processed
bytes, the number of disk accesses, and I/O throughput—and transmits it to
the server log manager.

I/O path” at runtime from the process to the parallel file
system that affects the entire system performance. Based
on the knowledge about I/O behavior, application program-
mers and scientists can optimize performance by redesigning
applications or system architecture. Our current prototype
exploits Pin [14], a lightweight binary instrumentation tool
to instrument the binary code of the MPI library and PVFS.
As a result, our tool does not require source code modification
and recompilation of the I/O software stack components.

Figure 2 shows the overview of our Pin-based framework.
This figure is intended to explain the flow of MPI I/O call and
how the framework carries out the dynamic instrumentation
when a collective write function is issued. In the figure, two
Pin profiling processes on the client side and the server side
generate trace log information at the border of each layer—
the MPI library, PVFS client, and PVFS server. The log on
the client side contains trace information of each layer such
as rank, mpi call id, pvfs call id, I/O type (read/write), and
latency spent in the MPI library and PVFS client. In the server
log with these metrics, additional information is also sent to
the server log manager, such as pvfs server id, latency in
server, bytes to be read/written, the number of disk accesses,
and disk throughput for the MPI I/O call at runtime.

Both log managers are implemented in SQLite [33], a
software library that implements a SQL database engine.
Each log manager sends the record information back to the
corresponding Pin process that has a maximum latency for
the I/O operation. Then, the Pin identifies the process that has
a maximum I/O latency from it, and traces and instruments
only this process. This selective dynamic instrumentation not
only reduces overheads, but also detects only one critical I/O
path that affects the system performance effectively in the I/O
stack.

V. TECHNICAL DETAILS

We provide here details about dynamic code instrumentation
and computation methodology for latency and throughput.

A. Detailed Dynamic Instrumentation

Figure 3 illustrates in detail how our implementation per-
forms dynamic instrumentation. When an MPI I/O func-
tion call is issued from the high-level I/O library or ap-
plication, the Pin process on the client side generates
trace information, including rank, mpi call id, pvfs call id,
I/O types (read/write), and timestamp in the MPI library.
By definition, the MPI I/O function call is replaced with
PVFS_sys_io function in the MPI library with additional
arguments (PVFS_IO_WRITE and PVFS_HINT_NULL) to
be issued to PVFS client. Here, the Pin process packs the trace
information into a PVFS_hints structure and replaces the
last argument, PVFS HINT NULL (intially set to NULL by
default), with the Pin-customized hint in the PVFS sys io(). In
the PVFS client, the Pin process extracts the trace information
from hints and stores the trace information in the buffer to
calculate latency later. The Pin-defined hint is encapsulated
into a state machine control block (smcb) structure and passed
to the PVFS server.

At the starting point of server, the Pin process searches
a customized PVFS hints from the first argument (*smcb)
and extracts the trace information. For each I/O operation,
PVFS server maintains a flow_descriptor structure from
smcb. This flow descriptor includes all information about the
corresponding I/O request and flows until the end of the I/O
operation. Since the Pin-customized hint containing the trace
information exists in flow descriptor, the server Pin process
can extract it from hints in flow descriptor at any point in
the server without complexity.

At the entry point of disk write operation,
trove_write_callback_fn(), the Pin process
acquires the address that points to the flow descriptor from
the first argument (void *user_ptr) in the function.
It then finds the PVFS hints from it and stores disk I/O
information, including the bytes processed, the number of
disk accesses at the end of the disk operation with the
corresponding rank, and the id information extracted from
hints.

At the exit point of the server, Pin produces the log in-
formation with necessary information, e.g., rank, mpi call id,
pvfs call id, I/O type, bytes processed for the corresponding
MPI I/O operation, the number of accesses to disk, latency
spent in the server, and disk throughput. This server log
information is sent to the server log manager. Again, the Pin
process on the client side generates a log at the exit point of
the layer and sends it to the client log manager.

The client log manager sends the record information back
to the client Pin process that has a maximum latency for the
I/O operation. The client Pin detects the MPI process that has
the maximum I/O latency, and traces and instruments only this
process. The server side Pin also identifies the I/O server that
spends the longest time to handle the I/O request. Our selective
dynamic instrumentation not only reduces the overhead, but
also effectively detects only one “critical I/O path” to the
server among hundreds of thousands processes that affects the
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system performance in the I/O software stack.
At the end of the execution, by simply associating the

mpi call id and pvfs call id in the client with the one in the
server, the entire I/O path from the MPI library to PVFS server
can be traced with the performance metrics. The detailed com-
putation methodology for the performance metrics is explained
in the next section.

B. Computation Methodology

To help users understand and analyze I/O behavior for the
scientific applications, our tool provides performance statistics
such as latency, disk throughput, the number of I/O requests
from the client to the server, and the number of disk accesses
for the I/O request. Figure 4 illustrates the computation of
latency and throughput. For each I/O operation, the value of
I/O latency computed at each layer is the maximum of the I/O
latencies from the layers below it:

Latencyi = Max(Ltni−1A,Ltni−1B,Ltni−1C).

However, the computation of I/O throughput in Figure 4(b) is
additive; in other words, the I/O throughput computed at any
layer is the sum of the I/O throughput from the layers below
it:

Throughputi =
∑

(Thpti−1A, Thpti−1B, Thpti−1C).

VI. EVALUATION

Our dynamic instrumentation framework for the parallel
I/O application is evaluated on the Breadboard [34] cluster
at Argonne National Laboratory (ANL). Each node of this
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(a) Computation of I/O latency
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Fig. 4. Computation of latency and throughput. I/O latency computed at
each layer is equal to the maximum value of the I/O latencies obtained from
the layers below it. In contrast, I/O throughput is the sum of I/O throughput
coming from the layers below.

cluster consists 8 quad-core Intel Xeon Processors and 16 GB
main memory. Therefore, each physical node can support 32
MPI processes. We evaluated our implementation running on
1 metadata server, 8 I/O servers, and 256 processes. In our
evaluation, we use pnetcdf-1.2.0 as a high-level I/O library,
mpich2-1.4 as a middleware, and pvfs-2.8.2 as a parallel file
system. To demonstrate the effectiveness of the framework,
we tested a I/O-intensive benchmark, S3D-IO [35].

S3D I/O is the I/O kernel of S3D application, a parallel
turbulent combustion application using a direct numerical
simulation solver developed at Sandia National Laboratories
(SNL). A checkpoint is performed at regular intervals; its data
consists primarily of the solved variables in 8-byte, three-
dimensional arrays. At each checkpoint, four global arrays—
representing the variables of mass, velocity, pressure, and
temperature—are written to files. All four arrays share the
same size for the lowest three spatial dimensions X, Y, and
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Z and are partitioned among the MPI processes along with
X-Y-Z dimensions. In our evaluation, we maintain the block
size of the partitioned X-Y-Z dimension as 200×200×200 in
each process. With the PnetCDF interface, it produces three
checkpoint files, 976.6MB each.

Figure 5(a) compares the execution time of S3D I/O when
running on un-instrumented I/O stack and dynamically instru-
mented I/O stack. We observe that, with the process counts of
32, 64, 128, and 256, the average overhead incurred by our
proposed dynamic instrumentation is about 7%.

Plotted in Figure 5(b) is the latency spent in the MPI library,
PVFS client, and PVFS server from the perspective of one
of the aggregator processes on a critical I/O path among
256 processes. Note that a large fraction of the time spent
in the server is for disk operations even though not shown
here. In S3D I/O, three checkpoint files are produced by 12
collective I/O calls, and each checkpoint file is generated by
0∼3, 4∼7, and 8∼11, respectively. For example, the first
checkpoint file is opened by mpi call id 0. The four arrays
of mass, velocity, pressure, and temperature are sequentially
written by the mpi call id 0, 1, 2, and 3. We observe from
Figure 5(b) the latency difference between the MPI library
and the PVFS client. During the collective I/O operation in
S3D I/O, all the joined processes heavily exchange data for
optimizations such as data sieving [10] and two-phase I/O [11].
In addition, communication and synchronization among the
processes cause the overhead in the MPI library. We also
notice that the latency in the MPI library for mpi call id 0,
4, and 8 is longer than that of the others. These calls are to
open the individual checkpoint file and to write the mass value
which is the largest array among the four. In our experiment,
these calls are fragmented into 3 sub-calls to satisfy the I/O
requests. The figure on the server bar in Figure 5(b) indicates
the number of fragemented calls which is also the number of
disk accesses.

Figure 5(c) plots the throughput of an individual I/O call
from mpi call id 0 to 11. The first calls (0, 4, and 8) to
create the invididual checkpoint file are split into 3 sub-
calls, respectively, and the throughput of those I/O calls is

plotted cumulatively as explained in V-B. We observe that
the I/O throughput to for creating and writing the first file is
higher than the others, on average, which needs to be further
investigated.

Based on the understanding of I/O characteristic from the
given applications, scientists and application programmers can
customize the existing application code to better use the
middleware. Also, performance engineers may reduce the the
overhead caused by such optimizations in the MPI library.

VII. CONCLUSIONS AND FUTURE WORK

Understanding I/O behavior is one of the most important
steps for efficient execution of data-intensive scientific applica-
tions. The first step in understanding I/O behavior is to instru-
ment the flow of an I/O call. Unfortunately, performing manual
instrumentation is extremely difficult and error-prone since the
characteristics of I/O are a result of complex interactions of
both hardware and multiple layers of software components.
Because of the scale of the current HPC systems, collecting
and analyzing trace information are challenging and daunting
tasks. To alleviate these difficulties, we propose a dynamic
instrumentation framework working on the binary code of the
MPI library and PVFS. The tool inserts trace information into
a PVFS hints structure and passes it into the sub-layers at
runtime. This method can provide a hierarchical view of the
I/O call from the MPI library to the PVFS server without
source code modification or recompilation of the I/O stack.

We used a scientific application benchmark, S3D I/O, to
evaluate our proposed framework. Changing the number of
processes to run S3D I/O, we made different experiments and
observed that the overhead induced by our implementation
is about 7% on average. Our tool provides several metrics
to understand and analyze I/O behavior, such as the latency
of each layer, the number of fragmented I/O calls and disk
accesses, and I/O throughput. The results from these metrics
contribute to evaluating and tuning the applications and I/O
software stack. Work is underway (i) to test our framework
under very large process counts, and (ii) to employ our
framework for runtime (dynamic) I/O optimizations.
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