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Abstract

In contrast to the conventional send/receive model, the one-way
communication model—usingPut andSynch—allows the decou-
pling of message transmission from synchronization. This opens up
new opportunities not only to further optimize communication but
also to reduce synchronization overhead. In this paper, we present a
general technique which uses a global dataflow framework to opti-
mize communication and synchronization in the context of the one-
way communication model. Our approach works with the most
general data alignments and distributions in languages like HPF,
and is more powerful than other current solutions for eliminating
redundant synchronization messages. Preliminary results on sev-
eral scientific benchmarks demonstrate that our approach is suc-
cessful in minimizing the number of data and synchronization mes-
sages.

1 Introduction

Most of the current compilers for distributed memory machines
rely on thesend andrecv primitives to implement communica-
tion. The impact of this approach is twofold. First, this tech-
nique combines synchronization with communication in the sense
that data messages also carry implicit synchronization information.
While this relieves the compiler of the job of inserting synchroniza-
tion messages to maintain data integrity, separating synchroniza-
tion messages from data messages may actually improve the per-
formance of some programs. Second, the compiler has the difficult
task of matchingsend andrecv operations in order to guarantee
correct execution.

In this paper, we focus on compilation of programs annotated
by HPF-like directives with one-way communication operations
Put andSynch, introduced by Gupta and Schonberg [6] and Hin-
richs [8]. Let us consider Figure 1(a); here, a consumer processor
sends aSynch message to the producer informing that the producer
canput data in a buffer physically located in the consumer’s mem-
ory. After receiving theSynch message, the producer deposits the
data in that buffer. We note that theSynch operation is necessary
for the repetition of this communication; that is, when the producer
wants to deposit new data into the buffer, it must know that the
consumer has indeed consumed the old data in the buffer.

After briefly discussing the fundamental concepts used in this
paper in Section 2, in Section 3 we show how the communica-
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tion sets as well as the producers and the consumers manipulated
by thePut operation can be implemented on top of the existing
send/recv type of communication framework in our compiler [3].
Having determined those, the next issue is to minimize the num-
ber ofPut communications as well as the communication volume.
Section 4 presents an algorithm to achieve this goal. Our algo-
rithm can take arbitrary control flow (excludinggoto statements)
into account and can optimize programs with all types of HPF-like
alignments and distributions, including block-cyclic distributions.
It is based on a linear algebra framework introduced by Ancourt et
al. [2]; in addition, our approach is quite general in the sense that
several current solutions to the problem can be derived by a suitable
definition of associated predicates.

Clearly, in a compilation framework based on thePut opera-
tion, the correct ordering of memory accesses has to be imposed
by the compiler using the synchronization primitives. A straight-
forward approach inserts aSynch operation just before eachPut
operation as shown in Figure 1(a). The next question to be ad-
dressed then is whether or not everySynch operation inserted that
way is always necessary. The answer is no, and Section 5 pro-
poses an algorithm to eliminate redundant synchronization mes-
sages. We refer to aSynch operation asredundantif its function-
ality can be fulfilled by other data communications or otherSynch
operations occurring in the program. The basic idea is to use an-
other message in the reverse direction between the same pair of
processors in place of theSynch call as shown in Figure 1(b). In
such a situation, we say that the communicationtj kills the syn-
chronization requirement of communicationi. We show that our
algorithm is very fast and more powerful than the previous work
in synchronization elimination. This is because (1) it is very accu-
rate in eliminating redundant synchronization, since it works at the
granularity of a processor-pair using the Omega library [11]; (2)
it can eliminate a synchronization message by using several data
messages; (3) it handles block, cyclic, and block-cyclic distribu-
tions in a unified manner, whereas the previous approaches either
work on virtual processor grids only or use an extension of reg-
ular section descriptors which are inherently inaccurate; and (4)
it is preceded by a global communication optimization algorithm
which itself eliminates a lot of synchronization messages. To show
the idea behind the algorithm, we consider Figure 2(a), where eight
processors (numbered 0 thru 7) are involved in aPut communica-
tion that repeats itself (as in a loop); processori deposits data in
the memory of processori� 1 for 1 � i � 7; the arrows indicate
the direction of communication. Figure 2(b) shows theSynch mes-
sages required for the repetitions of this communication. Suppose
that between successive repetitions of the communication pattern in
Figure 2(a), subsets of processors are involved in communication
patterns usingPut shown in Figures 2(c) and 2(d). Our synchro-
nization elimination algorithm can detect that the communications
given in Figures 2(c) and 2(d),together, kill the synchronization re-
quirement of the first communication, i.e., kill theSynch messages
shown in Figure 2(b).

In Section 6, we give preliminary results on several benchmark
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Figure 1: (a) one-way communication withPut operation.
(b) elimination of aSynch message.
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Figure 2: Communication and synchronization messages for
the first loop of the program in Figure 6(a).

programs. Our experiments show that we are able to reduce data
messages on the average by37% and synchronization messages by
96%. We believe that these are also the first results from a compre-
hensive evaluation of synchronization elimination in one-way com-
munication. We discuss related work in Section 7 and conclude the
paper with a summary in Section 8.

2 Preliminaries

We focus on structured programs with conditional statements and
nested loops but without arbitrary goto statements. Abasic blockis
a sequence of consecutive statements in which the flow of control
enters at the beginning and leaves at the end without the possibility
of branching except perhaps at the end [1]. Acontrol flow graph
(CFG) is a directed graph constructed by basic blocks and repre-
sents the flow-of-control information of the program. For the pur-
pose of this paper, the CFG can be thought of as a directed graph
G = (V; E) where eachv 2 V represents either a basic block or
a (reduced) interval that represents a loop, and eache 2 E rep-
resents an edge between blocks. In this paper, depending on the
context, we use the termnode interchangeably for a statement, a
block or an interval. Two unique nodess andt denote the start and
terminal nodes respectively of a CFG. One might think of these
nodes as dummy statements. We define the sets of all successors
and predecessors of a noden assucc(n) = fm j (n;m) 2 Eg
andpred(n) = fm j (m;n) 2 Eg, respectively. Nodei dom-
inatesnodej in the CFG (written asj 2 dom(i)), if every path
from s to j goes throughi. We assume that prior to communica-
tion analysis, any edge that goes directly from a node with more
than one successor to a node with more than one predecessor is
split by introducing a dummy node. Our technique for minimizing
the communication volume and the number of messages is based
on interval analysis[1]. Interval analysis consists of acontraction
phase and anexpansionphase. For programs written in a structured
language, an interval corresponds to a loop. The contraction phase
collects information about what is generated and what is killed in-
side each interval. Then the interval is reduced to a single node and
annotated with the information collected. This is a recursive pro-
cedure and stops when the reduced CFG contains no more cycles.
In each step of the expansion phase, a node (reduced interval) is
expanded, and the information regarding the nodes in that interval
is computed.

3 Producers and Consumers

We assume that all loop bounds and subscript expressions are affine
functions of enclosing loop indices and symbolic variables. Under

this condition, a loop nest, an array and a processor grid can all be
represented as bounded polyhedra. Our compiler currently uses the
owner-computes rule [9], which assigns each computation to the
processor that owns the data being computed.

Consider the generic single loopi shown in Figure 3(a). Let
RL(i) = X(
L*i+�L) and RR(i) = Y(
R*i+�R). Let p andq de-
note two processors. We define several sets shown in Figure 3(b)
whereS is the communication statement and_ and^ are logical
‘or’ and ‘and’ operations respectively. The setOwn(X,p) refers to
the elements of arrayX mapped onto processorp through compiler
directives. SimilarOwn sets are defined for other arrays as well.
The setsProducers(S) andConsumers(S) denote, respectively,
the processors that produce and consume data communicated inS.
For a specific processor,ProducersFor andConsumersFor give
the set of processors that send data to and receive data from that
processor respectively.PutSet(S,p,q) is the set of elements that
should be put (written) by processorq to memory of processorp.
SendSet(S) is set of pairs (q0; p0) such thatq0 sends data to (write
data in the memory of)p0. Finally, Pending(S) is the inverse of
SendSet(S), and gives set of pairs (p0; q0) such thatp0 should send
aSynch message toq0 for the repetitions of the communication (in
each iteration of the time-step loopt) occurring inS. For a com-
munication occurring ini, the setPending(i) represents a list of
individual Synch messages that should be sent for the safe repeti-
tion of the data communication ini. That is, aSynch message is
between just a pair of processors. For ani and aSynch, we say
whether or notSynch 2 Pending(i).

In fact, by using appropriate projection functions all of those
sets can be obtained from a single set calledCommSet(S) con-
taining triples (p0; q0; d) meaning that elementd should be com-
municated fromq0 to p0 in S. TheCommSet(S) is currently used in
our compiler’s communication generation portion to generatesend
andrecv commands. The necessary projection functions can be
implemented by using the Omega library [11], and are shown in
Figure 3(c). For instance,ConsumersFor(S; q) is obtained from
CommSet(S) by projecting outd and substitutingq for q0; that is,
q is a parameter andConsumersFor(S; q) enumeratesp0 values in
terms ofq.

By taking into account the alignment and distribution informa-
tion, we can define theOwn set more formally as

Own(Y; q) = fd j 9t; c; l s. t. (t = �d+ � = CPc+ Cq + l)

^ (yl � d � yu) ^ (pl � q � pu) ^ (tl � t � tu)

^ (0 � l � C � 1)g;

whereP = pu�pl+1. In this formulation,t = �d+� represents
alignment information andt = CPc+ Cq + l denotes distribution
information. In other words, each array elementd is mapped onto a
point in a two-dimensional array. This point can be represented by a



REAL X(xl:xu), Y(yl:yu)
!HPF$ TEMPLATE T(tl:tu)
!HPF$ PROCESSORS PROC(pl:pu)
!HPF$ ALIGN X(j), Y(j) WITH T(�*j+�)
!HPF$ DISTRIBUTE T(CYCLIC(C)) ON TO PROC

DO t = 1, TIMES /* time-step loop */
...
< synchronization forY usingSynch operations>

S: < communication forY usingPut operations>
DO i = il, iu
...
X(
L*i+�L) = � � � Y(
R*i+�R) � � �
...

END DO
...

END DO

(a)

SET PROJECTION FUNCTION

Producers(S) [p0; q0; d] 7! [q0]
Consumers(S) [p0; q0; d] 7! [p0]

ProducersFor(S; p) [p; q0; d] 7! [q0]
ConsumersFor(S; q) [p0; q; d] 7! [p0]
PutSet(S; p; q) [p; q; d] 7! [d]
SendSet(S) [p0; q0; d] 7! [q0; p0]
Pending(S) [p0; q0; d] 7! [p0; q0]

(c)

Own(X; q) = fd j d 2 X ^ is owned byqg

Producers(S) = fq0 j 9i; p0 s. t.RR(i) 2 Own(Y; q0) ^RL(i) 2 Own(X; p0) ^ il � i � iu ^ q0 6= p0g

Consumers(S) = fp0 j 9i; q0 s. t.RR(i) 2 Own(Y; q0) ^RL(i) 2 Own(X; p0) ^ il � i � iu ^ q0 6= p0g

ProducersFor(S; p) = fq0 j 9i s. t.RR(i) 2 Own(Y; q0) ^RL(i) 2 Own(X; p) ^ il � i � iu ^ q0 6= pg

ConsumersFor(S; q) = fp0 j q 2 ProducersFor(S; p0)g

PutSet(S; p; q) = fd j 9i s. t.d = RR(i) 2 Own(Y; q) ^RL(i) 2 Own(X; p) ^ il � i � iu ^ q 6= pg

SendSet(S) = f(q0; p0) j 9d s. t.d 2 PutSet(S; p0; q0)g

Pending(S) = f(p0; q0) j (q0; p0) 2 SendSet(S)g:

(b)

Figure 3: (a) Generic loop. (b) Several sets. (c) Projection functions to manipulate sets (p andq are symbolic names).

pair(c; l) and gives the local address of the data item in a processor.
SimpleBLOCK andCYCLIC(1) distributions can be handled within
this framework by settingc = 0 andl = 0, respectively. The for-
mulation given here can be generalized to multi-dimensional loops,
arrays and processor grids [2]. Consider the firsti-loop in Fig-
ure 6(b). Figure 4(a) shows the sets for this loop assuming that in
the transformed program array bounds start from 0. Notice that a
processorq is in theProducers set if there exists a processorp
such thatq 6= p andq puts data inp’s memory. Similarly, a pro-
cessorp is in theConsumers set if there exists a processorq such
that p 6= q andq puts data inp’s memory. For this example, if
distribution directive for the arrays is changed toCYCLIC(4), then
we have the sets shown in Figure 4(b). All of these sets can easily
be represented and manipulated by the Omega library [11]. Notice
that using the Omega sets to represent producer-consumer informa-
tion, we are able to accommodate any kind of HPF-like alignment
and distribution data in our framework throughOwn sets.

Let f~d j P(~d)g andf~d j Q(~d)g be twoPutSets for a same
multi-dimensional array whereP(:) andQ(:) denote two predi-
cates and~d refers to an array element. We define three operations,
_c, �c, and^c on thesePutSets as shown in Figure 4(c). In the
remainder of this paper,

W
and
V

symbols will also be used for_c
and^c, respectively, when there is no confusion.

4 Optimizing Communication

The objective of our global communication optimization frame-
work is to determinePutSet(i; p; q) for each nodei in the pro-
gram globally; that is, by taking into account all the nodes in the
CFG that are involved in communication.

Local (Intra-Interval) Analysis The local analysis part of our
framework computesKill, Gen andPost Gen sets defined below
for each interval. Then the interval is reduced to a single node and
annotated with these sets. With reference to Figure 3(a),

Kill(i; q) = f(~d j ~d 2 Own(X; q)) ^ (9~{ s. t.

(~d = RL(~{)) ^ (~il �~{ � ~iu))g;

Modified(i; q) = [
_

j2pred(i)

Modified(j; q)]_cKill(i; q):

assumingModified(pred(first(i)); q) = ; wherefirst(i)
is the first node ini.

Kill(i; q) is the set of elements owned and written (killed) by
processorq locally in i, andModified(i; q) is the set of elements
that may be killed along any path from the beginning of the interval
to (and including)i. The computation of theKill set proceeds
in the forward direction; that is, the nodes within the interval are
traversed in topological sort order. Iflast(i) is the last node ini,
then

Kill(i; q) = Modified(last(i); q)

This last equation is used to reduce an interval into a node. The
reduced interval is then annotated by itsKill set.

Gen(i; p; q) is the set of elements to be written byq into p’s
memory to satisfy the communication ini. The computation of
theGen proceeds in the backward direction, i.e., the nodes within
each interval are traversed in reverse topological sort order. The
elements that can be written byq into p’s memory at the beginning
of a node in the CFG are the elements required by p due to a RHS
reference in the node except the ones that are written locally (killed)
by q before being referenced byp.



Producers(2) = fq j 1 � q � 7g

Consumers(2) = fp j 0 � p � 6g

ProducersFor(2; p) = fq j (q = p+ 1) ^ (0 � p � 6)g

ConsumersFor(2; q) = fp j (p = q � 1) ^ (1 � q � 7)g

PutSet(2; p; q) = fd j (d = 16q) ^ (p + 1 = q) ^ (1 � q � 7)g

SendSet(2) = f(q; q � 1) j 1 � q � 7g

Pending(2) = f(p; p+ 1) j 0 � p � 6g

(a)

Producers(2) = fq j 0 � q � 7g

Consumers(2) = fq j 0 � q � 7g

ProducersFor(2; p) = fq j q = 0 ^ p = 7g

[fq j (q = p + 1) ^ (0 � p � 6)g

ConsumersFor(2; q) = fp j p = 7 ^ q = 0g

[fp j (p = q � 1) ^ (1 � q � 7)g

PutSet(2; p; q) = fd j 9� such that(d = 32�) ^ (q = 0) ^ (p = 7)

^(32 � d � 128)g [

fd j 9� s. t.(d = 4 + 4p+ 32�) ^ (q = p+ 1)

^(0 � p � 6) ^ (4p+ 4 � d � 4p + 100)g

SendSet(2) = f(0; 7)g [ f(q; q � 1) j 1 � q � 7g

Pending(2) = f(p; p+ 1) j 0 � p � 6g [ f(7; 0)g

(b)

f~d j P(~d)g _c f~d j Q(~d)g = f~d j P(~d) _ Q(~d)g

f~d j P(~d)g �c f~d j Q(~d)g = f~d j P(~d) ^ :(Q(~d))g

f~d j P(~d)g ^c f~d j Q(~d)g = f~d j P(~d) ^ Q(~d)g

(c)

PENDING IN(i) =
G

j2pred(i)

PENDING OUT(j)

PENDING OUT(i) = Fi(PENDING IN(i))

(d)

Figure 4: (a) Sets for the first loop in Figure 6(b) forBLOCK distribution. (b) Sets for the first loop in Figure 6(b) forCYCLIC(4) distribution.
(c) Operations onPutSets. (d) Dataflow equations for optimizing synchronization messages.

Assuming~{ = ({1; :::; {n) and~{0 = ({01; :::; {
0
n), let ~{0 � ~{ mean

that~{0 is lexicographically less than or equal to~{; and~{0�k~{ mean
that {0j = {j for all j < k, and ({0k; :::; {

0
n) � ({k; :::; {n). Let

Comm(i; p; q) be the set of elements that may be communicated at
the beginning of intervali to satisfy communication requirements
from the beginning ofi to the last node ofi. Then, from Fig-
ure 3(a), assuming thatComm(succ(last(i)); q) = ;, we have

Gen(i; p; q) = f~d j 9~{ s. t. (~il �~{ � ~iu) ^

(~d = RR(~{) 2 Own(Y; q)) ^ (RL(~{) 2 Own(X; p))

^:(9~|;RL
0 s. t. (~il � ~| � ~iu) ^ (~d = RL

0(~|))

^(~|�level(i)~{))g;

Comm(i; p; q) = [
^

s2succ(i)

Comm(s; p; q)] _c Gen(i; p; q):

The negated condition eliminates all the elements written byq lo-
cally in an earlier iteration than the one in whichp requires them.
In addition, we use the following equation to reduce an interval into
a single node

Gen(i; p; q) = Comm(First(i); p; q):

In the definition ofGen, RR denotes the RHS reference, andRL

denotes the LHS reference of the same statement.RL
0, on the other

hand, refers to any LHS reference within the same interval. Notice
that whileRL

0 is a reference to the same array asRR, in general
RL can be a reference to any array.level(i) gives the nesting
level of the interval (loop), 1 corresponding to the outermost loop
in the nest.

After the interval is reduced, theGen set for it is recorded, and
an operatorN is applied to the last part of thisGen set to propagate

it to the outer interval:

N (~|�k~{) = ~|�(k�1)~{:

It should be emphasized that computation ofGen sets gives us all
the communication that can be vectorized above a loop nest; that
is, our analysis easily handles message vectorization [9]. A naive
implementation may setPut Set(i; p; q) to Gen(i; p; q) for every
i, p andq. But such an approach often retains redundant commu-
nication which would otherwise be eliminated.

Finally, Post Gen(i; p; q) is the set of elements to be written
by q into memory ofp at nodei with no subsequent local write to
them byq:

Post Gen(i; p; q) = f~d j 9~{ s. t. (~il �~{ � ~iu) ^

(~d = RR(~{) 2 Own(Y; q)) ^ (RL(~{) 2 Own(X; p))

^:(9~|;RL
0 s. t. (~il � ~| � ~iu) ^ (~d = RL

0(~|))

^(~{�level(i)~|))g:

The computation ofPost Gen(i; p; q) proceeds in the forward di-
rection. Its computation is very similar to those ofKill andGen
sets, so we do not discuss it further.

Data
ow Equations In our framework, one-way communica-
tion calls are placed at the beginning of nodes in the CFG. Our
dataflow analysis consists of a backward and a forward pass. In the
backward pass, the compiler determines sets of data elements that
can safely be communicated at specific points. The forward pass,
on the other hand, eliminates redundant communication and deter-
mines the final set of elements that should be communicated (writ-
ten byq into p’s memory) at the beginning of each nodei. The



input for the equations consists of theGen, Kill and Post Gen
sets.

The dataflow equations for the backward analysis are given
by Equations (1) and (2) in Figure 5. Basically, they are used to
combine and hoist communication. The setsSafe In(i; p; q) and
Safe Out(i; p; q) consist of elements thatcansafely be communi-
cated at the beginning and end of nodei, respectively. Equation (1)
says that an element should be communicated at a point if and only
if it will be used in all of the following paths in the CFG. Equa-
tion (2), on the other hand, gives the set of elements that can safely
be communicated at the beginning ofi. Intuitively, an element can
be written byq into p’s memory at the beginning ofi if and only
if it is either required byp in i or it reaches at the end ofi (in the
backward analysis) and is not overwritten (killed) by the owner (q)
in it. The predicateP(i) is used to control communication hoist-
ing. If P(i) is true, communication is not hoisted to the beginning
of i. P(i)=false implies aggressive communication combining
and hoisting. An algorithm can also put a condition which tests the
compatibility betweenGen(i,p,q) and Safe Out(i,p,q) (e.g.
two left-shift communications are compatible whereas a left-shift
and a right-shift are not) [4].

The task of the forward analysis phase, which makes use of
Equations (3), (4) and (5) in Figure 5, is to eliminate redundant
communication by observing that (1) a node in the CFG should not
have a non-local datum which is exclusively needed by a succes-
sor unless it dominates that successor; and (2) a successor should
ignore what a predecessor has so far unless that predecessor dom-
inates it. Put In(i; p; q) andPut Out(i; p; q) denote the set of
elements thathave beenwritten so far (at the beginning and end
of nodei respectively) byq into memory ofp. Equation (3) con-
servatively says that the communication set arriving in a join node
can be found by intersecting the sets for all the joining paths. Equa-
tion (4) is used to compute thePutSet set which corresponds to the
elements that can be communicated at the beginning of the node ex-
cept the ones that have already been communicated (Put In). The
elements that have been communicated at the end of nodei (that is,
Put Out set) are simply the union of the elements communicated
up to the beginning ofi (that is,Put In set), the elements commu-
nicated at the beginning ofi (that is,PutSet(i,p,q) set) (except
the ones which have been killed ini) and the elements communi-
cated ini and not killed subsequently (Post Gen).

Interval Analysis Our approach starts by computing theGen,
Kill andPost Gen sets for each node. Then the contraction phase
reduces the intervals from the innermost loop to the outermost loop
and annotates them withGen, Kill andPost Gen sets. When a
reduced CFG with no cycles is reached, the expansion phase starts
andPutSets for each node is computed from the outermost loop
to the innermost loop. There is one important point to note: be-
fore starting to process the next graph in the expansion phase, the
Put In set of the first node in this graph is set to thePutSet of the
interval that contains it to avoid redundant communication. More
formally, in the expansion phase, we setPut In(i; p; q)k

thpass =

PutSet(i; p; q)(k�1)
thpass:. This assignment then triggers the next

pass in the expansion phase. Before the expansion phase starts

Put In(i; p; q)1
stpass is set to the empty set. Note that the whole

dataflow procedure operates on sets of equalities and inequalities
which can be manipulated by the Omega library [11] or a similar
tool.

Example Consider the synthetic benchmark given in Figure 6(a).
In this example, communication occurs for three arrays:B, D andF.
A communication optimization scheme based on message vector-

ization alone, can place communications and associated synchro-
nizations as shown in Figure 6(b) before the loop bounds reduc-
tion. Note that aSynch message in that figure in fact represents
a number of point-to-point synchronization messages. An applica-
tion of our global communication optimization method generates
the program shown in Figure 6(c). As compared with the message
vectorized version, there is a 50% reduction (from 28 to 14) in the
number of messages and 40% in the communication volume (from
35 to 21) across all processors. We note that we can optimize this
program even the distribution directive is changed toCYCLIC(K)
for anyK. When the distribution directive isCYCLIC(4), we have a
50% reduction (from 48 to 24) in the number of messages and 32%
reduction (from 139 to 94) in the communication volume across
all processors. Note that our approach here reduces the original
number of synchronization messages as well (from 28 to 14 for the
BLOCK distribution and from 48 to 24 for theCYCLIC(4) case).

5 Optimizing Synchronization

In this section, we assume that the compiler has conducted the
dataflow analysis described in Section 4 and determined the op-
timal communication points and communication sets. Assuming
that these communications will be implemented byPut operations,
we present a dataflow analysis to minimize the number ofSynch
messages. We assume that communication patterns (i.e. producer-
consumer relationships) areidentical for each repetition of a com-
munication. For example, in Figure 6(c), the producer-consumer
pattern for the communication occurring in1 is identical for every
repetition of time-step loopt.

Our approach first makes a single pass over the current interval
and determines some synchronizations that cannot be eliminated
by the analysis to be described. We call the set of synchronizations
(associated with a nodei) that cannot be eliminatedSynchFix(i).
We refer the reader to [10] for the definition ofSynchFix(i).

The dataflow technique described here starts with the deepest
loops and works its way through loops in a bottom up manner, han-
dling one loop at a time. It then reduces the loop to a node and
annotates it with its final synchronization requirements that cannot
be eliminated. The procedure works on an augmented CFG, where
each communication loop is represented by a single node. In the
following, the symboli refers to such a node.

For a giveni, we can define the setSynchSet as a set of pro-
cessor pairs that should be synchronized after our analysis. In a
straightforward implementation,SynchSet(i) = Pending(i) for
eachi. We would like to reduce the cardinality ofSynchSet(i)
for eachi. We say that no synchronization is required for a commu-
nicationi, if SynchSet(i) happens to be empty after our dataflow
analysis.

If the compiler wants to eliminate aSynch message for com-
municationi from p to q, it needs to find a messagetj for another
communication fromp to q and use it as synchronization. Such a
message should occurbetweenrepetitions ofi andafter the data
value communicated ati is consumed. Suppose that a specific pro-
ducerq and a consumerp are involved in a communication ini.
Consider allk communicationstj (1 � j � k) occurring after
the value communicated ini is consumed byp and before the next
repetition ofi. Then, if the following holds, theSynch message
from p to q can be eliminated:

(9j j (1 � j � k) ^ q 2 ConsumersFor(tj ; p))

An interesting case occurs when all theSynch messages contained
in the Pending(i) set for a specifici are eliminated. We can
formalize this condition as

8p8q(((p; q) 2 Pending(i)) ) 9j((p; q) 2 SendSet(tj))) (6)



Backward Analysis:

Safe Out(i; p; q) =
^

s2succ(i)

Safe In(s; p; q) (1)

Safe In(i; p; q) =

n
Gen(i; p; q) if P(i)
(Safe Out(i; p; q)�c Kill(i; q)) _c Gen(i; p; q) otherwise (2)

Forward Analysis:

Put In(i; p; q) =
^

j2pred(i)

Put Out(j; p; q) (3)

PutSet(i; p; q) =

n
Gen(i; p; q) �c Put In(i; p; q) if 9k s. t. k 2 succ(i) andk =2 dom(i)
Safe In(i; p; q) �c Put In(i; p; q) otherwise (4)

Put Out(i; p; q) =

n
Put In(i; p; q) �c Kill(i; q) if 9k s. t. k 2 succ(i) andk =2 dom(i)
((PutSet(i; p; q) +c Put In(i; p; q)) �c Kill(i; q)) +c Post Gen(i; p; q) otherwise (5)

Figure 5: Dataflow equations for optimizing communication.

REAL A(128), B(128), C(128)
D(128), E(128), F(128)

!HPF$ PROCESSORS PROC(0:7)
!HPF$ DISTRIBUTE BLOCK ON TO

PROC :: A, B, C, D, E

DO t = 1, TIMES
DO i = 1, 127

S: A(i) = B(i+1)
END DO
DO i = 1, 126
D(i) = A(i) + 1
A(i) = B(i+1) + B(i+2)

END DO
IF (A(1).EQ.B(1))
DO i = 2, 64
C(i) = D(i-1)

END DO
ELSE
DO i = 2, 64
A(i) = C(i) + D(i-1)

END DO
END IF
DO i = 1, 127
F(i) = A(i) - 1
B(i) = A(i) * A(i)

END DO
DO i = 65, 128
E(i) = F(i-1)

END DO
END DO

(a)

REAL A(128), B(128), C(128)
D(128), E(128), F(128)

!HPF$ PROCESSORS PROC(0:7)
!HPF$ DISTRIBUTE BLOCK ON TO

PROC :: A, B, C, D, E

1 DO t = 1, TIMES

2 Synch; putfBg;

3 DO i = 1, 127
4 A(i) = B(i+1)
5 END DO

6 Synch; putfBg;

7 Synch; putfBg;

8 DO i = 1, 126
9 D(i) = A(i) + 1
10 A(i) = B(i+1) + B(i+2)
11 END DO
12 IF (A(1).EQ.B(1))

13 Synch; putfDg;

14 DO i = 2, 64
15 C(i) = D(i-1)
16 END DO
17 ELSE

18 Synch; putfDg;

19 DO i = 2, 64
20 A(i) = C(i) + D(i-1)
21 END DO
22 END IF
23 DO i = 1, 127
24 F(i) = A(i) - 1
25 B(i) = A(i) * A(i)
26 END DO

27 Synch; putfFg;

28 DO i = 65, 128
29 E(i) = F(i-1)
30 END DO
31END DO

(b)

REAL A(128), B(128), C(128)
D(128), E(128), F(128)

!HPF$ PROCESSORS PROC(0:7)
!HPF$ DISTRIBUTE BLOCK ON TO

PROC :: A, B, C, D, E

DO t = 1, TIMES

1: Synch; putfBg;

DO i = 1, 127
A(i) = B(i+1)

END DO
DO i = 1, 126
D(i) = A(i) + 1
A(i) = B(i+1) + B(i+2)

END DO

2: Synch; putfDg;

IF (A(1).EQ.B(1))
DO i = 2, 64
C(i) = D(i-1)
END DO

ELSE
DO i = 2, 64
A(i) = C(i) + D(i-1)
END DO

END IF
DO i = 1, 127
F(i) = A(i) - 1
B(i) = A(i) * A(i)

END DO

3: Synch; putfFg;

DO i = 65, 128
E(i) = F(i-1)

END DO
END DO

(c)

Figure 6: (a) A synthetic benchmark. (b) Message vectorized translation. (c) Global communication optimization.



assuming1 � j � k. Notice thatj values can be different for
eachq. If we additionally stipulate that allj values should be the
same for allq values, then we obtain

8p8q9j(((p; q) 2 Pending(i)) ) ((p; q) 2 SendSet(tj ))) (7)

We note that the condition (7) implies the algorithms offered by
[6] and [8].

Claim: The synchronizations eliminated by (7) are a subset of
the synchronizations that can be eliminated by (6) (see [10] for the
proof).

Even if aPending(i) set cannot be totally eliminated we can
reduce its cardinality by eliminating as manySynch messages as
possible from it. That is, after our analysis, for everyi,

SynchSet(i) = Pending(i) �c f(p; q) j 9j s. t. (8)

q 2 ConsumersFor(tj ; p)g_cSynchFix(i) (9)

As an example, let us consider the program shown in Figure 6(c).
In this program, communication occurs at three points:1, 2 and
3. A straightforward implementation inserts three (sets of)Synch
operations, corresponding to1, 2 and 3 as shown in that figure.
Let us now focus on the communication in1. Figure 2(a) shows
the messages sent (Put operations) for this communication. Fig-
ure 2(b), on the other hand, shows the required synchronization
messages for the repetitions of this communication. Finally, Fig-
ures 2(c) and 2(d) show the communication messages in2 and3
respectively. Notice that, by using the condition given in (6), the
synchronization requirements for1 can be eliminated; that is, the
communications occurring in2 and3 together kill the synchroniza-
tion requirements of the communication in1. If we consider Fig-
ure 2(c) and Figure 2(d) separately for the condition given by (7),
however, none of them individually can eliminate the synchroniza-
tion for 1. By a similar argument, it can be concluded that the
communications in2 and3 do not need any synchronization either,
as their synchronization requirements are killed by communication
in 1.

Data
ow Analysis: Our data flow equations are shown in Fig-
ure 4(d). Our analysis consists of iterative forward passes on the
CFG. We first concentrate on the second equation and explain the
functionality ofFi. HerePENDING IN(i) represents the synchro-
nization requirements of all the communications traversed so far up
to the beginning ofi. PENDING OUT(i) is defined analogously for
the end ofi. Assuming thatPk is the synchronization requirement
(in terms of pairs of processors) for nodek up to i in the analy-
sis and PENDING IN(i) = fP1; :::; Pi�1; Pi; Pi+1; :::; Pmg , we can
defineFi as

Fi(PENDING IN(i)) = ffi(P1); :::; fi(Pi�1); Pi; fi(Pi+1); :::; fi(Pm)g

where fi(Pk) = Pk �c SendSet(i) . That is, when a nodei is
visited, the synchronization requirements for all other communica-
tions are checked to see whether or not any synchronization can
be eliminated by using the communication occurring ati. Prior
to the analysis,Pi is set toPending(i) for the first node. Af-
ter a fixed state is reached, thePENDING OUT set of thelast node
gives the synchronization requirements to be satisfied. The result-
ing PENDING OUT set, which is in fact a set of sets, is then reduced
to a single set and used to represent the synchronization require-
ments of this loop to the next upper level.

We now consider the first equation of Figure 4(d) and explain
the
F

operator appearing there. In the join nodes, the compiler
takes a conservative approach by unioning the synchronization re-
quirements for the same communication. Suppose that for each
j 2 pred(i), PENDING OUT(j) = fPj1; Pj2; :::; Pjmg, wherePjk

is the synchronization requirement of communicationk up to the
end of j. Assuming then that the resultingPENDING IN(i) =
fP1; P2; :::; Pmg, eachPl 2 PENDING IN(i) can be computed as
Pl = _cPjl where_c is performed over thej values. We note that
this algorithm is more accurate and faster than those proposed in
[8] and [6].

Claim: The dataflow procedure defined by equations given in
Figure 4(d) can reach a steady state in at most after two iterations
(see [10] for the proof).

Example The upper part of Table 1 shows the setsSendSet and
Pending (in an open form rather than in terms of equalities and in-
equalities) for the program shown in Figure 6(c). Note that the sets
SendSet(1) and Pending(1) are computed from theSendSet
andPending sets respectively given in Figure 4(a). The sets for2
and3 are computed similarly. Before the dataflow analysis starts,
PENDING IN(1) is initialized as follows:

PENDING_IN(1) = {{Pending(1)},{Pending(2)},{Pending(3)}}
= {(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),
(1,0),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6)}

The lower part of Table 1 demonstrates application of our dataflow
algorithm to this example. After the fixed state is reached, an ex-
amination ofPENDING OUT(3) reveals that the program can be ex-
ecuted without any synchronization.

6 Preliminary Results

The applications used in our study and their characteristics are
listed in Table 2. We experimented withBLOCK, B-CYC (block-
cyclic) andCYCLIC distributions on 8 and 32 processors to mea-
sure the static improvements. We refer to a version of program
which is optimized by message vectorization alone asbase. Ta-
ble 3 presents the communication volume and the number of data
messages (that is also the number ofSynch messages) across all
processors in thebase programs.

For these applications, we first applied our global communi-
cation optimization algorithm. The percentage improvements are
listed in Table 4. It should be noted that in block-cyclic distribu-
tions where most of the previous approaches fail, we have, on the
average, a 29% reduction in communication volume and 40% re-
duction in number of messages across all processors.

We then applied our synchronization elimination scheme to the
base version as well as the globally optimized version (C-opt) for
each program. The results shown in Table 5 reveal that the algo-
rithm is surprisingly successful in eliminating the redundantSynch
messages. Except for two programs, the algorithm eliminates all
synchronization messages from thebase programs. When we look
at the results for the programs that are optimized for communica-
tion prior to synchronization analysis, however, the picture some-
what changes. InC-Opt versions ofJacobi andstfrg, since the
communication loop is reduced to one, no synchronization mes-
sages can be eliminated.

To sum up, our communication optimization algorithm elimi-
nates37:3% of the data messages and synchronization messages
and reduces communication volume across all processors by26%.
Our synchronization elimination algorithm eliminates96:8% of the
synchronization messages in the message vectorized programs and
74% of the synchronization messages in the globally optimized
programs.



Table 1: Dataflow sets andPENDING OUT sets for the example in Figure 6(c).

communication in SendSet Pending

1 f(1,0),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6)g f(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)g
2 f(0,1),(1,2),(2,3)g f(1,0),(2,1),(3,2)g
3 f(3,4),(4,5),(5,6),(6,7)g f(4,3),(5,4),(6,5),(7,6)g

PENDING OUT for iteration 1 iteration 2

1 ff(0; 1); (1; 2); (2; 3); (3; 4); (4; 5); (5; 6); (6; 7)g; f;g; f;gg ff;g; f;g; f;gg
2 ff(3; 4); (4; 5); (5; 6); (6; 7)g; f;g; f;gg ff;g; f;g; f;gg
3 ff;g; f;g; f;gg ff;g; f;g; f;gg

7 Related Work

Previously several methods have been presented to optimize the
communication on distributed-memory message-passing machines.
Most of the efforts considered communication optimization at loop
(or array assignment statement) level. Although each approach has
its own unique features, the general idea is to apply an appropri-
ate combination of message vectorization, message coalescing and
message aggregation [9, 3]. Recently some researchers have pro-
posed techniques for optimizing communication across multiple
loop nests. The works in [5], [7], [12], [4], and [14] present similar
frameworks to optimizesend/recv communication globally and
use variants of Regular Section Descriptors (RSD). Although this
representation is convenient for simple array sections such as those
found in block distributions, it is hard to embed alignment and gen-
eral distribution information into it. Apart from this, working with
section descriptors may result in overestimation of the communica-
tion sets. Instead, our approach is based on a linear algebra frame-
work, and can represent all HPF-like alignment and distribution
information accurately.

The approaches given in [6] and [8] examine the problem of
eliminating redundant synchronization operations by piggy-backing
them on data messages. Our approach is superior to both of these
in eliminating synchronization as explained in the paper. Tseng
[13] focuses on synchronization elimination problem. There is an
important difference between our work and his. He eliminates syn-
chronizations which are introduced by the insufficient communica-
tion analysis performed by the shared memory compilers. A com-
piler approach based on a distributed memory paradigm (like ours)
does not insert those synchronizations in the first place. In our case,
we start with an unoptimized program in which those types of artifi-
cial synchronizations are non-existent anyway. We rather focus on
elimination of synchronizations that are caused by mandatory data
communications. Such types of synchronization are not eliminated
by Tseng’s solution [13].

8 Summary

We presented dataflow algorithms to reduce number of data mes-
sages, communication volume and number of synchronization mes-
sages. Our experimental results revealed that our approach is quite
successful in practice reducing on average 37.3% of data messages
and 96.8% of synchronization messages in the message vectorized
programs. We are working on compiling data-parallel programs
with Get primitives, and elimination of synchronizations and pos-
sible deadlocks from programs compiled under hybrid approaches
which employ bothPut/Get andsend/recv primitives.
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Table 2: Programs in our experiment set and their characteristics ( + = block, block-cyclic(4) or cyclic; * = not distributed).

PROGRAM SUITE LINES ARRAYS SIZE DISTRIBUTION DESCRIPTION

Jacobi � 25 2� 2D 1024 � 1024 (+,*) Jacobi iteration

2D hydro Livermore 18 38 9� 2D 512 � 512 (+,*) 2D hydrodynamics

ADI Livermore 8 30 3� 3D, 3� 1D 256� 256 � 2 (+,*,*) ADI fragment

vpenta Spec92/NAS 147 2� 3D, 7� 2D 128� 128 � 3 (*,+,*) pentadiagonal inversion

SOR � 25 2� 2D 256 � 256 (+,*) successive over-relaxation

stfrg Livermore 7 17 1� 1D 1024 (+) state fragment equation

tomcatv Spec95 190 7� 2D, 2� 1D 512 � 512 (+,*) 2D mesh generation

swim256 Spec95 428 14� 2D 512 � 512 (+,*) shallow water eqn. solver

Table 3: Communication volume and number of data messages in thebase (message vectorized) programs for a single iteration of the
time-step loop.

comm. volume (in thousand elements) no. of data messages (Synch messages)
PROGRAM No. of Processors = 8 No. of Processors = 32 No. of Processors = 8 No. of Processors = 32

BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC

Jacobi 14.4 522.2 2088.9 63.3 522.2 2088.9 14 16 16 62 64 64

2D hydro 57.1 1036.3 4169.8 252.9 1036.3 4169.8 112 128 128 496 512 512

ADI 10.7 96.8 387.1 47.2 96.8 387.1 42 48 48 186 192 192

vpenta 343.2 343.2 343.2 1519.7 1519.7 1519.7 784 784 784 13888 13888 13888

SOR 21.3 193.5 774.2 94.5 193.5 774.2 84 96 96 372 384 384

stfrg 0.2 4.6 6.1 0.7 4.6 6.1 42 64 48 186 256 192

tomcatv 57.1 1040 8323.2 252.9 2072.6 8323.2 112 128 128 496 1024 1024

swim256 57.6 914.4 3649.1 229 914.4 3649.1 128 142 142 464 478 478

Table 4: Percentage (%) improvement overbase (message vectorized) in communication volume and number of data messages.

% improvement in comm. volume % improvement in no. of data messages
PROGRAM No. of Processors = 8 No. of Processors = 32 No. of Processors = 8 No. of Processors = 32

BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC

Jacobi 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

2D hydro 50% 50% 50% 50% 50% 50% 50% 51% 50% 50% 50% 51%

ADI 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

vpenta 1% 1% 1% 1% 1% 1% 79% 78% 78% 78% 78% 78%

SOR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

stfrg 71% 64% 0% 71% 64% 0% 83% 74% 0% 81% 73% 0%

tomcatv 74% 74% 75% 75% 75% 75% 74% 74% 75% 75% 75% 74%

swim256 37% 41% 43% 41% 41% 43% 44% 42% 42% 43% 41% 43%

average 29% 29% 21% 30% 29% 21% 41% 40% 31% 41% 40% 31%

Table 5: Percentage (%) improvement in number of synchronization messages obtained by our approach over the message vectorized (base)
and globally optimized (C-Opt) versions.

No. of processors = 8 No. of Processors = 32
PROGRAM BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC

Base C-Opt Base C-Opt Base C-Opt Base C-Opt Base C-Opt Base C-Opt

Jacobi 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%

2D hydro 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

ADI 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

vpenta 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

SOR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

stfrg 83% 0% 75% 0% 83% 0% 83% 0% 75% 0% 83% 0%

tomcatv 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

swim256 94% 89% 93% 89% 93% 89% 93% 88% 93% 88% 93% 88%

average 97% 74% 96% 74% 97% 74% 97% 74% 96% 74% 98% 74%


