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Abstract tion sets as well as the producers and the consumers manipulated
by the Put operation can be implemented on top of the existing
In contrast to the conventional send/receive model, the one-way send/recv type of communication framework in our compiler [3].
communication model—usinBut andSynch—allows the decou- Having determined those, the next issue is to minimize the num-
pling of message transmission from synchronization. This opens up ber ofPut communications as well as the communication volume.
new opportunities not only to further optimize communication but Section 4 presents an algorithm to achieve this goal. Our algo-
also to reduce synchronization overhead. In this paper, we present aithm can take arbitrary control flow (excludirgpto statements)
general technique which uses a global dataflow framework to opti- into account and can optimize programs with all types of HPF-like
mize communication and synchronization in the context of the one- alignments and distributions, including block-cyclic distributions.
way communication model. Our approach works with the most It is based on a linear algebra framework introduced by Ancourt et
general data alignments and distributions in languages like HPF,al. [2]; in addition, our approach is quite general in the sense that
and is more powerful than other current solutions for eliminating several current solutions to the problem can be derived by a suitable
redundant synchronization messages. Preliminary results on sev-definition of associated predicates.
eral scientific benchmarks demonstrate that our approach is suc-  Clearly, in a compilation framework based on thet opera-
cessful in minimizing the number of data and synchronization mes- tion, the correct ordering of memory accesses has to be imposed
sages. by the compiler using the synchronization primitives. A straight-
forward approach inserts $ynch operation just before eadhut
operation as shown in Figure 1(a). The next question to be ad-
dressed then is whether or not ev8gach operation inserted that
Most of the current compilers for distributed memory machines Way is always necessary. The answer is no, and Section 5 pro-
rely on thesend andrecv primitives to implement communica- ~ POSes an algorithm to eliminate redundant synchronization mes-
tion. The impact of this approach is twofold. First, this tech- Sages. We refer to 8ynch operation asedundantif its function-
nique combines synchronization with communication in the sense 2lity can be fulfilled by other data communications or othigich
that data messages also carry implicit synchronization information. OPerations occurring in the program. The basic idea is to use an-
While this relieves the compiler of the job of inserting synchroniza- Other message in the reverse direction between the same pair of
tion messages to maintain data integrity, separating synchroniza-Processors in place of tiiynch call as shown in Figure 1(b). In
tion messages from data messages may actually improve the perSuch a situation, we say that the communicatigrkills the syn-
formance of some programs. Second, the compiler has the difficult Chronization requirement of communicatian We show that our
task of matchingsend andrecv operations in order to guarantee ~ agorithm is very fast and more powerful than the previous work
correct execution. in synchronization elimination. This is because (1) it is very accu-
In this paper, we focus on compilation of programs annotated fate in eliminating redundant synchronization, since it works at the
by HPF-like directives with one-way communication operations granularity of a processor-pair using the Omega library [11]; (2)
Put andSynch, introduced by Gupta and Schonberg [6] and Hin- it can eliminate a synchronization message by using several data
richs [8]. Let us consider Figure 1(a); here, a consumer processorMessages; (3) it handles block, cyclic, and block-cyclic distribu-
sends @ynch message to the producer informing that the producer tons in a unified manner, whereas the previous approaches either
canputdata in a buffer physically located in the consumer’s mem- WOrk on virtual processor grids only or use an extension of reg-
ory. After receiving theSsynch message, the producer deposits the Ular section descriptors which are inherently inaccurate; and (4)
data in that buffer. We note that tiSgnch operation is necessary it IS preceded by a global communication optimization algorithm
for the repetition of this communication; that is, when the producer Which itself eliminates a lot of synchronization messages. To show
wants to deposit new data into the buffer, it must know that the theidea behind the algorithm, we consider Figure 2(a), where eight
consumer has indeed consumed the old data in the buffer. processors (numbered 0 thru 7) are involved fua communica-
After briefly discussing the fundamental concepts used in this tion that repeats itself (as in a loop); processaieposits data in

paper in Section 2, in Section 3 we show how the communica- the memory of processar— 1 for 1 < < 7; the arrows indicate
the direction of communication. Figure 2(b) showsskech mes-
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Figure 2: Communication and synchronization messages for
@ (b) the first loop of the program in Figure 6(a).

Figure 1: (a) one-way communication witut operation.
(b) elimination of aSynch message.

programs. Our experiments show that we are able to reduce datathis condition, a loop nest, an array and a processor grid can all be
messages on the averagey and synchronization messages by represented as bounded polyhedra. Our compiler currently uses the
96%. We believe that these are also the first results from a compre- owner-computes rule [9], which assigns each computation to the
hensive evaluation of synchronization elimination in one-way com- processor that owns the data being computed.
munication. We discuss related work in Section 7 and conclude the ~ Consider the generic single loapshown in Figure 3(a). Let
paper with a summary in Section 8. R (i) =X(yp*i+0) and Ry (i) = Y(yr*i+0g). Letp andq de-
note two processors. We define several sets shown in Figure 3(b)
wheres is the communication statement awdand A are logical
‘or’ and ‘and’ operations respectively. The $Bin(X,p) refers to
gthe elements of array mapped onto processprthrough compiler

2 Preliminaries

We focus on structured programs with conditional statements and ", '® ** L A
nested loops but without arbitrary goto statementbaic blockis directives. SimilarOwn sets are defined for other arrays as well.

a sequence of consecutive statements in which the flow of control The SetProducers (S) andConsumers(S) denote, respectively,
enters at the beginning and leaves at the end without the possibility € Processors that produce and consume data communicaed in
of branching except perhaps at the end [1].céntrol flow graph For a specific process@®roducersFor andConsume_srsFor give
(CFG) is a directed graph constructed by basic blocks and repre_the set of processors that send data to and receive data from that
sents the flow-of-control information of the program. For the pur- Processor respectivelyputset(s,p,q) is the set of elements that

pose of this paper, the CFG can be thought of as a directed graphShould be put (written) by processgito memory of processgy.

G = (V, &) where eachy € V represents either a basic block or  SendSet (S) is set of pairsq, p') such thay’ sends data to (write
a (reduced) interval that represents a loop, and each £ rep- data in the memory ofy’. Flnally, P,emlilng(S) is t,he inverse of
resents an edge between blocks. In this paper, depending on theendSet (S), and gives set of pairg{, ¢') such thap’ should send
context, we use the termodeinterchangeably for a statement, a &Synch message tg" for the repetitions of the communication (in
block or an interval. Two unique nodesand¢ denote the startand ~ €ach iteration of the time-step logp occurring inS. For a com-
terminal nodes respectively of a CFG. One might think of these Munication occurring iri, the sePending (i) represents a listof
nodes as dummy statements. We define the sets of all successor§dividual Synch messages that should be sent for the safe repeti-
and predecessors of a nodeas succ(n) = {m | (n,m) € £} tion of thg data communication i That.ls, aSynch message is
andpred(n) = {m | (m,n) € £}, respectively. Node dom- between just a pair of processors. Foriaand aSynch, we say
inatesnode;j in the CFG (written ag € dom(i)), if every path ~ Whether or nosynch € Pending(i). .

from s to j goes through. We assume that prior to communica- In fact, by using appropriate projection functions all of those
tion analysis, any edge that goes directly from a node with more S€ts can be obtained from a single set calle@imSet (S) con-
than one successor to a node with more than one predecessor i&iNing triples §'.¢’, d) meaning that element should be com-
split by introducing a dummy node. Our technique for minimizing Municated frony” top” in s. The CommSet (S) is currently used in

the communication volume and the number of messages is based®!! COMpiler's communication generation portion to genesaigl
oninterval analysig1]. Interval analysis consists of@ntraction andrecv commands. The necessary projection functions can be
phase and aexpansiorphase. For programs written in a structured Implemented by using the Omega library [11], and are shown in
language, an interval corresponds to a loop. The contraction phase’ 19uré 3(C). For instanc&onsumersFor (S, ¢) is obtained from
collects information about what is generated and what is killed in- CommSet (S) by projecting oud and substituting for ¢'; that is,
side each interval. Then the interval is reduced to a single node andd IS & Parameter antonsumersFor (8, ¢) enumerateg’ values in
annotated with the information collected. This is a recursive pro- ©MS ofg. ) o

cedure and stops when the reduced CFG contains no more cycles., By taking into account the alignment and distribution informa-
In each step of the expansion phase, a node (reduced interval) idi0n: We can define thewn set more formally as

expanded, and the information regarding the nodes in thatinterval  gun(v,q) = {d|3t,c,l s.t. (t=ad+ B =CPc+Cq+1)

is computed. AN <d<yu) AP <g<pu) At <t <tw)

A (0<I<C-1)},
3 Producers and Consumers ] )
whereP = p, —p;+1. Inthis formulationt = ad+ 3 represents

We assume that all loop bounds and subscript expressions are affin@lignment information and = CPc + Cq + I denotes distribution

functions of enclosing loop indices and symbolic variables. Under information. In other words, each array eleméis mapped onto a
point in a two-dimensional array. This point can be represented by a



REAL X(x;:2v), Y(yr:yw)
VHPF$ TEMPLATE T(f;:ty)
'HPF$ PROCESSORS PROC(p; :p.)
'HPF$ ALIGN X(j), Y(j) WITH T(axj+3)
'HPF$ DISTRIBUTE T(CYCLIC(C)) ON TO PROC

[ SET [[ PROJECTION FUNCTION |
_ . Producers(S) p’,q,d] — [{]
D = 1, TIME - 1
Ut S /* time-step loop */ Consumers () p',q',d] = [p’]
< synchronization foll usingSynch operations > ProducersFor(S, p) P, q’,d] — [q:]
S: < communication folf usingPut operations > ConsumersFor(S,q) || [p’,¢,d] — [p']
DO i = i, iu PutSet(S, p, ¢) p,q,d] — [d]
SendSet (5) p,d,d —~[d,p]
X(yp*it0p) = --- Y(ygp*itfRr) --- Pending(S) p . q,d — [p,d]
END DO (©
END DO
(a)
Oown(X,q) = {d|deXA isowned byg}
Producers(S) = {¢' | 3i,p' s. t Rr (i) € Own(Y,¢') AR.(i) € 0wn(X,p')Aiy <i<iwAqg #p'}
Consumers(S) = {p'|3i,¢'s. t. Rr(i) € 0wn(Y,q') AR.(i) € 0wn(X,p')Ai; <i<iyAg #p'}
ProducersFor(S,p) = {¢ |3Jis.t Rr(:) € 0wn(Y,q¢') AR.(i) € 0wn(X,p) A4y <i<iy Aq #p}
ConsumersFor(S,q) = {p’|q € ProducersFor(S,p’)}
PutSet(S,p,q) = {d|3is.t.d=Rgr(i) € 0un(Y,q) AR.(%) € 0wn(X,p) A4 <i< iy Aq#Dp}
SendSet(S) = {(¢,p') | Ids.t.d € PutSet(S,p’,q")}
Pending(s) = {(¢',q')|(¢',p') € SendSet(s)}.

(b)

Figure 3: (a) Generic loop. (b) Several sets. (c) Projection functions to manipulate aetiy(are symbolic names).

pair (¢, ) and gives the local address of the data item in a processor.
SimpleBLOCK andCYCLIC (1) distributions can be handled within
this framework by setting = 0 andl! = 0, respectively. The for-
mulation given here can be generalized to multi-dimensional loops,
arrays and processor grids [2]. Consider the firébop in Fig-

ure 6(b). Figure 4(a) shows the sets for this loop assuming that in
the transformed program array bounds start from 0. Notice that a
processor is in theProducers set if there exists a processpr
such thaly # p andq puts data irp’'s memory. Similarly, a pro-
cessorp is in theConsumers set if there exists a processpsuch
thatp # ¢ andgq puts data irnp’s memory. For this example, if
distribution directive for the arrays is changed¥£LIC(4), then

we have the sets shown in Figure 4(b). All of these sets can easily

be represented and manipulated by the Omega library [11]. Notice

that using the Omega sets to represent producer-consumer informa:

tion, we are able to accommodate any kind of HPF-like alignment
and distribution data in our framework througtn sets.

Let {d | P(d)} and{d | Q(d)} be twoPutSets for a same
multi-dimensional array wher@(.) and Q(.) denote two predi-
cates andl refers to an array element. We define three operations,
Ve, —e, @andA. on thesePutSets as shown in Figure 4(c). In the
remainder of this pape¥/ and A symbols will also be used for.
andA., respectively, when there is no confusion.

4 Optimizing Communication

The objective of our global communication optimization frame-
work is to determinéPutSet(i, p,q) for each nodei in the pro-
gram globally; that is, by taking into account all the nodes in the
CFG that are involved in communication.

Local (Intra-Interval) Analysis The local analysis part of our
framework computeXill, Gen andPost_Gen Sets defined below

for each interval. Then the interval is reduced to a single node and
annotated with these sets. With reference to Figure 3(a),

{(d| d € 0wn(x,q)) A (3rs. t.
(d=Re@) A (i <T< i)},

[ \/ Modified(j,q)]VcKill(i,q).
jeEpred(i)

Kill(i,q)

Modified(i,q)

assumingModified(pred(first(i)),q) = 0 wherefirst (i)
is the first node in.

Kill(i, q) is the set of elements owned and written (killed) by
processoy locally in i, andModified(i, q) is the set of elements

that may be killed along any path from the beginning of the interval
to (and including)i. The computation of th&ill set proceeds

in the forward direction; that is, the nodes within the interval are
traversed in topological sort order.1&st (1) is the last node in,
then

Kill(i,q) = Modified(last(i),gq)

This last equation is used to reduce an interval into a node. The
reduced interval is then annotated bykitid 1 set.

Gen(i,p,q) is the set of elements to be written yinto p’s
memory to satisfy the communication in The computation of
the Gen proceeds in the backward direction, i.e., the nodes within
each interval are traversed in reverse topological sort order. The
elements that can be written fyinto p’s memory at the beginning
of a node in the CFG are the elements required by p due to a RHS
reference in the node except the ones that are written locally (killed)
by ¢ before being referenced hy



Producers(2) {g]1<¢<T7}

{pl0<p <6}
{ellg=p+D)A(0<p<LE)}
{Pllp=g-DA@L <<}
{dl(d=169)A(p+1=9)A(1 <g<T)}

Consumers(2)

ProducersFor(2, p)

ConsumersFor(2, q)

PutSet(2, p, q)

SendSet(2) = {(q,9—1)]|1<¢< T}
Pending(2) = {(p,p+1)]|0<p <6}
(@
Producers(2) = {¢|0<¢<7}
Consumers(2) = {¢]|0<¢< T}

ProducersFor(2, p) {¢lg=0Ap=T}
UWel(g=p+1)A(0<p<6)}
{plp=7Aqg=0}

Ufp [ (p=g¢-1) A1 <q¢<T)}

{d | 3asuchthal(d = 32a) A(g=0)A(p=T)
A(3B2<d<L128) U
{d|3as.t(d=4+4p+32a0) A(g=p+1)
ANO<p<6)A(4p+4<d<4p+100)}
(0D} {(@a-1)1<q< T}
{pp+1) 10 < p<6}U{(T,0)}

(b)

ConsumersFor(2, q)

PutSet(2, p, q)

SendSet(2)
Pending(2)

Figure 4: (a) Sets for the first loop in Figure 6(b) BwOCK distribution.

{d| P(d) v Q(d)}
{d] P(d) A =(Q(d))}
{d] P(d) A Q(d)}

{d] P(d)} ve {d'] Q(d)}
{d| P(d)} —c {d| Q(d)}
{d] P(d)} Ae {d'] Q(d)}

©

PENDING_IN(i)

- |_| PENDING_OUT(j)

j€pred(i)

F; (PENDING_IN(i))

(d

PENDING_OUT(i)

(b) Sets for the first loop in Figure 6(b) f&¥CLIC (4) distribution.

(c) Operations oRutSets. (d) Dataflow equations for optimizing synchronization messages.

Assuming? = (1, ..., 1,) andd = (¢}, ..., 7,), let < 7mean
that# is lexicographically less than or equalcands <7 mean
thats; = ¢ forall j < k, and (v, ..., 0,) < (tky..,tn). Let
Comm(i, p, ¢) be the set of elements that may be communicated at
the beginning of interval to satisfy communication requirements
from the beginning ofi to the last node ofi. Then, from Fig-
ure 3(a), assuming th@bmm(succ(last(i)), q) = @, we have

Gen(i,p,q) = {d|T's.t.(i <T<iu)A
(d= R (1) € 0un(Y,q)) A (Re(7) € Own(X, p))
NG5 R s (i < T<d0) Ald=Re' (7))
A(j<level(i)a)}a

Comn(i,p,q) = [ [\ Comn(s,p,a)] Ve Gen(i,p,q).

s€suce(i)

The negated condition eliminates all the elements writteq loy
cally in an earlier iteration than the one in whighrequires them.

In addition, we use the following equation to reduce an interval into
a single node

Gen(i,p,q) = Comm(First(i),p,q).

In the definition ofGen, Rz denotes the RHS reference, aRg
denotes the LHS reference of the same stateniept, on the other
hand, refers to any LHS reference within the same interval. Notice
that while R’ is a reference to the same arrayRg, in general
Rc can be a reference to any arrayevel (i) gives the nesting
level of the interval (loop), 1 corresponding to the outermost loop
in the nest.

After the interval is reduced, thgen set for it is recorded, and
an operatoy\ is applied to the last part of thi&n set to propagate

it to the outer interval:
N(j"<k7_:) = ]_'-<(k,1)i'.

It should be emphasized that computatiorGeh sets gives us all
the communication that can be vectorized above a loop nest; that
is, our analysis easily handles message vectorization [9]. A naive
implementation may s@ut_Set(i, p, q) to Gen(i, p, q) for every
i, p andgq. But such an approach often retains redundant commu-
nication which would otherwise be eliminated.

Finally, Post_Gen(i,p, q) is the set of elements to be written
by ¢ into memory ofp at nodei with no subsequent local write to
them bygq:

{d] s t.(i] <T<in) A
(d'=Rr(?) € 0um(Y,q)) A (Re(?) €
NGRS (il S T< ia) A(d =
A< 10ve1(1) 7)) }-

The computation ofost_Gen(i, p, q) proceeds in the forward di-

rection. Its computation is very similar to thosekifll andGen
sets, so we do not discuss it further.

Post_Gen(i,p,q)

Own(X, p))

Y)
< Rc'(D)

Dataflow Equations In our framework, one-way communica-
tion calls are placed at the beginning of nodes in the CFG. Our
dataflow analysis consists of a backward and a forward pass. In the
backward pass, the compiler determines sets of data elements that
can safely be communicated at specific points. The forward pass,
on the other hand, eliminates redundant communication and deter-
mines the final set of elements that should be communicated (writ-
ten bygq into p’s memory) at the beginning of each notle The



input for the equations consists of tden, Kill andPost_Gen ization alone, can place communications and associated synchro-
sets. nizations as shown in Figure 6(b) before the loop bounds reduc-
The dataflow equations for the backward analysis are given tion. Note that aSynch message in that figure in fact represents
by Equations (1) and (2) in Figure 5. Basically, they are used to a number of point-to-point synchronization messages. An applica-
combine and hoist communication. The s®ige_In(i,p,q) and tion of our global communication optimization method generates
Safe_Out(i,p, g) consist of elements thaansafely be communi- the program shown in Figure 6(c). As compared with the message
cated at the beginning and end of nddeespectively. Equation (1)  vectorized version, there is a 50% reduction (from 28 to 14) in the
says that an element should be communicated at a point if and onlynumber of messages and 40% in the communication volume (from
if it will be used in all of the following paths in the CFG. Equa- 35 to 21) across all processors. We note that we can optimize this
tion (2), on the other hand, gives the set of elements that can safelyprogram even the distribution directive is change®YGLIC (X)
be communicated at the beginningiofintuitively, an element can for anyk. When the distribution directive &YCLIC(4), we have a
be written byq into p’s memory at the beginning df if and only 50% reduction (from 48 to 24) in the number of messages and 32%
if it is either required by in i or it reaches at the end af(in the reduction (from 139 to 94) in the communication volume across
backward analysis) and is not overwritten (killed) by the owiggr ( all processors. Note that our approach here reduces the original
in it. The predicateP (i) is used to control communication hoist- number of synchronization messages as well (from 28 to 14 for the
ing. If P(i) is true, communication is not hoisted to the beginning BLOCK distribution and from 48 to 24 for theYCLIC(4) case).
of i. P(i)=falseimplies aggressive communication combining
and hoisting. An algorithm can also put a condition which tests the
compatibility betweerGen(i,p,q) andSafe_Out(i,p,q) (€.0.
two left-shift communications are compatible whereas a left-shift |, his section, we assume that the compiler has conducted the

and a right-shift are not) [4]. dataflow analysis described in Section 4 and determined the op-

The task of the forward analysis phase, which makes use of (3| communication points and communication sets. Assuming
Equations (3), (4) and (5) in Figure 5, is to eliminate redundant 4 these communications will be implementecbhy operations,

communication by observing thgt @) a npde in the CFG should not ;¢ present a dataflow analysis to minimize the numbe3yaich

have a non-local datum which is exclu§|vely needed by a succes- megsages. We assume that communication patterns (i.e. producer-
sor unless it dominates that successor; and (2) a successor shoulgOnsumer relationships) aidentical for each repetition of a com-
ignore what a predecessor has so far unless that predecessor domy, nication. For example, in Figure 6(c), the producer-consumer

inates it. Put _In(i,p,q) andPut Dut(i, p, q) denote the set of  nanern for the communication occurring dris identical for every
repetition of time-step loop.

elements thahave beemwritten so far (at the beginning and end
of nodei respectively) by into memory ofp. Equation (3) con- Our approach first makes a single pass over the current interval

servatively says that the communication set arriving in a join node 44 determines some synchronizations that cannot be eliminated
can be found by intersecting the sets for all the joining paths. Equa- py, the analysis to be described. We call the set of synchronizations
tion (4) is used to compute ttratSet set which corresponds to the (associated with a nods) that cannot be eliminatetynchFix (i).
elements that can be communicated at the beginning of the node exyye refer the reader to [10] for the definition ®fnchFix (i).
cept the ones that have already been communicaied In). The The dataflow technique described here starts with the deepest
elements that have been communicated at the end ofinitiat is, loops and works its way through loops in a bottom up manner, han-
Put_Out set) are simply the union of the elements communicated dling one loop at a time. It then reduces the loop to a node and
up to the beginning of (that is,Put In set), the elements commu-  4notates it with its final synchronization requirements that cannot
nicated at the beginning df(that is,PutSet (i,p,q) set) (except  pg gliminated. The procedure works on an augmented CFG, where
the ones which have been killed i and the elements communi-  gach communication loop is represented by a single node. In the
cated ini and not killed subsequentlP¢st_Gen). following, the symboti refers to such a node.

For a giveni, we can define the s8ynchSet as a set of pro-
Interval Analysis Our approach starts by computing tGen, cessor pairs that should be synchronized after our analysis. In a
Kill andPost_Gen sets for each node. Then the contraction phase straightforward implementatiolSynchSet (i) =Pending(i) for
reduces the intervals from the innermost loop to the outermost loop eachi. We would like to reduce the cardinality 8fnchSet (i)
and annotates them witken, Kill andPost_Gen sets. When a for eachi. We say that no synchronization is required for a commu-
reduced CFG with no cycles is reached, the expansion phase startgicationi, if SynchSet (i) happens to be empty after our dataflow
andPutSets for each node is computed from the outermost loop analysis.
to the innermost loop. There is one important point to note: be- If the compiler wants to eliminate Synch message for com-
fore starting to process the next graph in the expansion phase, thenunicationi from p to ¢, it needs to find a message for another
Put_In set of the first node in this graph is set to e Set of the communication fronp to ¢ and use it as synchronization. Such a
interval that contains it to avoid redundant communication. More message should occbetweerrepetitions ofi andafter the data
formally, in the expansion phase, we seit_In(i,p, q)kthp‘”s = value communicated atis consumed. Suppose that a specific pro-
putSet(i,p,q>(k—1)”‘pass._ This assignment then triggers the next ducerq and a consumep are involved in a communication in

pass in the expansion phase. Before the expansion phase startt?ﬁor‘Si‘ljer allk commutnigatipnsj (1 debS k)dObCCfU”ifl% aﬁert
st )
Put_In(i, p, q)1 Pass js set to the empty set. Note that the whole € value communicated iis consumed by and before the nex

o . . repetition ofi. Then, if the following holds, th€ynch message
dataflow procedure operates on sets of equalities and |nequaI|t|esfr0m to ¢ can be eliminated:

which can be manipulated by the Omega library [11] or a similar L '

tool. (37| (1 <j <k)Aq € ConsumersFor(tj,p))

5 Optimizing Synchronization

) ) S An interesting case occurs when all $ynch messages contained
Example Consider the synthetic benchmark given in Figure 6(a). in the Pending (i) set for a specifici are eliminated. We can
In this example, communication occurs for three arr@y®:andF. formalize this condition as

A communication optimization scheme based on message vector- o )
Vp¥q(((p,q) € Pending(i)) = 3j((p,q) € SendSet(t;))) (6)



Backward Analysis:

Safe_Out(i,p,q) =

/\ Safe_In(s,p, q)

s€suce(i)

Gen(i,p, q)

if P(i)

Safe.In(i,p,q) = { (Safe Out(i,p,q) —c Kill(i, ¢)) V. Gen(i,p,q) otherwise

Forward Analysis:

Put.In(i,p,q) =

N\ pueout(ie

j€pred(i)

PutSet (i, p, q)

{

Put_Out(i,p,q) = {

Gen(i, p,q) —c Put_In(i, p,q) ]
Safe_In(i, p,q) — Put_In(i, p,q) otherwise

Put_In(i,p,q) —c Kill(i, q)

if 3k s.t. k € succ(i) andk ¢ dom(t)

if 3k s.t. k € succ(i) andk ¢ dom(i)
((PutSet(i, p, ¢) +c Put_In(i, p, ¢)) —c Kill(i, q)) +. Post_Gen(i, p, q)

otherwise

Figure 5: Dataflow equations for optimizing communication.

(@)

@

®

(O]

®)

REAL A(128), B(128), C(128)

D(128), E(128)

'HPF$ PROCESSORS PROC(0:7)
'HPF$ DISTRIBUTE BLOCK ON TO

PROC :: A, B,

DO t = 1, TIMES
DO i =1, 127
S: A(i) = B(i+l)
END DO
DO i =1, 126
D(i) = A(Q) + 1

REAL A(128), B(128), C(128)
D(128), E(128), F(128)
'HPF$ PROCESSORS PROC(0:7)
'HPF$ DISTRIBUTE BLOCK ON TO
C, D, E PROC :: A, B, C, D, E

, F(128)

DO t = 1, TIMES

1

2 | Synch; put{B};
3 DO i-=1, 127

4 A(i) = B(i+l)

5 END DO
6

7

8

A(i) = B(i+1) + B(i+2) Synch; put{B};
END DO
IF (A(1).EQ.B(1)) Synch; put{B};
D0 i=2, 64 DO i =1, 126
C(i) = D(i-1) 9 D(@i) =A@E) +1
END DO 10 A(i) = B(i+l1) + B(i+2)
ELSE 11 END DO
D0 i =2, 64 12 IF (A(1).EQ.B(1))
A(i) = C(i) + D(i-1) IIIIIIIIIIIIIIII
END IF 14 D0 i =2, 64
DO i =1, 127 16 C(i) = D(i-1)
F(D) = A - 1 16 END DO
B(i) = A(i) * A(i) 17 ELSE

DO i = 65, 128
E(i) = F(i-1)
END DO
END DO
(a)

Figure 6: (a) A synthetic benchmark. (b) Message vectorized translation. (c) Global communication optimization.

19 DO i =2, 64
20 A(i) = C(1) + D(i-1)

23 D0 i=1, 127

24 F(i) = A(i) -1
25 B(i) = A(Q) * A(d)
26 END DO

:
28 DO i = 65, 128
29 E(i) = F(i-1)
30 END DO
31END DO

(b)

REAL A(128), B(128), C(128)

D(128), E(128), F(128)

'HPF$ PROCESSORS PROC(0:7)
'HPF$ DISTRIBUTE BLOCK ON TO

1:

PROC :: A, B, C, D, E

DO t = 1, TIMES

Synch; put{B};
D0 i=1, 127
A(i) = B(i+1)

DO i=1, 126
AGL) + 1
B(i+1) + B(i+2)

IF (A(1).EQ.B(1))
D0 i =2, 64
C(i) = D(i-1)
END DO
ELSE
D0 i =2, 64
A(i) = C(i) + D(i-1)
END DO
END IF
D0 i =1, 127
F(i) = A(i) - 1
B(i) = A(i) * A(i)
END DO

: | Synch; put{F};

DO i = 65, 128
E(i) = F(i-1)
END DO
END DO
(c)




assumingl < j < k. Notice thatj values can be different for  is the synchronization requirement of communicatioop to the
eachq. If we additionally stipulate that ajl values should be the  end of j. Assuming then that the resultiRENDING_IN(i) =

same for ally values, then we obtain {P\, P, ..., P}, eachP, € PENDING_IN(i) can be computed as
. . P, = v.P;; whereV. is performed over thg values. We note that
vp¥e3j((p,¢) € Pending(i)) = ((p,q) € SendSet(t;))) (7) this algorithm is more accurate and faster than those proposed in
We note that the condition (7) implies the algorithms offered by (8] and_[6]. . ) ) )
[6] and [8]. Claim: The dataflow procedure defined by equations given in

Claim: The synchronizations eliminated by (7) are a subset of Figure 4(d) can reach a steady state in at most after two iterations
the synchronizations that can be eliminated by (6) (see [10] for the (S€€ [10] for the proof).
proof).

Even if aPending (i) set cannot be totally eliminated we can Example The upper part of Table 1 shows the s&#adSet and
reduce its cardinality by eliminating as mafiynch messages as  Pending (in an open form rather than in terms of equalities and in-
possible from it. That is, after our analysis, for every equalities) for the program shown in Figure 6(c). Note that the sets
. o ) SendSet (1) andPending(1) are computed from th8endSet
SynchSet(1) = Pending(i) —c {(p,q) |Jjs-t ®) andPending sets respectively given in Figure 4(a). The sets2for

q € ConsumersFor (t;,p)}V.SynchFix(i) (9) and3 are computed similarly. Before the dataflow analysis starts,

As an example, let us consider the program shown in Figure 6(c). PENDING_IN(1) is initialized as follows:

In this program, com_munication occurs at three points2 and PENDING_IN(1) = {{Pending(1)},{Pending(2)},{Pending(3)}}
3. A straightforward implementation inserts three (setsSgfch = {(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),
operations, corresponding tg 2 and 3 as shown in that figure. (1,0),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6)}

Let us now focus on the communication in Figure 2(a) shows

the messages serfiult operations) for this communication. Fig-  The lower part of Table 1 demonstrates application of our dataflow
ure 2(b), on the other hand, shows the required synchronization algorithm to this example. After the fixed state is reached, an ex-
messages for the repetitions of this communication. Finally, Fig- amination ofPENDING_OUT (3) reveals that the program can be ex-
ures 2(c) and 2(d) show the communication messag@saind 3 ecuted without any synchronization.

respectively. Notice that, by using the condition given in (6), the
synchronization requirements farcan be eliminated; that is, the
communications occurring ihand3 together kill the synchroniza-
tion requirements of the communication in If we consider Fig- e applications used in our study and their characteristics are
ure 2(c) and Figure 2(d) separately for the condition given by (7), |isted in Table 2. We experimented WIiBLOCK, B-CYC (block-
however, none of them individually can eliminate the synchroniza- ¢, cjic) andcycLIc distributions on 8 and 32 processors to mea-
tion for 1. By a similar argument, it can be concluded that the g, the static improvements. We refer to a version of program
communications irz and3 do not need any synchronization either, \,nich is optimized by message vectorization alondase. Ta-

as their synchronization requirements are killed by communication o 3 presents the communication volume and the number of data

6 Preliminary Results

in 1. messages (that is also the numbeiSpiich messages) across all
processors in thease programs.
Dataflow Analysis: Our data flow equations are shown in Fig- For these applications, we first applied our global communi-

ure 4(d). Our analysis consists of iterative forward passes on the cation optimization algorithm. The percentage improvements are
CFG. We first concentrate on the second equation and explain thelisted in Table 4. It should be noted that in block-cyclic distribu-
functionality of ;. HerePENDING_IN(i) represents the synchro-  tions where most of the previous approaches fail, we have, on the
nization requirements of all the communications traversed so far up average, a 29% reduction in communication volume and 40% re-
to the beginning of. PENDING_OUT (i) is defined analogously for  duction in number of messages across all processors.

the end ofi. Assuming thatP; is the synchronization requirement We then applied our synchronization elimination scheme to the
(in terms of pairs of processors) for nodeup to i in the analy- base version as well as the globally optimized versicrdpt) for
sis and PENDING_IN(i) = {P:,...,Pi_1, P;, Piy1,..., P} , WE Can each program. The results shown in Table 5 reveal that the algo-
defineF; as rithm is surprisingly successful in eliminating the redundanich

_ A . . _ messages. Except for two programs, the algorithm eliminates all
Fi(PENDING-IN(1)) = {i(P1), -+, fi(Pim1), Pis [i(Pig1), oors fi(Pm) } synchronization messages from thase programs. When we look
where f;(P,) = Py —c SendSet(i) . That is, when a node is at the results for the programs that are optimized for communica-
visited, the synchronization requirements for all other communica- tion prior to synchronization analysis, however, the picture some-
tions are checked to see whether or not any synchronization canWhat changes. 18-0pt versions ofjacobi andstfrg, since the

be eliminated by using the communication occurringi atPrior communication loop is reduced to one, no synchronization mes-
to the analysisP; is set toPending(i) for the first node. Af- sages can be eliminated. o , .
ter a fixed state is reached, tRENDING_OUT set of thelast node To sum up, our communication optimization algorithm elimi-

gives the synchronization requirements to be satisfied. The result-nNates37.3% of the data messages and synchronization messages

ing PENDING_OUT set, which is in fact a set of sets, is then reduced and reduces communication volume across all processa§ by

to a single set and used to represent the synchronization require-OUr synchronization elimination algorithm eliminag#s8% of the

ments of this loop to the next upper level. synchronization messages in the message vectorized programs and
We now consider the first equation of Figure 4(d) and explain 74% of the synchronization messages in the globally optimized

the | | operator appearing there. In the join nodes, the compiler Programs.

takes a conservative approach by unioning the synchronization re-

quirements for the same communication. Suppose that for each

Jj € pred(i), PENDING_OUT(j) = {Pj1, P2, ..., Pjm }, WhereP;j;



Table 1: Dataflow sets arRENDING_QUT sets for the example in Figure 6(c).

communication in || SendSet

| Pending |

1
2
3

{€0,1),(1,2),(2,3)}
{(3,4),(4,5),(5,6),(6,7)}

{1,0,(2,1),(3,2),(4,3),(5,4),(6,5),(7,6) }

{(,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7) }
{(1,0,(2,1),(3,2)}
{(4,3),(5,4),(6,5),(7,6)}

[ PENDING_OUT for [|

iteration 1

| iteration 2 |

1 {{(0,1),(1,2),(2,3),(3,4),(4,5), (5,6), (6,7)}, {0}, {0}} | {{0},{0},{0}}

2 {{(3,4),(4,5),(5,6),(6,7)}, {0}, {0}} {10}, {0}, {0}}

3 {{0}, {0}, {0}} {{0},{0},{0}}
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communication on distributed-memory message-passing machines.
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ate combination of message vectorization, message coalescing and[3]
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information accurately.
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communications. Such types of synchronization are not eliminated

by Tseng’s solution [13].

8 Summary
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We presented dataflow algorithms to reduce number of data mes-[12]
sages, communication volume and number of synchronization mes-
sages. Our experimental results revealed that our approach is quite
successful in practice reducing on average 37.3% of data messageg-3]
and 96.8% of synchronization messages in the message vectorized
programs. We are working on compiling data-parallel programs
with Get primitives, and elimination of synchronizations and pos-

sible deadlocks from programs compiled under hybrid approaches

which employ bottPut/Get andsend/recv primitives.
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Table 2: Programs in our experiment set and their characteristics ( + = block, block-cyclic(4) or cyclic; * = not distributed).

[ PROGRAM [ SUITE [[ LINES | ARRAYS I SIZE [[ DISTRIBUTION [| DESCRIPTION |
Jacobi — 25 2 X 2D 1024 x 1024 (+,%) Jacobi iteration
2D hydro Livermore 18 38 9 x 2D 512 x 512 (+,%) 2D hydrodynamics
ADI Livermore 8 30 3x3D, 3x1D 256 X 256 x 2 (+,%,%) ADI fragment
vpenta Spec92/NAS 147 2x3D, 7Tx2D 128 x 128 x 3 (%, +,%) pentadiagonal inversion
SOR — 25 2 x 2D 256 x 256 (+,%) successive over-relaxation
stfrg Livermore 7 17 1 x1D 1024 (+) state fragment equation
tomcatv Spec95 190 7Tx2D, 2x1D 512 x 512 (+,%) 2D mesh generation
swim256 Spec95 428 14 x 2D 512 x 512 (+,%) shallow water eqn. solver

Table 3: Communication volume and number of data messages isattie(message vectorized) programs for a single iteration of the
time-step loop.

comm. volume (in thousand elements) no. of data messages (Synch messages)

PROGRAM No. of Processors = 8 [[ No. of Processors = 32 No. of Processors = 8 [[ No. of Processors = 32
BLOCK | B-CYC | CYCLIC ” BLOCK | B-CYC | CYCLIC BLOCK | B-CYC | CYCLIC ” BLOCK | B-CYC | CYCLIC

Jacobi 14.4 522.2 | 2088.9 63.3 522.2 | 2088.9 14 16 16 62 64 64
2D hydro 57.1 1036.3 | 4169.8 252.9 1036.3 | 4169.8 112 128 128 496 512 512
ADI 10.7 96.8 387.1 47.2 96.8 387.1 42 48 48 186 192 192
vpenta 343.2 343.2 343.2 1519.7 1519.7 1519.7 784 784 784 13888 13888 13888
SOR 21.3 193.5 774.2 94.5 193.5 774.2 84 96 96 372 384 384
stfrg 0.2 4.6 6.1 0.7 4.6 6.1 42 64 48 186 256 192
tomcatv 57.1 1040 | 8323.2 252.9 | 2072.6 | 8323.2 112 128 128 496 1024 1024
swim256 57.6 914.4 | 3649.1 229 914.4 | 3649.1 128 142 142 464 478 478

Table 4: Percentage (%) improvement ovese (Mmessage vectorized) in communication volume and number of data messages.

% improvement in comm. volume % improvement in no. of data messages
PROGRAM No. of Processors = 8 | No. of Processors = 32 No. of Processors = 8 || No. of Processors = 32
BLOCK [ B-CYC | CYCLIC [[ BLOCK [ B-CYC [ CYCLIC BLOCK [ B-CYC | CYCLIC [[ BLOCK [ B-CYC [ CYCLIC
Jacobi 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2D hydro 50% 50% 50% 50% 50% 50% 50% 51% 50% 50% 50% 51%
ADI 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
vpenta 1% 1% 1% 1% 1% 1% 79% 8% 8% 8% 8% 78%
SOR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
stfrg 1% 647 0% 1% 647 0% 83% 4% 0% 81% 73% 0%
tomcatv 74% 74% 5% 75% 75% 75% 4% 4% 5% 5% 5% 74%
swim256 37h 41% 43% 41% 41% 43% 447, 42, 42, 43% 41% 43%
average || 29% [ 29% [ 21% [ 30% [ 29% [ 21% [ 41% [ 40o% [ 31% [ 41% [ 40% | 31% |

Table 5: Percentage (%) improvement in number of synchronization messages obtained by our approach over the messagéusejorized (
and globally optimizedd-0pt) versions.

No. of processors = 8 No. of Processors = 32

PROGRAM BLOCK B-CYC CYCLIC BLOCK B-CYC CYCLIC
Base | C-Opt Base | C-Opt Base | C-Opt Base | C-Opt Base | C-Opt Base | C-Opt
Jacobi 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
2D hydro 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

ADI 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
vpenta 1007% 100% 1007% 100% 1007% 100% 100% 100% 100% 100% 100% 100%

SOR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
stfrg 83% 0% 75% 0% 83% 0% 83% 0% 75% 0% 83% 0%

tomcatv 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
swim256 947 89% 93% 89% 93% 89% 93% 88% 93% 88% 93% 88%

average || 97% | 74% | 96% | 74% [ 97% | 4% [ 97% | 74% [[ 96% [ 74% [ 98% [ 74% |




