
A Compiler Algorithm for Optimizing Locality in Loop Nests*

M. Kandemir J. Ramanujam A. Choudhary

EECS Dept.

Syracucle University

Syracuse, NY, 13244

ECE Dept.

Louirisna State University

Baton Rouge, LA 70803

ECE Dept.

Northwestern University

Evanston, IL, 60208-3118

mtkdw.a.nru.edu juOw.lau..du

Abstract

This paper describe8 an algorithm to optimize cache locality
in scientific codes on uniprocessor and multiprocessor ma-
chines. A distinctive characteristic of our algorithm is that
it considers loop and data layout transformations in a uni-
fied framework. We illustrate through example8 that our

approach is very effective at reducing cache misses and tile-
size sensitivity of blocked loop nests; and can optimize nests
for which optimization technique8 based on loop transfor-
mations alone are not succe88ful. An important special ceze
is the one in which data layouts of some arrays are fixed and
cannot be changed. We show how our algorithm can handle
this ca8e, and demonstrate how it can be used to optimize
multiple loop nests.

1 Introduction

Minimizing the time spent in data accesses is an impor-
tant issue in the efficient execution of nested loops on both
uniprocessors and multiprocessors. Although cache8 are ca-
pable of reducing the average memory acces8 time and op-
timizing compilers are able to detect significant parallelism,
the performance of scientific programs on both uniprocessors
and multiprocessors can be rather poor due to not exploiting
the full potential locality in these program8 [13].

We present a compiler approach to enhance the cache
performance of these programs on uniprocessors and multi-
processors. In a unified framework, our approach considers
modifying array layouts in memory and transforming loop
nests suitably to exploit locality. We simulate miss rates for
several nests in order to demonstrate that our approach is
very effective at reducing number of cache misses, and report
execution times on Sun SPARCstation 5, IBM RS/SOOO and
SGI Challenge. We also compare our optimization strategy
to a reprezentative method [lo] from a claes of approaches
which consider only loop transformations to optimize local-
ity and show that fixing the memory layouts for all arrays-
a8 in C and Fortran-limits performance that could other-
wise have been obtained from the programs.

A recent study shows that a group of highly parallelized
benchmark program8 spend 39% of their cycles stalled in
memory acce98 [ll]. In order to eliminate the memory bot-
tleneck, spatial locality should be exploited. One way of

‘Thin work is supported in part by NSF Young Inveetigator Award
CCR-8367840, NSF CCR-8600143. The work of J. Ramanujam is SUP-
ported in part by an NSF Young Investigator Award CC%9457768.

Permission lo ma&e digital/hard copies of all or pnrl ofthis nla&al for
F~Onill Or ckwom use is gnnnted withoul fee provided that tJ)e cop;=
we not made or dktrihuted for profit or conuwrcinl ndvanbge, the copy-

right notice, the title ofthe publication and its date appear. ;u,d n&e is

&en aat copti&t is hy pemiission ofthe ACM. 1~. TO copy otherwise.
to republish. IO post on servers or to redistribute to lists, requires specific
pemkion and/or fee

I(.:\’ 97 Vienna A\rstri:l
copyrighl 1997 .ACM O-8979 I-902-(197!7 $3 .20

choudhu8ece.nru.edu

achieving this is to transform the loop nest such that the
innermost loop exhibits unit-stride accesses for array ref-
erences. While this approach produces satisfactory results
for several cases, we show in this paper that there is still
room for significant improvement, if the fixed array layout
strategy adopted by the conventional compiler8 is relaxed.

In this paper we make the following contributions:
l We present a new algorithm to optimize the locality

characteristic8 of nested loops. The algorithm applies both
data and control transformations.

s We show that the known approaches considering only
control transformations (e.g. loop permutations, tiling, etc.)
are insufficient for many cases.

l We demonstrate the effectiveness of our approach by
both simulation results and execution-time measurements.

Since our approach increases the spatial locality and the
percentage of conflict misses and reduces the percentage
of capacity misses; it is generally more effective with large
block (cache line) size8 and set-associative caches.

This paper is organized as follows. Section 2 reviews ba-
sic loop transformation theory. Section 3 presents related
work. Section 4 discusses the algorithm for optimizing lo-
cality in a single loop ne%t. Section 5 extend8 thii algorithm
to multiple loop nests. Section 6 presents experimental re-
sults which illustrate the efficacy of our approach. Section
7 presents a discussion of our work on false sharing. Section
8 presents summary and concludes the paper.

2 Preliminaries

The memory layout for an h-dimensional array can be in
one of the h! forms, each of which corresponding to layout of
data on memory linearly by a nested traversal of the axes in
some predetermined order. The innermost axis ls called the
fastest changing dimension. As an example for row-major
memory layout the second dimension is the fastest chang-
ing dimension. We focus on loop nests where both array
subscripts and loop bounds are ffie functions of enclosing
loop indices. A reference to an array X is represented by
X(ff+ c) where !: is a linear transformation matrix called
or-my reference matriz, b’ is offset vector and I’ is a column
vector representing the loop indices ii, iz,...,i,, starting from
the outermost loop.

Linear mappings between iteration spaces of loop nests
can be modeled by non-singular transformation matrices
[lo]. If f is the original iteration vector, after applying lin-
ear transformation T, the new iteration vector is J’ = Z’z
Similarly if his the distance/direction vector, on applying
T, Tdis the new distance/direction vector. A transforma-
tion is legal if and only if This lexicographically positive for
every b[15]. On the other hand, since Cl= LT-‘1, CT-’
is the new arra reference matrix after the transformation.

7 We denote T- by Q. An important characteristic of our

269

algorithm is that using the array reference matrices, the en-
tries of Q = [qij] are derived systematically. For the rest of
the paper, the reference matrix for array X will be denoted
by Lx whereas the ith row of the reference matrix for array

X will be denoted by 6”.

3 Related Work

3.1 Fixed Layout Approach

Loop transformations have been used for optimizing cache
locality in several papers [lo, 14, 71. Results have shown
that on several architectures the speedups achieved by loop
transformations alone can be sign&ant.

Li [lo] describes a data reuse model and a compiler alge
rithm called height redvction to improve cache locality. He
introduces the concept of a data reuse vector and definea its
height as the number of dimensions from the first non-zero
entry to the last entry. The non-zero entries of a reuse vector
indicate that there are reuses carried by the corresponding
loops. The individual reuse vectors constitute reuse matrices
which in turn constitute the global reuse matrix. The algo-
rithm assigns priorities to reuse vectors depending on the
number of times they occur, and tries to reduce the height
of the global reuse matrix starting from the reuse vector of
highest priority. Apart from reducing the execution time,
the height reduction algorithm serves two purposes:

l it reduces the sensitivity of tiling to the tile size; and
l it places the loops carrying reuse into innermost posi-

tions; thus, when the outermost loops are parallelized, the
chances of false sharing will be low.

In comparison, our algorithm (Sections 4 and 5) tries
to exploit the spatial locality by also considering d&rent
memory layouts for different arrays. Since Li’s approach is
representative of a class of algorithms that use only control
transformations to exploit locality [14, 7, lo], for the rest
of the paper we use Li’s algorithm (denoted W-Opt) and
compare it with our algorithm.

3.2 Data and Loop Transformations

For programs that are not conducive to loop transforma-
tions, data transformations should also be taken into ac-
count. Only a few works have considered data and loop
transformations together to optimize locality. Ju and Dietz
[6] present a systematic approach that integrates data lay-
out optimizations and loop transformations to reduce cache
coherence overhead. Anderson et OZ. [l] offer a simple algo-
rithm to transform data layout to make the region accessed
by each processor contiguous.

Ciemiak and Li [3] present a unified approach to opti-
mize locality that employs both data and control trausfor-
mations. The notion of a stride ueetor is introduced and an
optimization strategy is developed for obtaining the desired
mapping vectors and transformation matrix. At the end,
the following equality is obtained:

T=u = A=m

In this formulation only A, data reference matrix, is known.
The algorithm tries to find T, the transformation matrix;
m, a mapping vector which can assume h! different forms
for an h-dimensional array; and u, the desired stride vec-
tor. Since this optimization problem is difficult to solve,
the following heuristic is used: First it is assumed that the
transformation matrix contains only values 0 and 1. Second,

the value of the stride vector v is assumed to be known be-
forehand. Then the algorithm constructs the matrix T row
by row by considering all possible legal mappings. When
compared to our strategy (Sections 4 and 5), we argue that
our approach is more accurate, as it does not restrict the
search space of possible loop transformations. Also our ap-
proach is simpler to embed in a compilation system, since it
does not require a priori knowledge of any vector such as v;
and more importantly it does not depend on any new reuse
abstraction. The approach presented by Cierniak and Li [3]
is a heuristic whereas our approach for single nest is exact
solution which finds all possible optimized transformations
and memory layouts. This last point is important as will be
demonstrated in Section 6.

4 Algorithm for Optimizing Locality

Since accessing data from memory is usually an order of
magnitude slower than accessing data in cache, optimizing
compilers must reduce the number of memory accesses. We
present an algorithm which automatically transforms a given
loop nest to exploit spatial locality and assigns appropriate
memory layouts for arrays, in a unified framework.

The algorithm is shown in Figure 1. In the algorithm,
C is the array reference on the LHS whereas A represents
an array reference from the FUIS. The symbol x denotes
the don’t care condition. Let il, i2 ,..., i, be the loop indices
of the original nest and jl , jl,...,j” be the loop indices of
the transformed nest, starting from outermost loop. The
following is a brief explanation of our algorithm:

l Our transformation matrix should be such that the
LHS array of the transformed loop has the innermost index
as the only element in one of the array dimensions and that
index should not appear in any other dimension for this
array. In other words, after the transformation, the LHS
array C should be of the form C(*, *, j,, *, *) where
j, (the new innermost loop index) is in the rth dimension
and * indicates a term independent of j,. This means that
the rth row of the transformed reference matrix for C is
(O,O, ‘.‘I 0,l) and all entries of the last column, except the
one in rth row, are zero. After that, the LHS array can
be stored in memory such that the rth dimension will be
the fastest changing dimension. This approach exploits the
spatial locality for this reference. Notice that all possible
values for r should be considered.

l Then the algorithm works on one reference from the
RHS at a time. If a row B in the data reference matrix is
identical to rth row of the original reference matrix of the
LHS array, then the algorithm attempts to store this RHS
array in memory such that the sth dimension will be the
fastest changing dimension. We note, however, that having
such a row s does not guarantee that the array will be stored
on memory such that the sth dimension will be the fastest
changing dimension.

l If the condition above does not hold for a RHS array A,
that means this array cannot be stored in memory such that
the new innermost loop index appears only in the fastest
changing dimension. In that case the algorithm tries to
transform the reference to A(+, *, F&-I), *, *), where
7(j,-1) is an a&e function of j,-l and other indices ex-
cept j, , and * indicates a term independent of both j,- 1 and
j,,. This helps to exploit the spatial locality at the second
innermost loop. If no such transformation is possible, the
j,-2 is tried and so on. If all loop indices are tried unsuc-
cessfully, then the remaining entries of Q are set arbitrarily,
observing the data dependences and non-singularity.

270

Step 1 Initialize i = 1.

Stop 2 Set &‘.Q = (O,O, 0,l) and fiC .Q = (x,x ,..., x,0) for each k $ i.

Step 3 Set memory layout for C such that ilh index poaition will be the fantest changing dimension.

Step 4 For each array reference A on the RHS that hss &* = cc for come I, try to set memory layout for A such that the Ith dimension will be
the fasteat changing dimension.

Step 5 Choose an array reference A for which the equality in Step 4 does not hold. Initialire j = 1.

Step 6 Set C;^.Q = (O,O, 1,0) and &A .Q = (x, x, x,0,0) for each k # j. If thia step in connietent with the previour step8 go to Step 7,
otherwise increment j and go to the beginning of thir, step. If there exist inconeiatencier for all j valuer, then initialize j = 1, and set

f;A.Q=(O,O ,..., l,O,O)and1~*.Q=(x,x ,..., x, O,O,O) for each k # j, and repeat Step 6 and 80 on. If no T-I is found then fill the
remaining entries arbitrarily obaerving the dependenced and non-singularity.

Step 7 Repeat Step 6 for all reference matrices of a particular A (Of course, all reference matrices for B particular A should have the same
memory layout).

Step 8 Repeat Step 6 for all distinct array references

Step 8 Record the obtained transformation matrix. Also record, for each array, the loop index position which appears in the fastest changing
position for that array.

Step 10 Increment i and go to Step 2 (try a different memory layout for the LHS array C).

Step 11 Compare all the recorded transformation matrices and their associated layouts, and choose the beat alternative.

Figure 1: Algorithm for optimizing locality.

l After a transformation and corresponding memory lay-
outs are found, they are recorded and the next alternative
memory layout for the LHS is tried and so on. Among all
feasible solutions, the one which exploits most spatial local-
ity in the innermost loop is chosen.

5 Global Locality Optimization: Multiple Loop Nests

5.1 General Problem

Let {Nl, hr,, n/,} denote different loop nests in the pro-
gram; and {dl,dz,..., dk} denote different arrays. In gen-
eral each nest C~LI access a subset of the arrays. We assume
that our algorithm described before is run for each nest, and
a number of possible optimized layout combinations are ob-
tained for each nest. In [g], the authors show that problem
of finding a global army layout combination that satisfies all
the nests is NP-complete even for the restricted case where
only row-major and column-major arrays are considered.
We present a heuristic for the global layout optimization
problem.

5.2 Locality Optimization under Layout Constraints

During the compilation of a program it may be possible that
the compiler, due to data dependences or some other con-
straints, is not able to apply loop transformations or modify
memory layouts of some arrays. Each unmodifiable informa-
tion constitutes a constraint for the compiler. An important
case is the explicitly parallel programs where loop transfor-
mations ae generally not possible since the programmer has
already decided the parallelization (31.

Any transformation matrix must have a full rank and
should not violate any data dependences. In the algorithm,
after a candidate Q is built, it is checked against data de-
pendences, and discarded if it violates any dependences or
its rank is not full.

We now focus on the problem of optimizing locality when
some or all array layouts are iixed. We note that each tied
layout requires that the innermost loop index should be in
the appropriate array index position (dimension), depend-
ing on layout of the array. For example, suppose that the
memory layout for a h-dimensional array is such that the

dimension kl is the fastest changing dimension, the dimen-
sion k2 is the second fastest changing dimension, ks is the
third etc. The algorithm should fist tr to place the new
innermost loop index j, only to the kl’ % dimension of this
array. If this is not possible, then it should try to place
j, only to the k2 th dimension and so on. If all dimensions
up to and including kh are tried unsuccessfully, then in-l
should be tried for the klth dimension and 90 on. In the next
subsection we show that this constrained layout algorithm
is important for global locality optimization.

5.3 Global Optimization Algorithm

In this subsection we show how our algorithm can be ex-
tended to work on multiple nests. Since a number of arrays
can be accessed by a number of nests and each of these
nests may require a diierent layout for a specific array, the
algorithm should find a memory layout for that array that
satisfies the majority of the nests.

In the following we present a sketch of a simple heuris-
tic. Our approach is based on the concept of most costly
nest. Intuitively, this is the nest which takes the most time.
Different methods can be adopted to choose this nest. For
example the programmer can use compiler directives to give
hints about this nest. We can also use a metric such as mul-
tiplication of the number of loops and the number of arrays
referenced in the neat. The nest which has the largest result-
ing value can be marked as the most costly nest. Then the
algorithm proceeds as follows: First, the most costly neat
is optimized by using the algorithm presented in Figure 1.
After this step, memory layouts for some of the arrays will
be determined. Then each of the remaining nests can be
optimized using the approach presented for the constrained
layout case in the previous subsection. After each nest is op
timized, new layout constraints will be obtained, and these
will be propagated for optimizing the remaining nests.

6 Examples, Simulation Results and Experimental Results

This section presents several examples to illustrate the al-
gorithm. Our experimental suit comprises of some kernels
and several representative nests extracted from NAS Bench-
marks [2].

271

DOI=l.n
DO]-1,n

DOkr1.a
DOl-1.1,

A[iJl+=B[k.ll+C[l,kl
ENDDO I

ENDDO k
ENDDO J

ENDDO 1
(4

DO, I 1, na
DO i I 1. nl

YWl-XIiJI
ENDDO i

ENDDO J
W)

D0url.n
DO v I 1. II

DO - -1 .n
DOy=l.n

alwd+=BIv.~l+clu
ENDDO Y

ENDDO .v
ENDDO Y

ENDDO u
(B)

DO J] - 0. nl-1. ne
DO II - 0. ~11-1. sac

DO J I 1, ne
DOi-l.as

zu.i]=xIi+iiJ+lll
ENDDO i

ENDDO j
DO i I 1, me

DO J = l.ne
w+ll.i+iil=zu,Il

ENDDO J
ENDDO i

ENDDO ii
ENDDO JJ

09

DO I6 - a. a6-1
DO 11 I 1, r&l

buffmlen=buff-lm+l
buff[buff-l.n,buff.id]-u[1,19.i6]

ENDDO i2
ENDDO i6

DO 16 = 2. n6-l
DO 11 = 1. ma-1

buffml.n-buffslen+
buqbuff~.n.buWd]=u[nl-l,iZ.i6]

ZNDDO 12
ENDDO 18

.I...
DO II I 1, nl

DO 11 I 1. 01
buffsl.nrbufl-lem+l
bun[buff~..,buff~d]-u(ll.iP.I]

ENDDO ‘6
ENDDO il

(1)

DOu-1.n
DOvr1.n

DO ” -1 .n
DOy-1.1,

.vl ALv.ul+=w,Yl+C[~.~l
ENDDO y

ENDDO w
ENDDO v

ENDDO u
(C)

DO k - II(~). Ia
DO i = Is(c). Ir(c)

DO 1 - h(c). 10(c)
.

crU]-r4iJ,k,cl
.

ENDDO j
DO i = IT(C). la(=)

Ih.[lJ.k,l.c]-0.0
lb*[lJ,k,~.=l-u~~ev~-ll.rkoq~~ll~
Ik~[lJ,k.S.cl=~a(rho~lil)
lh~lIJ.k.4~cl=#~~c~U+1l,~k~~U+1l~
Ih.[IJ.k,6,e]rO.O

ENDDO j
ENDDO i

ENDDO k
(0)

DOkr1.n
DO j - 1. n-l

u[kJ]rO.O
IU,k]-0.0

ZNDDO J
I[k.k]=l.O
DOJ-k.n

u[kJl=-lkJ1
DO p I 1, k-l

u[kJl--llk.WubJl
ENDDO p

ENDDO)
IF (k 5 n-1) THEN
DO I - k+l. II

~li.kl=~ll.kl
DO p - 1. k-l

I[l.kl--lll,pl*u[p.kl
ENDDO p
I[i,kl=l[l,kl/u[k.kl

ENDDO i
ENDIF

ENDDO k
(J)

D0url.o.
DOvr1.n

DO w =l ,n
DOyrl,n

Afu,vl+=B~r.ul+C(~.rl
ENDDO y

ENDDO w
ENDDO v

ENDDO u
CD)

DO k I 1, I.
DO i -1. my

buf[1.(k-1)*ny+l]-#~1,~x-1 J.kl
. .

buf[s.(k-l)‘r.r+ll=6(6,mc-lJ.k]
bui(l.(k-l)=ny+j+ny~n~]=6[l,nxJ.k]
. . .
bu~8,(k-l)*n~+l+.~~n~l-6[6..xJ.k]

ENDDO J
ENDDO k

WI

Figure 2: (A) An example four-deep loop nest. (B) Optimized loop nest assuming Axed row-major arrayz. (C) Optimized loop neat. (D)
Optimized loop nezt. (E) An example from the FT benchmark. (F) An example from the FT benchmark. (0) An example from the SP
benchmark. (H) An example from the LU benchmark. (I) An example from the MO benchmark. (J) LU decomporition kernel.

We demonstrate the simulation results obtained by using
an enhanced version of Dinero111 [5], a trace-driven unipro-
censor cache simulator. We simulate the miss rates over
a range of cache sizes (4K, 8K, 16K, 32K, 64K, 128K),
block (cache line) sk (8, 16, 32, 64, 128, 256) and set-
essociativities (direct-mapped, Zway, Cway, full-associative).

Also presented are empirical results obtained on SPARC-
station 5, BS/6000 and SGI Challenge. SPARCstation 5
has a 16K direct-mapped data cache and a 32 MB memory.
BS/SOOO Model 590 has 256 KB data cache. SGI Challenge
haa a logically and physically shared memory system. It usea
snoopy write-invalidate cache coherence. Each node has 1
MB data cache attached to it. In SGI, during the multi-
processor experiments static scheduling has been employed.
Due to space concerns, we do not show the step or parts of
stepe which lead to unsucce&irl trials; and we only present
a subset of our simulation and experimental results.

6.1 Example: A four-deep loop nest

Figure 2:A shows a four-deep loop nest which can ben-
eflt from the layout flexibility. The array reference ma-
trices for this nest are as follows. LA = (t y “, “,),

L”=(: ; ; ,+idtC=(: : : A).
The al orithm worke as follows:

LA@ = t ’ ’ ’ i). Therefore, qll = 412 = q13 =
qzr = 0 and;$= 11
LB.6 = (“0 “0 “0 y). Therefore, 434 = 0.

LC.Q = (E E i i). Therefore, 493 = ~44 = 0 and
443 = 1.

0 0 0 1

At this point T-’ = Q = (921 wa 011 OS2 918 0 > 00. We set
%l wa 1 0

the unknowns to the following values: q22 = 423 = qsl =
941 , o=oq4; =lO,and qzl = qs2 = 1 and obtain T-’ = Q =

t
0 0 :10: *

I
Arrays A and C are column-major whereas

the”gaylBois row-major; and the resulting code is shown
in Figure 2:C.
Next the compiler tries the other alternative layout (row-
major) for A.
LA.Q = (“, “0 “0 t). Therefore, qlr = ill = q22 =
qa3 = 0 and q2r = 1.
LB.Q = (t E t 0”). Therefore, 413 = ~34 = 0 and
q33 = 1.

Lc.Q = (E E i i). Therefore, qrs = ~44 = 0.
BY setting ~12 = cm = 432 = q4l = 0 and qu = q42 = 1,

T-‘=Q=(j ; ; ;). Arrays A and C are row-major

whereas the array I3 i cc&m-major; and the resulting code
is shown in Figure 2:D.

6.2 Example: A constrained-layout nest

We revisit the example shown in Figure 2:A, this time as-
suming fired row-major memory layouts for all arrays.

272

(4
Direct Mapped, n=500

163264122 183264128 1e3204123 163264128

Block Size

(B)
Associativity=P. n=500

1---7-v-

I
4K 0.Cl-m SK o.*. 1 SK C.&m 32K C.ch.

163234128 163284 I 163264128 163234128
BI :k Size

Figure 3: (A) Simulation results of B four-deep nest for different block and cache sizes on a direct-mapped cache. (B) Simulation reaulta of a
four-deep nest for different block and cache sizes on a set-aeaociative cache.

Cache S1ze.W. 11.750, Block Size=32 Cache Size=BK. n-750. Block Size=54 Cache Size=SY n=750, Slack Size= 125
040 oa

010/

Figure 4: Tile size sensitivity for B four-deep neat.

LA.Q = (“0 “0 i F). Therefore, 414 = qzl = q22 =
423 = 0 and q24 = 1.
LB.Q=(c : y z). Therefore,qga=qaa=Oand
q13 = 1.

Lc.Q = (,” y i 0”). Therefore, 442 = 443 = q44 = 0
and q32 = 1.
We set the unknowns to the following values 911 = q12 =

QSl = 0 and qdl = 1 and obtain T-’ =,=(n H ; q.

The resulting code is shown Figure 2:B. Nobel tiat ‘this
is the nest that would be obtained for row-major memory
layouts, had we used the W-Opt.

Figure 3:A demonstrates miss ratios for this nest with
500 x 500 double arrays on a direct-mapped cache. We ran
experiments with three different versions: unoptimized ver-
sion (Figure 2:A, Unopt), optimized version by fixing row-
major layouts for all arrays (Figure 2:B, W-Opt) and one
of the versions obtained by our approach (Figure 2:C, Opt).
The results shown indicate that except for the 4K cache, our
approach outperforms the W-Opt (Figure 2:B). In order to
further understand the sources of the misses in the opti-
mized programs we breakdown the misses into compulsory,
capacity and conflict misses. The results indicate that the
majority of the misses in the optimized program are due to
conflicts which can, in principle, be eliminated by increas-
ing the set-aasociativity. Figure 3:B shows the miss ratios
for this example with 500 x 500 double arrays on a 2-way set
associative cache. As expected, except for the 4K cache, our
approach eliminates almost all misses; whereas the W-Opt
does not improve the performance at all for some cases.

Tiling (also known as blocking) is a technique to improve

the locality, and is a combination of strip-mining and loop
permutation [14, 151. Due to interference misses it is diffi-
cult to select a suitable tile size. In other words, unless the
tile size is tailored according to the matrix size and cache
parameters, the performance of tiling may be rather poor
[4, 91.

Figure 4 illustrates the insensitivity of the optimized tiled
versions to the tile size. The numbers above the bars denote
the tile sizes. Notice that while the miss ratio of the unopti-
mized tiled version is very unstable, those of the optimized
versions (Figure 2:B and Figure 2:C) are stable. Notice also
that our version outperforms the W-Opt for all tile, block
(cache line) and cache sizes.

Figures 6:A and B present execution times for this ex-
ample with different input sizes on SPARCstation 5 and a
single node of SGI respectively. Opt-l and Opt-2 denote the
optimized versions obtained by our algorithm (Figures 2:C
and D). Figures 6:C and D, on the other hand, show the
execution times on multiple nodes of SGI Challenge with
150 x 150 and 200 x 200 double arrays respectively. It can
be seen that although the approach based on loop transfor-
mations alone can improve the performance, our approach
gives the best results on both uniprocessor and multipro-
cessors. In SPARC, for example, with 250 x 250 double
matrices, our approach (Opt-2) runs in almost 800 seconds
less than the W-Opt. On four nodes of the SGI Challenge,
with 200 x 200 double arrays, our version (Opt-2) saves 36
more seconds than W-Opt. This example clearly shows that
relaxing the memory layouts can save substantial amounts
of time for some nests.

273

DO i I 1. II DOJ=l,n
DOJ=l,n DOi=l,n

A[iJ1=BU.ll’C[iJl+D~iJl*LOO(E[J.~l~ A~iJl=6U.ll*C~lJ1+DIiJ1’Loa~EU.ll~
ENDDO J &NDDO I

ENDDO i ENDDO j

DOi=1.~ DO i I I. II
DOJ=l.n DO]= 1.n

B(l Jl=AU.~l+~PJI BtlJI=AUdl+EPJI
ENDDO J ENDDO J

ENDDO i ENDDO 1

(A) w

DO 1 = 1. n DOJ-1.n
DOj=l.n D0irl.n

DOkrl,n DOkr1.n
CPJl+=AWl’WJI Cl~Jl+=M.kl’~[kJl

ENDDO k ENDDO k
ENDDO J ENDDO I

ENDDO i ENDDO j

DO Y = 1. II
DOv=1.n

DOr=l.n
O[u,rl+=A~u.vl~E~v.rl

ENDDO w
ENDDO Y

ENDDO u

DOi=l,n
DOj-1.n

D0krl.a
F[iJl+=E[i.kl*C[kJl

ENDDO k
ENDDO]

ENDDO i
CC)

D0J1l.m
DO,-1,n

DOk=l.n
P[~Jl+=W,kl*ClkJ1

ENDDO k
ENDDO i

ENDDO J
W’)

DOurl,n
DOv=l.n

DOrr1.n
F[u,=l+=~[u.vl*C[v,=l

ENDDO =
ENDDO Y

ENDDO Y
w

Figure 5: (A) A simple benchmark. (B) Optimised version of (A). (C) MxMxM program. (D) A trenrformed vemion of (C). (E) Tranrformed
version of (C) by our appronch.

I4

lam.0 -

mrno

I
owo.0

d

Rim.0

fi

ace.0

4zooo

3ooo.o

1500.0

1541.0 r

taxl.0

XC.0

0.0

@I

-W
,-w-c@

LJ
- op(-i
w -2

YIaiiil
-50 102 150 am 0s

poblm ** (N

Fimue 6: Execution timw (A1 on SPARCetation 6. (B1 on L rincde node of SGI. (C) on multiple nodes of SGI with 150 x 150 double array%
(Dy on multiple noder of SGi Gith 200 x 200 double a&& ”

6.3 Example nests from NAS Benchmarks

The NAS Parallel Benchmarks [2] are a set of programs de-
signed to help evaluate the performance of parallel super-
computers. To utilize the cache effectively, the benchmarks
generally access data with unit stride. Default layout for
the nests is column-major. It should be stressed that the
examples considered here are only representative nests.

l FT benchmark usea simple-tnanqose and wmpliuated-
transpose nests shown in Figure 2:E and F respectively. In
Figure 2:E, spatial locality for the array Y is poor; our al-
gorithm attaches row-major layout for Y and column-major
layout for X, retaining the original loop order. In Figure 7:A
the leftmost group of bars show the performance improve-
ment obtained by our approach for difhwent block sizes on
a 16K direct-mapped cache. Notice that the effectiveness
of the approach increases with larger block tizee. In Fig-
ure 2:F, on the other hand, the reference Zb, i] in the first
loop has poor locality. Our locality optimization algorithm
attaches row-major layouts for 2 and Y, and column-major
layout for X; and interchanges the loops in the second nest
placing the i-loop into innermost position. The middle and
rightmost bar-charts ia Figure 7:A ahow the improvement
obtained by our approach for nc = 64 and nc = 150, respec-
tively. Since when nc = 64, the data used by the innermost
loop fits in the cache anyway, our algorithm doee not add
much.

l An example nest from the SP benchmark is given in
Figure 2:G. In order to apply our algorithm, we first dis-

tribute the second j-loop over the individual statements.
Then our approach attaches layouts for the arrays v8 and
lhe euch that the second dimension in both arrays will be the
fastest changing dimension exploiting the spatial locality in
the innermost loops. Figure 7:B demonstrates the reduction
in cache misses.

l Figure 2:H presents an example nest from the LU
benchmark. After distributing the j-loop, our algorithm
offera two alternatives: retain the original loop order and
make the third dimension of the array g the fastest chang-
ing dimension; or apply the loop interchange and make the
fourth dimension of the array g the fastest changing dimen-
sion. The performance improvement ia similar for both the
alternatives. Figure 7:C shows the performance improve-
ment. With a block (cache line) size of 128, more than half
of the misses are eliminated.

l Three typical loop nesta from the MG benchmark are
shown in Figure 2:I. In the first nest, since i2 ia the in-
nermost loop, our global locality algorithm makeu second
dimension of Y the fastest changing dimension. This choice
is appropriate for the second nest as well; and for the third
nest our algorithm interchanges the loops i2 and il. The
performance improvement illustrated in Figure 7:D ia sub-
thntial.

We ran experiments on BS/SOOO and SPARCstation 5.
Due to space concerns+ we only present the execution times
for simple-tmnqo~e nest, in Figures &A and B for HS/6000
and SPARCstation 5 respectively. When nr = nr = n =

274

-.-

%

f

0.40

0.20

0.00 llllsL
n m “9. &yg 1.1”U n rzock& �=

0.m

Figure 7: (A) Mioe ratio8 for two example nests from FT. (B) Misr ratio@ for an exampls nest from the SP. (C) Misr ration for an example nest
from the LU. (D) Mile ration for an example nest from the MG.

W (B)
and-m. CA% slze.BK n=4oJ .2& sire-d((n-400 -.

- 500

i
- 400

1

a.0

a00

10.0

0.0

0.20

r 0.1s
i
i O”O

O.Ofl

0.00 -

n 9�
I

k-u-l ” iodls& ‘-
Figure 8: (A) Execution timer for rimple-tmnrporc on RS/6000. (B) Execution times for for hmple-tmrupoae on SPARCatation 6. (C) Miss
ratios for the LU decomposition. (D) Mh ratio8 for the LU decomposition.

4000, on BS/SOOO, there is 45% performance improvement.

6.4 LU Decomposition

Figures 2:J shows an LU decomposition algorithm. Our
global locality algorithm identifies the nests containing the
innermost p-loops as the most costly nests, and attaches
row-major layout for the array 1 and column-major layout
for the array u. Figures 8:C and D show the miss rates of
the unoptimized and optimized nests for an 8K data cache
with direct-mapping and a set-associativity of size 2 respec-
tively. Aa can be seen, our algorithm reduces the original
miss rates by 7% to 40%.

6.5 Other examples

Figure 9:A shows the normalized mias rates for the dgemm
routine from BLAS. This routine performs the following
operation: C = af(A)f(B) + PC, where f(X) = X or
XT, and Q and ,6 are scalars. Both the unoptimized and
the optimized versions have been called four times, each of
which with different operation, and the average miss rates
have been computed. Below each pair of bars is given the
triple cache site, block size, associativity. In the simulation
500 x 500 double precision matrices are used.

Figure 9:B demonstrates the performance improvement
on dtrsl, a routine from LINPACK which solves the systems
of the form Tz = 6 or TTx = b where T is a triangular
matrix of order n. While for optimizing the dgemm both
data and loop transformation are used, for dtrsl only data
transformations are used.

Finally, we show the impact of our algorithm on two
programs from [3]. The program shown in Figure 5:A is
a simple benchmark. Figure 9:C shows the improvement
obtained by our approach. For each cache size, the three
bars from left to right correspond to unoptimized version
with column-major layouts, unoptimized version with row-
major layouts and version optimized by our approach. In

the optimized version, the loopa in the first nest are inter-
changed; and the following layouts are assigned: A, C, and
D are column-major; B and E are row-major. With these
optimiiations, the spatial locality for every reference is ex-
ploited in the innermost loop and the optimized program is
given in Figure 5:B. 400 x 400 double matrices are used.

Figure 5:C shows a program named MxMxM from [3].
This program computes the product of three square matri-
ces. The version obtained by using the method in [3] is
presented in Figure 5:D. The layouts for A and E are row-
major, whereas those for the other arrays are column-major.
For the four of the total eight references, the spatial locality
is exploited in the innermost loop; and for the remaining
four references it is exploited in the eecond loop. In com-
parison, our global approach trausform this program to the
one shown in Figure 5:E. All arrays are row-major (a ver-
sion with all column-major arrays is also possible). For six
of the total eight references, the spatial locality iz exploited
in the innermost loop; for the two references it is exploited
in the second loop. The normalized miss rates for an 8 KB
direct-mapped cache ia are shown in Figure 9:D. These re-
sults reveal that our approach is better in the senze that it
finds all possible transformations and layouts; and selects
the most optimal one.

7 Impact on False Sharing

In shared-memory multiprocessors when processors make
references to d&rent data items within the same cache line,
false shoring occurs [12]. Since cache coherence is main-
tained on a cache block (line) basis, when one processor
modifies a data item, it causes an invalidation in the other
processors’ cache. It is well known that one of the main
causes of the false sharing is the parallelization of a loop
that carries spatial reuse [lo, 151. On the other hand, the
larger the granularity of parallelism the better it is; because
the synchronization overhead will diminish with the increas-

275

0.4
:[

f%3

1 ZJ
i!!j

0.4
0.3 0.3 0.2 ::: 0.2 E
0.1 0.1 0.1 0.1
0.0 0.0 0.0

8K l(K 32K MK 128K
0.0

32 e4 la, 2w

Finure 9: IAl Normalized misr rate8 for doemm. IBJ Normalized miclr rates for dtr6l. (C) Normalized miss rater for 8 simple benchmark. (D)
No&&ed ‘miba rater for the MxMxM. - \ ’

ing parallelism granularity. A recent study shows that apart
from affecting the synchronization cost, the granularity of
application parallelism is also an important determinant of
applications’ memory behavior (131.

Technical Report NAS-95-020, NASA Ames Reaeaxh Cen-
ter, CA, December 1995.

To summarize, in order to optimize the locality for par-
allel machines, the maximum granularity of parallelism is
obtained and the outermost parallel&d loops should not
carry any spatial reuse. Since our algorithm tries to achieve
this goal by both changing the loop orders and memory lay-

outs, we believe that it will be very effective at eliminating
false sharing on multiprocessors.

Let us consider the loop shown in Figure 2:A, this time
assuming column-major layouts. Notice that applying the
approaches like in [7] and [lo] for this nest result in the
same neat; that is this loop order is the most desirable one
for the fixed column-major layouts. If the outermost loop
(i) ia parallelized then the reference a[i, j] will cause false
sharing. In comparison, for both of our optimized versions
(Figure 2:C and Figure 2:D), the outermost loop (u) can
now safely parallel&d, without an apparent danger of false
sharing.

(31 M. Ciemiak end W. Li. Unifying Data and Control
‘Itaneformatione for Distributed Shared Memory Mechinee.
Proc. SIGPLAN ‘95 Conference on Progmmming Language
Design and Implementation, La Jolla, California, June 1995.

[4] S. Coleman and K.S. McKinley. Tile Size Selection Using
Cache Organization and D8t8 Layout, In Pmt. SZGPLAN
‘95 Conference on Pmgmmming Language Design and Zm-
plementotion, La Jolla, CA, June 1995.

[5] M. D. Hill and A. J. Smith. Evaluating Awociativity in CPU
Caches, IEEE Zluns. on Computers, C-38, 12, December
1989, pages 1612-1630.

8 Conclusions end Future Work

[S] Y.-J. Ju and H. Dietz. Reduction of Cache Coherence Over-
head by Compiler Data Layout and Loop ‘Itaneformatione.
Ptvc. 4th Workshop on Language6 and Compiler6 for Par-
allel Computing, Santa Clara, CA, August 1991.

[7] K. McKinley, S. Carr, and C.W. Taeng. Improving Data
Locality with Loop ‘I&msformations. ACM ‘Ikunractions on
Pmgmmming Language6 and Syrtems, 1996.

[S] M. Kandemir, J. Ftamanujam, and A. Choudhary. A Com-
piler Algorithm for Optimizing Locality in Loop Nests. Tech-
nical Report, Northweetem University, EYBnBton, IL, April
1997.

We designed a compiler algorithm which transforms the loop
nests and changes the memory layouts of arrays in a unified

[9] M. S. Lam, E. Bothberg and M. E. Wolf. The Ceche
Performance and Optimizationa of Blocked Algorithms In

framework. Our algorithm can either be employed alone, or Pmt. 4th International Conference on Amhitectuml Support
can be combined with low-level locality optimizations such for Progmmming Language6 and Opemting Syslemr, April
as tiling [9]. 1991.

We have shown that our approach is more effective in re-
ducing sensitivity of tiling to the tile size and at eliminating
false sharing than the approaches based on loop transfer-
mations alone. In fact, when the memory layouts are fixed,

our approach produces the same reaulta aa other approaches
such as those of Li [lo] and Wolf and Lam [14], if temporal
locality is not considered. Both our simulation results and
empirical results provide encouraging evidence that our ap-
proach is likely to be successful on both uniprocesaora and
multiprocessors. Work is in progress on evaluating the per-
formance of our approach on full NAS benchmarks [2] on
multicomputers. We also intend to apply our technique to
the other levels of memory hierarchy.

[lo] W. Li. Compiler Optimizations for Cache Locality and Co-
herence. Technical Report 504, Dept. of Computer Science,
University of F&heater, NY, April 1994.

[ll] C.-W. Teeng, J. Anderson, S. Amaraeinghe, and M. Lam.
Unified Compilation Techniquea for Shared and Distributed
Address Space Machines. In PIUC. 1995 International Con-
ference on Supercomputing (ZCS’95), Barcelona, Spain, July
1995.

Referencea

[12] J. Tbrrellaa, M. S. Lam, and J. L. Henneesy. F%&e sharing
and spatial locality in multiproceeaor caches IEEE Ilanr-
action8 on Computer& 43(6):651-663, June 1994.

(131 E. ‘Ibrrie, C-W. Teeng, M. Martonoei, and M. W. Hall. Evil-
uating the impact of advanced memory systems on compiler-
parallelized codes. In Proc. International Confennce on
Pamllel Architectunr and Compilation Technique6 (PACT),
June 1995.

[l] J. M. Anderson, S. P. Amaraainghe, and M. S. Lam. Date
and computation transformations for multiproceaeore. In
Pnx. Fijth ACM SIGPLAN Symposium on Principles and
Practice of Pamllci Pmmming, July 1995.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Winjngaart, A.
Woo, and M. Yarrow. The NAS Parallel Benchmarka 2.0.,

[14] M. Wolf and M. Lam. A Data Locality Optimizing Algo-
rithm. In Pmt. ACM SZGPLAN 91 Conj. Pmgmmming
Language Design and Implementation, pages 30-44, June
1991.

[15] M. Wolfe. High Performance Compilers for Parallel Comput-
ing. Addison-Wwley Publishing Company, CA, 1996.

276

