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Abstract 

This paper describe8 an algorithm to optimize cache locality 
in scientific codes on uniprocessor and multiprocessor ma- 
chines. A distinctive characteristic of our algorithm is that 
it considers loop and data layout transformations in a uni- 
fied framework. We illustrate through example8 that our 

approach is very effective at reducing cache misses and tile- 
size sensitivity of blocked loop nests; and can optimize nests 
for which optimization technique8 based on loop transfor- 
mations alone are not succe88ful. An important special ceze 
is the one in which data layouts of some arrays are fixed and 
cannot be changed. We show how our algorithm can handle 
this ca8e, and demonstrate how it can be used to optimize 
multiple loop nests. 

1 Introduction 

Minimizing the time spent in data accesses is an impor- 
tant issue in the efficient execution of nested loops on both 
uniprocessors and multiprocessors. Although cache8 are ca- 
pable of reducing the average memory acces8 time and op- 
timizing compilers are able to detect significant parallelism, 
the performance of scientific programs on both uniprocessors 
and multiprocessors can be rather poor due to not exploiting 
the full potential locality in these program8 [13]. 

We present a compiler approach to enhance the cache 
performance of these programs on uniprocessors and multi- 
processors. In a unified framework, our approach considers 
modifying array layouts in memory and transforming loop 
nests suitably to exploit locality. We simulate miss rates for 
several nests in order to demonstrate that our approach is 
very effective at reducing number of cache misses, and report 
execution times on Sun SPARCstation 5, IBM RS/SOOO and 
SGI Challenge. We also compare our optimization strategy 
to a reprezentative method [lo] from a claes of approaches 
which consider only loop transformations to optimize local- 
ity and show that fixing the memory layouts for all arrays- 
a8 in C and Fortran-limits performance that could other- 
wise have been obtained from the programs. 

A recent study shows that a group of highly parallelized 
benchmark program8 spend 39% of their cycles stalled in 
memory acce98 [ll]. In order to eliminate the memory bot- 
tleneck, spatial locality should be exploited. One way of 
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achieving this is to transform the loop nest such that the 
innermost loop exhibits unit-stride accesses for array ref- 
erences. While this approach produces satisfactory results 
for several cases, we show in this paper that there is still 
room for significant improvement, if the fixed array layout 
strategy adopted by the conventional compiler8 is relaxed. 

In this paper we make the following contributions: 
l We present a new algorithm to optimize the locality 

characteristic8 of nested loops. The algorithm applies both 
data and control transformations. 

s We show that the known approaches considering only 
control transformations (e.g. loop permutations, tiling, etc.) 
are insufficient for many cases. 

l We demonstrate the effectiveness of our approach by 
both simulation results and execution-time measurements. 

Since our approach increases the spatial locality and the 
percentage of conflict misses and reduces the percentage 
of capacity misses; it is generally more effective with large 
block (cache line) size8 and set-associative caches. 

This paper is organized as follows. Section 2 reviews ba- 
sic loop transformation theory. Section 3 presents related 
work. Section 4 discusses the algorithm for optimizing lo- 
cality in a single loop ne%t. Section 5 extend8 thii algorithm 
to multiple loop nests. Section 6 presents experimental re- 
sults which illustrate the efficacy of our approach. Section 
7 presents a discussion of our work on false sharing. Section 
8 presents summary and concludes the paper. 

2 Preliminaries 

The memory layout for an h-dimensional array can be in 
one of the h! forms, each of which corresponding to layout of 
data on memory linearly by a nested traversal of the axes in 
some predetermined order. The innermost axis ls called the 
fastest changing dimension. As an example for row-major 
memory layout the second dimension is the fastest chang- 
ing dimension. We focus on loop nests where both array 
subscripts and loop bounds are ffie functions of enclosing 
loop indices. A reference to an array X is represented by 
X(ff+ c) where !: is a linear transformation matrix called 
or-my reference matriz, b’ is offset vector and I’ is a column 
vector representing the loop indices ii, iz,...,i,, starting from 
the outermost loop. 

Linear mappings between iteration spaces of loop nests 
can be modeled by non-singular transformation matrices 
[lo]. If f is the original iteration vector, after applying lin- 
ear transformation T, the new iteration vector is J’ = Z’z 
Similarly if his the distance/direction vector, on applying 
T, Tdis the new distance/direction vector. A transforma- 
tion is legal if and only if This lexicographically positive for 
every b[15]. On the other hand, since Cl= LT-‘1, CT-’ 
is the new arra reference matrix after the transformation. 

7 We denote T- by Q. An important characteristic of our 
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algorithm is that using the array reference matrices, the en- 
tries of Q = [qij] are derived systematically. For the rest of 
the paper, the reference matrix for array X will be denoted 
by Lx whereas the ith row of the reference matrix for array 

X will be denoted by 6”. 

3 Related Work 

3.1 Fixed Layout Approach 

Loop transformations have been used for optimizing cache 
locality in several papers [lo, 14, 71. Results have shown 
that on several architectures the speedups achieved by loop 
transformations alone can be sign&ant. 

Li [lo] describes a data reuse model and a compiler alge 
rithm called height redvction to improve cache locality. He 
introduces the concept of a data reuse vector and definea its 
height as the number of dimensions from the first non-zero 
entry to the last entry. The non-zero entries of a reuse vector 
indicate that there are reuses carried by the corresponding 
loops. The individual reuse vectors constitute reuse matrices 
which in turn constitute the global reuse matrix. The algo- 
rithm assigns priorities to reuse vectors depending on the 
number of times they occur, and tries to reduce the height 
of the global reuse matrix starting from the reuse vector of 
highest priority. Apart from reducing the execution time, 
the height reduction algorithm serves two purposes: 

l it reduces the sensitivity of tiling to the tile size; and 
l it places the loops carrying reuse into innermost posi- 

tions; thus, when the outermost loops are parallelized, the 
chances of false sharing will be low. 

In comparison, our algorithm (Sections 4 and 5) tries 
to exploit the spatial locality by also considering d&rent 
memory layouts for different arrays. Since Li’s approach is 
representative of a class of algorithms that use only control 
transformations to exploit locality [14, 7, lo], for the rest 
of the paper we use Li’s algorithm (denoted W-Opt) and 
compare it with our algorithm. 

3.2 Data and Loop Transformations 

For programs that are not conducive to loop transforma- 
tions, data transformations should also be taken into ac- 
count. Only a few works have considered data and loop 
transformations together to optimize locality. Ju and Dietz 
[6] present a systematic approach that integrates data lay- 
out optimizations and loop transformations to reduce cache 
coherence overhead. Anderson et OZ. [l] offer a simple algo- 
rithm to transform data layout to make the region accessed 
by each processor contiguous. 

Ciemiak and Li [3] present a unified approach to opti- 
mize locality that employs both data and control trausfor- 
mations. The notion of a stride ueetor is introduced and an 
optimization strategy is developed for obtaining the desired 
mapping vectors and transformation matrix. At the end, 
the following equality is obtained: 

T=u = A=m 

In this formulation only A, data reference matrix, is known. 
The algorithm tries to find T, the transformation matrix; 
m, a mapping vector which can assume h! different forms 
for an h-dimensional array; and u, the desired stride vec- 
tor. Since this optimization problem is difficult to solve, 
the following heuristic is used: First it is assumed that the 
transformation matrix contains only values 0 and 1. Second, 

the value of the stride vector v is assumed to be known be- 
forehand. Then the algorithm constructs the matrix T row 
by row by considering all possible legal mappings. When 
compared to our strategy (Sections 4 and 5), we argue that 
our approach is more accurate, as it does not restrict the 
search space of possible loop transformations. Also our ap- 
proach is simpler to embed in a compilation system, since it 
does not require a priori knowledge of any vector such as v; 
and more importantly it does not depend on any new reuse 
abstraction. The approach presented by Cierniak and Li [3] 
is a heuristic whereas our approach for single nest is exact 
solution which finds all possible optimized transformations 
and memory layouts. This last point is important as will be 
demonstrated in Section 6. 

4 Algorithm for Optimizing Locality 

Since accessing data from memory is usually an order of 
magnitude slower than accessing data in cache, optimizing 
compilers must reduce the number of memory accesses. We 
present an algorithm which automatically transforms a given 
loop nest to exploit spatial locality and assigns appropriate 
memory layouts for arrays, in a unified framework. 

The algorithm is shown in Figure 1. In the algorithm, 
C is the array reference on the LHS whereas A represents 
an array reference from the FUIS. The symbol x denotes 
the don’t care condition. Let il, i2 ,..., i, be the loop indices 
of the original nest and jl , jl,...,j” be the loop indices of 
the transformed nest, starting from outermost loop. The 
following is a brief explanation of our algorithm: 

l Our transformation matrix should be such that the 
LHS array of the transformed loop has the innermost index 
as the only element in one of the array dimensions and that 
index should not appear in any other dimension for this 
array. In other words, after the transformation, the LHS 
array C should be of the form C(*, *, . . . . j,, . . . . *, *) where 
j, (the new innermost loop index) is in the rth dimension 
and * indicates a term independent of j,. This means that 
the rth row of the transformed reference matrix for C is 
(O,O, ‘.‘I 0,l) and all entries of the last column, except the 
one in rth row, are zero. After that, the LHS array can 
be stored in memory such that the rth dimension will be 
the fastest changing dimension. This approach exploits the 
spatial locality for this reference. Notice that all possible 
values for r should be considered. 

l Then the algorithm works on one reference from the 
RHS at a time. If a row B in the data reference matrix is 
identical to rth row of the original reference matrix of the 
LHS array, then the algorithm attempts to store this RHS 
array in memory such that the sth dimension will be the 
fastest changing dimension. We note, however, that having 
such a row s does not guarantee that the array will be stored 
on memory such that the sth dimension will be the fastest 
changing dimension. 

l If the condition above does not hold for a RHS array A, 
that means this array cannot be stored in memory such that 
the new innermost loop index appears only in the fastest 
changing dimension. In that case the algorithm tries to 
transform the reference to A(+, *, . . . . F&-I), . . . . *, *), where 
7(j,-1) is an a&e function of j,-l and other indices ex- 
cept j, , and * indicates a term independent of both j,- 1 and 
j,,. This helps to exploit the spatial locality at the second 
innermost loop. If no such transformation is possible, the 
j,-2 is tried and so on. If all loop indices are tried unsuc- 
cessfully, then the remaining entries of Q are set arbitrarily, 
observing the data dependences and non-singularity. 
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Step 1 Initialize i = 1. 

Stop 2 Set &‘.Q = (O,O, . . . . 0,l) and fiC .Q = (x,x ,..., x,0) for each k $ i. 

Step 3 Set memory layout for C such that ilh index poaition will be the fantest changing dimension. 

Step 4 For each array reference A on the RHS that hss &* = cc for come I, try to set memory layout for A such that the Ith dimension will be 
the fasteat changing dimension. 

Step 5 Choose an array reference A for which the equality in Step 4 does not hold. Initialire j = 1. 

Step 6 Set C;^.Q = (O,O, . . . . 1,0) and &A .Q = (x, x, . . . . x,0,0) for each k # j. If thia step in connietent with the previour step8 go to Step 7, 
otherwise increment j and go to the beginning of thir, step. If there exist inconeiatencier for all j valuer, then initialize j = 1, and set 

f;A.Q=(O,O ,..., l,O,O)and1~*.Q=(x,x ,..., x, O,O,O) for each k # j, and repeat Step 6 and 80 on. If no T-I is found then fill the 
remaining entries arbitrarily obaerving the dependenced and non-singularity. 

Step 7 Repeat Step 6 for all reference matrices of a particular A (Of course, all reference matrices for B particular A should have the same 
memory layout). 

Step 8 Repeat Step 6 for all distinct array references 

Step 8 Record the obtained transformation matrix. Also record, for each array, the loop index position which appears in the fastest changing 
position for that array. 

Step 10 Increment i and go to Step 2 (try a different memory layout for the LHS array C). 

Step 11 Compare all the recorded transformation matrices and their associated layouts, and choose the beat alternative. 

Figure 1: Algorithm for optimizing locality. 

l After a transformation and corresponding memory lay- 
outs are found, they are recorded and the next alternative 
memory layout for the LHS is tried and so on. Among all 
feasible solutions, the one which exploits most spatial local- 
ity in the innermost loop is chosen. 

5 Global Locality Optimization: Multiple Loop Nests 

5.1 General Problem 

Let {Nl, hr,, . . . . n/,} denote different loop nests in the pro- 
gram; and {dl,dz,..., dk} denote different arrays. In gen- 
eral each nest C~LI access a subset of the arrays. We assume 
that our algorithm described before is run for each nest, and 
a number of possible optimized layout combinations are ob- 
tained for each nest. In [g], the authors show that problem 
of finding a global army layout combination that satisfies all 
the nests is NP-complete even for the restricted case where 
only row-major and column-major arrays are considered. 
We present a heuristic for the global layout optimization 
problem. 

5.2 Locality Optimization under Layout Constraints 

During the compilation of a program it may be possible that 
the compiler, due to data dependences or some other con- 
straints, is not able to apply loop transformations or modify 
memory layouts of some arrays. Each unmodifiable informa- 
tion constitutes a constraint for the compiler. An important 
case is the explicitly parallel programs where loop transfor- 
mations ae generally not possible since the programmer has 
already decided the parallelization (31. 

Any transformation matrix must have a full rank and 
should not violate any data dependences. In the algorithm, 
after a candidate Q is built, it is checked against data de- 
pendences, and discarded if it violates any dependences or 
its rank is not full. 

We now focus on the problem of optimizing locality when 
some or all array layouts are iixed. We note that each tied 
layout requires that the innermost loop index should be in 
the appropriate array index position (dimension), depend- 
ing on layout of the array. For example, suppose that the 
memory layout for a h-dimensional array is such that the 

dimension kl is the fastest changing dimension, the dimen- 
sion k2 is the second fastest changing dimension, ks is the 
third etc. The algorithm should fist tr to place the new 
innermost loop index j, only to the kl’ % dimension of this 
array. If this is not possible, then it should try to place 
j, only to the k2 th dimension and so on. If all dimensions 
up to and including kh are tried unsuccessfully, then in-l 
should be tried for the klth dimension and 90 on. In the next 
subsection we show that this constrained layout algorithm 
is important for global locality optimization. 

5.3 Global Optimization Algorithm 

In this subsection we show how our algorithm can be ex- 
tended to work on multiple nests. Since a number of arrays 
can be accessed by a number of nests and each of these 
nests may require a diierent layout for a specific array, the 
algorithm should find a memory layout for that array that 
satisfies the majority of the nests. 

In the following we present a sketch of a simple heuris- 
tic. Our approach is based on the concept of most costly 
nest. Intuitively, this is the nest which takes the most time. 
Different methods can be adopted to choose this nest. For 
example the programmer can use compiler directives to give 
hints about this nest. We can also use a metric such as mul- 
tiplication of the number of loops and the number of arrays 
referenced in the neat. The nest which has the largest result- 
ing value can be marked as the most costly nest. Then the 
algorithm proceeds as follows: First, the most costly neat 
is optimized by using the algorithm presented in Figure 1. 
After this step, memory layouts for some of the arrays will 
be determined. Then each of the remaining nests can be 
optimized using the approach presented for the constrained 
layout case in the previous subsection. After each nest is op 
timized, new layout constraints will be obtained, and these 
will be propagated for optimizing the remaining nests. 

6 Examples, Simulation Results and Experimental Results 

This section presents several examples to illustrate the al- 
gorithm. Our experimental suit comprises of some kernels 
and several representative nests extracted from NAS Bench- 
marks [2]. 
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DOI=l.n 
DO]-1,n 

DOkr1.a 
DOl-1.1, 

A[iJl+=B[k.ll+C[l,kl 
ENDDO I 

ENDDO k 
ENDDO J 

ENDDO 1 
(4 

DO, I 1, na 
DO i I 1. nl 

YWl-XIiJI 
ENDDO i 

ENDDO J 
W) 

D0url.n 
DO v I 1. II 

DO - -1 .n 
DOy=l.n 

alwd+=BIv.~l+clu 
ENDDO Y 

ENDDO .v 
ENDDO Y 

ENDDO u 
(B) 

DO J] - 0. nl-1. ne 
DO II - 0. ~11-1. sac 

DO J I 1, ne 
DOi-l.as 

zu.i]=xIi+iiJ+lll 
ENDDO i 

ENDDO j 
DO i I 1, me 

DO J = l.ne 
w+ll.i+iil=zu,Il 

ENDDO J 
ENDDO i 

ENDDO ii 
ENDDO JJ 

09 

DO I6 - a. a6-1 
DO 11 I 1, r&l 

buffmlen=buff-lm+l 
buff[buff-l.n,buff.id]-u[1,19.i6] 

ENDDO i2 
ENDDO i6 

DO 16 = 2. n6-l 
DO 11 = 1. ma-1 

buffml.n-buffslen+ 
buqbuff~.n.buWd]=u[nl-l,iZ.i6] 

ZNDDO 12 
ENDDO 18 

.I... 
DO II I 1, nl 

DO 11 I 1. 01 
buffsl.nrbufl-lem+l 
bun[buff~..,buff~d]-u(ll.iP.I] 

ENDDO ‘6 
ENDDO il 

(1) 

DOu-1.n 
DOvr1.n 

DO ” -1 .n 
DOy-1.1, 

.vl ALv.ul+=w,Yl+C[~.~l 
ENDDO y 

ENDDO w 
ENDDO v 

ENDDO u 
(C) 

DO k - II(~). Ia 
DO i = Is(c). Ir(c) 

DO 1 - h(c). 10(c) 
. . . . . 

crU]-r4iJ,k,cl 
. . . . . 

ENDDO j 
DO i = IT(C). la(=) 

Ih.[lJ.k,l.c]-0.0 
lb*[lJ,k,~.=l-u~~ev~-ll.rkoq~~ll~ 
Ik~[lJ,k.S.cl=~a(rho~lil) 
lh~lIJ.k.4~cl=#~~c~U+1l,~k~~U+1l~ 
Ih.[IJ.k,6,e]rO.O 

ENDDO j 
ENDDO i 

ENDDO k 
(0) 

DOkr1.n 
DO j - 1. n-l 

u[kJ]rO.O 
IU,k]-0.0 

ZNDDO J 
I[k.k]=l.O 
DOJ-k.n 

u[kJl=-lkJ1 
DO p I 1, k-l 

u[kJl--llk.WubJl 
ENDDO p 

ENDDO ) 
IF (k 5 n-1) THEN 
DO I - k+l. II 

~li.kl=~ll.kl 
DO p - 1. k-l 

I[l.kl--lll,pl*u[p.kl 
ENDDO p 
I[i,kl=l[l,kl/u[k.kl 

ENDDO i 
ENDIF 

ENDDO k 
(J) 

D0url.o. 
DOvr1.n 

DO w =l ,n 
DOyrl,n 

Afu,vl+=B~r.ul+C(~.rl 
ENDDO y 

ENDDO w 
ENDDO v 

ENDDO u 
CD) 

DO k I 1, I. 
DO i -1. my 

buf[1.(k-1)*ny+l]-#~1,~x-1 J.kl 
. . 

buf[s.(k-l)‘r.r+ll=6(6,mc-lJ.k] 
bui(l.(k-l)=ny+j+ny~n~]=6[l,nxJ.k] 
. . . 
bu~8,(k-l)*n~+l+.~~n~l-6[6..xJ.k] 

ENDDO J 
ENDDO k 

WI 

Figure 2: (A) An example four-deep loop nest. (B) Optimized loop nest assuming Axed row-major arrayz. (C) Optimized loop neat. (D) 
Optimized loop nezt. (E) An example from the FT benchmark. (F) An example from the FT benchmark. (0) An example from the SP 
benchmark. (H) An example from the LU benchmark. (I) An example from the MO benchmark. (J) LU decomporition kernel. 

We demonstrate the simulation results obtained by using 
an enhanced version of Dinero111 [5], a trace-driven unipro- 
censor cache simulator. We simulate the miss rates over 
a range of cache sizes (4K, 8K, 16K, 32K, 64K, 128K), 
block (cache line) sk (8, 16, 32, 64, 128, 256) and set- 
essociativities (direct-mapped, Zway, Cway, full-associative). 

Also presented are empirical results obtained on SPARC- 
station 5, BS/6000 and SGI Challenge. SPARCstation 5 
has a 16K direct-mapped data cache and a 32 MB memory. 
BS/SOOO Model 590 has 256 KB data cache. SGI Challenge 
haa a logically and physically shared memory system. It usea 
snoopy write-invalidate cache coherence. Each node has 1 
MB data cache attached to it. In SGI, during the multi- 
processor experiments static scheduling has been employed. 
Due to space concerns, we do not show the step or parts of 
stepe which lead to unsucce&irl trials; and we only present 
a subset of our simulation and experimental results. 

6.1 Example: A four-deep loop nest 

Figure 2:A shows a four-deep loop nest which can ben- 
eflt from the layout flexibility. The array reference ma- 
trices for this nest are as follows. LA = ( t y “, “, ), 

L”=(: ; ; ,+idtC=(: : : A). 
The al orithm worke as follows: 

LA@ = t ’ ’ ’ i ). Therefore, qll = 412 = q13 = 
qzr = 0 and;$= 11 
LB.6 = ( “0 “0 “0 y ). Therefore, 434 = 0. 

LC.Q = ( E E i i ). Therefore, 493 = ~44 = 0 and 
443 = 1. 

0 0 0 1 

At this point T-’ = Q = ( 921 wa 011 OS2 918 0 > 00. We set 
%l wa 1 0 

the unknowns to the following values: q22 = 423 = qsl = 
941 , o=oq4; =lO,and qzl = qs2 = 1 and obtain T-’ = Q = 

t 
0 0 :10: * 

I 
Arrays A and C are column-major whereas 

the”gaylBois row-major; and the resulting code is shown 
in Figure 2:C. 
Next the compiler tries the other alternative layout (row- 
major) for A. 
LA.Q = ( “, “0 “0 t ). Therefore, qlr = ill = q22 = 
qa3 = 0 and q2r = 1. 
LB.Q = ( t E t 0” ). Therefore, 413 = ~34 = 0 and 
q33 = 1. 

Lc.Q = ( E E i i ). Therefore, qrs = ~44 = 0. 
BY setting ~12 = cm = 432 = q4l = 0 and qu = q42 = 1, 

T-‘=Q=(j ; ; ;). Arrays A and C are row-major 

whereas the array I3 i cc&m-major; and the resulting code 
is shown in Figure 2:D. 

6.2 Example: A constrained-layout nest 

We revisit the example shown in Figure 2:A, this time as- 
suming fired row-major memory layouts for all arrays. 
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(4 
Direct Mapped, n=500 

163264122 183264128 1e3204123 163264128 

Block Size 

(B) 
Associativity=P. n=500 

1---7-v- 

I 
4K 0.Cl-m SK o.*. 1 SK C.&m 32K C.ch. 

163234128 163284 I 163264128 163234128 
BI :k Size 

Figure 3: (A) Simulation results of B four-deep nest for different block and cache sizes on a direct-mapped cache. (B) Simulation reaulta of a 
four-deep nest for different block and cache sizes on a set-aeaociative cache. 

Cache S1ze.W. 11.750, Block Size=32 Cache Size=BK. n-750. Block Size=54 Cache Size=SY n=750, Slack Size= 125 
040 oa 

010/ 

Figure 4: Tile size sensitivity for B four-deep neat. 

LA.Q = ( “0 “0 i F ). Therefore, 414 = qzl = q22 = 
423 = 0 and q24 = 1. 
LB.Q=(c : y z). Therefore,qga=qaa=Oand 
q13 = 1. 

Lc.Q = ( ,” y i 0” ). Therefore, 442 = 443 = q44 = 0 
and q32 = 1. 
We set the unknowns to the following values 911 = q12 = 

QSl = 0 and qdl = 1 and obtain T-’ =,=(n H ; q. 

The resulting code is shown Figure 2:B. Nobel tiat ‘this 
is the nest that would be obtained for row-major memory 
layouts, had we used the W-Opt. 

Figure 3:A demonstrates miss ratios for this nest with 
500 x 500 double arrays on a direct-mapped cache. We ran 
experiments with three different versions: unoptimized ver- 
sion (Figure 2:A, Unopt), optimized version by fixing row- 
major layouts for all arrays (Figure 2:B, W-Opt) and one 
of the versions obtained by our approach (Figure 2:C, Opt). 
The results shown indicate that except for the 4K cache, our 
approach outperforms the W-Opt (Figure 2:B). In order to 
further understand the sources of the misses in the opti- 
mized programs we breakdown the misses into compulsory, 
capacity and conflict misses. The results indicate that the 
majority of the misses in the optimized program are due to 
conflicts which can, in principle, be eliminated by increas- 
ing the set-aasociativity. Figure 3:B shows the miss ratios 
for this example with 500 x 500 double arrays on a 2-way set 
associative cache. As expected, except for the 4K cache, our 
approach eliminates almost all misses; whereas the W-Opt 
does not improve the performance at all for some cases. 

Tiling (also known as blocking) is a technique to improve 

the locality, and is a combination of strip-mining and loop 
permutation [14, 151. Due to interference misses it is diffi- 
cult to select a suitable tile size. In other words, unless the 
tile size is tailored according to the matrix size and cache 
parameters, the performance of tiling may be rather poor 
[4, 91. 

Figure 4 illustrates the insensitivity of the optimized tiled 
versions to the tile size. The numbers above the bars denote 
the tile sizes. Notice that while the miss ratio of the unopti- 
mized tiled version is very unstable, those of the optimized 
versions (Figure 2:B and Figure 2:C) are stable. Notice also 
that our version outperforms the W-Opt for all tile, block 
(cache line) and cache sizes. 

Figures 6:A and B present execution times for this ex- 
ample with different input sizes on SPARCstation 5 and a 
single node of SGI respectively. Opt-l and Opt-2 denote the 
optimized versions obtained by our algorithm (Figures 2:C 
and D). Figures 6:C and D, on the other hand, show the 
execution times on multiple nodes of SGI Challenge with 
150 x 150 and 200 x 200 double arrays respectively. It can 
be seen that although the approach based on loop transfor- 
mations alone can improve the performance, our approach 
gives the best results on both uniprocessor and multipro- 
cessors. In SPARC, for example, with 250 x 250 double 
matrices, our approach (Opt-2) runs in almost 800 seconds 
less than the W-Opt. On four nodes of the SGI Challenge, 
with 200 x 200 double arrays, our version (Opt-2) saves 36 
more seconds than W-Opt. This example clearly shows that 
relaxing the memory layouts can save substantial amounts 
of time for some nests. 
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DO i I 1. II DOJ=l,n 
DOJ=l,n DOi=l,n 

A[iJ1=BU.ll’C[iJl+D~iJl*LOO(E[J.~l~ A~iJl=6U.ll*C~lJ1+DIiJ1’Loa~EU.ll~ 
ENDDO J &NDDO I 

ENDDO i ENDDO j 

DOi=1.~ DO i I I. II 
DOJ=l.n DO]= 1.n 

B(l Jl=AU.~l+~PJI BtlJI=AUdl+EPJI 
ENDDO J ENDDO J 

ENDDO i ENDDO 1 

(A) w 

DO 1 = 1. n DOJ-1.n 
DOj=l.n D0irl.n 

DOkrl,n DOkr1.n 
CPJl+=AWl’WJI Cl~Jl+=M.kl’~[kJl 

ENDDO k ENDDO k 
ENDDO J ENDDO I 

ENDDO i ENDDO j 

DO Y = 1. II 
DOv=1.n 

DOr=l.n 
O[u,rl+=A~u.vl~E~v.rl 

ENDDO w 
ENDDO Y 

ENDDO u 

DOi=l,n 
DOj-1.n 

D0krl.a 
F[iJl+=E[i.kl*C[kJl 

ENDDO k 
ENDDO ] 

ENDDO i 
CC) 

D0J1l.m 
DO,-1,n 

DOk=l.n 
P[~Jl+=W,kl*ClkJ1 

ENDDO k 
ENDDO i 

ENDDO J 
W’) 

DOurl,n 
DOv=l.n 

DOrr1.n 
F[u,=l+=~[u.vl*C[v,=l 

ENDDO = 
ENDDO Y 

ENDDO Y 
w 

Figure 5: (A) A simple benchmark. (B) Optimised version of (A). (C) MxMxM program. (D) A trenrformed vemion of (C). (E) Tranrformed 
version of (C) by our appronch. 
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6.3 Example nests from NAS Benchmarks 

The NAS Parallel Benchmarks [2] are a set of programs de- 
signed to help evaluate the performance of parallel super- 
computers. To utilize the cache effectively, the benchmarks 
generally access data with unit stride. Default layout for 
the nests is column-major. It should be stressed that the 
examples considered here are only representative nests. 

l FT benchmark usea simple-tnanqose and wmpliuated- 
transpose nests shown in Figure 2:E and F respectively. In 
Figure 2:E, spatial locality for the array Y is poor; our al- 
gorithm attaches row-major layout for Y and column-major 
layout for X, retaining the original loop order. In Figure 7:A 
the leftmost group of bars show the performance improve- 
ment obtained by our approach for difhwent block sizes on 
a 16K direct-mapped cache. Notice that the effectiveness 
of the approach increases with larger block tizee. In Fig- 
ure 2:F, on the other hand, the reference Zb, i] in the first 
loop has poor locality. Our locality optimization algorithm 
attaches row-major layouts for 2 and Y, and column-major 
layout for X; and interchanges the loops in the second nest 
placing the i-loop into innermost position. The middle and 
rightmost bar-charts ia Figure 7:A ahow the improvement 
obtained by our approach for nc = 64 and nc = 150, respec- 
tively. Since when nc = 64, the data used by the innermost 
loop fits in the cache anyway, our algorithm doee not add 
much. 

l An example nest from the SP benchmark is given in 
Figure 2:G. In order to apply our algorithm, we first dis- 

tribute the second j-loop over the individual statements. 
Then our approach attaches layouts for the arrays v8 and 
lhe euch that the second dimension in both arrays will be the 
fastest changing dimension exploiting the spatial locality in 
the innermost loops. Figure 7:B demonstrates the reduction 
in cache misses. 

l Figure 2:H presents an example nest from the LU 
benchmark. After distributing the j-loop, our algorithm 
offera two alternatives: retain the original loop order and 
make the third dimension of the array g the fastest chang- 
ing dimension; or apply the loop interchange and make the 
fourth dimension of the array g the fastest changing dimen- 
sion. The performance improvement ia similar for both the 
alternatives. Figure 7:C shows the performance improve- 
ment. With a block (cache line) size of 128, more than half 
of the misses are eliminated. 

l Three typical loop nesta from the MG benchmark are 
shown in Figure 2:I. In the first nest, since i2 ia the in- 
nermost loop, our global locality algorithm makeu second 
dimension of Y the fastest changing dimension. This choice 
is appropriate for the second nest as well; and for the third 
nest our algorithm interchanges the loops i2 and il. The 
performance improvement illustrated in Figure 7:D ia sub- 
thntial. 

We ran experiments on BS/SOOO and SPARCstation 5. 
Due to space concerns+ we only present the execution times 
for simple-tmnqo~e nest, in Figures &A and B for HS/6000 
and SPARCstation 5 respectively. When nr = nr = n = 
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4000, on BS/SOOO, there is 45% performance improvement. 

6.4 LU Decomposition 

Figures 2:J shows an LU decomposition algorithm. Our 
global locality algorithm identifies the nests containing the 
innermost p-loops as the most costly nests, and attaches 
row-major layout for the array 1 and column-major layout 
for the array u. Figures 8:C and D show the miss rates of 
the unoptimized and optimized nests for an 8K data cache 
with direct-mapping and a set-associativity of size 2 respec- 
tively. Aa can be seen, our algorithm reduces the original 
miss rates by 7% to 40%. 

6.5 Other examples 

Figure 9:A shows the normalized mias rates for the dgemm 
routine from BLAS. This routine performs the following 
operation: C = af(A)f(B) + PC, where f(X) = X or 
XT, and Q and ,6 are scalars. Both the unoptimized and 
the optimized versions have been called four times, each of 
which with different operation, and the average miss rates 
have been computed. Below each pair of bars is given the 
triple cache site, block size, associativity. In the simulation 
500 x 500 double precision matrices are used. 

Figure 9:B demonstrates the performance improvement 
on dtrsl, a routine from LINPACK which solves the systems 
of the form Tz = 6 or TTx = b where T is a triangular 
matrix of order n. While for optimizing the dgemm both 
data and loop transformation are used, for dtrsl only data 
transformations are used. 

Finally, we show the impact of our algorithm on two 
programs from [3]. The program shown in Figure 5:A is 
a simple benchmark. Figure 9:C shows the improvement 
obtained by our approach. For each cache size, the three 
bars from left to right correspond to unoptimized version 
with column-major layouts, unoptimized version with row- 
major layouts and version optimized by our approach. In 

the optimized version, the loopa in the first nest are inter- 
changed; and the following layouts are assigned: A, C, and 
D are column-major; B and E are row-major. With these 
optimiiations, the spatial locality for every reference is ex- 
ploited in the innermost loop and the optimized program is 
given in Figure 5:B. 400 x 400 double matrices are used. 

Figure 5:C shows a program named MxMxM from [3]. 
This program computes the product of three square matri- 
ces. The version obtained by using the method in [3] is 
presented in Figure 5:D. The layouts for A and E are row- 
major, whereas those for the other arrays are column-major. 
For the four of the total eight references, the spatial locality 
is exploited in the innermost loop; and for the remaining 
four references it is exploited in the eecond loop. In com- 
parison, our global approach trausform this program to the 
one shown in Figure 5:E. All arrays are row-major (a ver- 
sion with all column-major arrays is also possible). For six 
of the total eight references, the spatial locality iz exploited 
in the innermost loop; for the two references it is exploited 
in the second loop. The normalized miss rates for an 8 KB 
direct-mapped cache ia are shown in Figure 9:D. These re- 
sults reveal that our approach is better in the senze that it 
finds all possible transformations and layouts; and selects 
the most optimal one. 

7 Impact on False Sharing 

In shared-memory multiprocessors when processors make 
references to d&rent data items within the same cache line, 
false shoring occurs [12]. Since cache coherence is main- 
tained on a cache block (line) basis, when one processor 
modifies a data item, it causes an invalidation in the other 
processors’ cache. It is well known that one of the main 
causes of the false sharing is the parallelization of a loop 
that carries spatial reuse [lo, 151. On the other hand, the 
larger the granularity of parallelism the better it is; because 
the synchronization overhead will diminish with the increas- 
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ing parallelism granularity. A recent study shows that apart 
from affecting the synchronization cost, the granularity of 
application parallelism is also an important determinant of 
applications’ memory behavior (131. 

Technical Report NAS-95-020, NASA Ames Reaeaxh Cen- 
ter, CA, December 1995. 

To summarize, in order to optimize the locality for par- 
allel machines, the maximum granularity of parallelism is 
obtained and the outermost parallel&d loops should not 
carry any spatial reuse. Since our algorithm tries to achieve 
this goal by both changing the loop orders and memory lay- 

outs, we believe that it will be very effective at eliminating 
false sharing on multiprocessors. 

Let us consider the loop shown in Figure 2:A, this time 
assuming column-major layouts. Notice that applying the 
approaches like in [7] and [lo] for this nest result in the 
same neat; that is this loop order is the most desirable one 
for the fixed column-major layouts. If the outermost loop 
(i) ia parallelized then the reference a[i, j] will cause false 
sharing. In comparison, for both of our optimized versions 
(Figure 2:C and Figure 2:D), the outermost loop (u) can 
now safely parallel&d, without an apparent danger of false 
sharing. 

(31 M. Ciemiak end W. Li. Unifying Data and Control 
‘Itaneformatione for Distributed Shared Memory Mechinee. 
Proc. SIGPLAN ‘95 Conference on Progmmming Language 
Design and Implementation, La Jolla, California, June 1995. 

[4] S. Coleman and K.S. McKinley. Tile Size Selection Using 
Cache Organization and D8t8 Layout, In Pmt. SZGPLAN 
‘95 Conference on Pmgmmming Language Design and Zm- 
plementotion, La Jolla, CA, June 1995. 

[5] M. D. Hill and A. J. Smith. Evaluating Awociativity in CPU 
Caches, IEEE Zluns. on Computers, C-38, 12, December 
1989, pages 1612-1630. 

8 Conclusions end Future Work 

[S] Y.-J. Ju and H. Dietz. Reduction of Cache Coherence Over- 
head by Compiler Data Layout and Loop ‘Itaneformatione. 
Ptvc. 4th Workshop on Language6 and Compiler6 for Par- 
allel Computing, Santa Clara, CA, August 1991. 

[7] K. McKinley, S. Carr, and C.W. Taeng. Improving Data 
Locality with Loop ‘I&msformations. ACM ‘Ikunractions on 
Pmgmmming Language6 and Syrtems, 1996. 

[S] M. Kandemir, J. Ftamanujam, and A. Choudhary. A Com- 
piler Algorithm for Optimizing Locality in Loop Nests. Tech- 
nical Report, Northweetem University, EYBnBton, IL, April 
1997. 

We designed a compiler algorithm which transforms the loop 
nests and changes the memory layouts of arrays in a unified 

[9] M. S. Lam, E. Bothberg and M. E. Wolf. The Ceche 
Performance and Optimizationa of Blocked Algorithms In 

framework. Our algorithm can either be employed alone, or Pmt. 4th International Conference on Amhitectuml Support 
can be combined with low-level locality optimizations such for Progmmming Language6 and Opemting Syslemr, April 
as tiling [9]. 1991. 

We have shown that our approach is more effective in re- 
ducing sensitivity of tiling to the tile size and at eliminating 
false sharing than the approaches based on loop transfer- 
mations alone. In fact, when the memory layouts are fixed, 

our approach produces the same reaulta aa other approaches 
such as those of Li [lo] and Wolf and Lam [14], if temporal 
locality is not considered. Both our simulation results and 
empirical results provide encouraging evidence that our ap- 
proach is likely to be successful on both uniprocesaora and 
multiprocessors. Work is in progress on evaluating the per- 
formance of our approach on full NAS benchmarks [2] on 
multicomputers. We also intend to apply our technique to 
the other levels of memory hierarchy. 

[lo] W. Li. Compiler Optimizations for Cache Locality and Co- 
herence. Technical Report 504, Dept. of Computer Science, 
University of F&heater, NY, April 1994. 

[ll] C.-W. Teeng, J. Anderson, S. Amaraeinghe, and M. Lam. 
Unified Compilation Techniquea for Shared and Distributed 
Address Space Machines. In PIUC. 1995 International Con- 
ference on Supercomputing (ZCS’95), Barcelona, Spain, July 
1995. 
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