
A Layout-Conscious Iteration Space
Transformation Technique

Mahmut Kandemir, Member, IEEE, J. Ramanujam, Member, IEEE,

Alok Choudhary, Senior Member, IEEE, and Prithviraj Banerjee, Fellow, IEEE

AbstractÐExploiting locality of references has become extremely important in realizing the potential performance of modern

machines with deep memory hierarchies. The data access patterns of programs and the memory layouts of the accessed data sets

play a critical role in determining the performance of applications running on these machines. This paper presents a cache locality

optimization technique that can optimize a loop nest even if the arrays referenced have different layouts in memory. Such a capability is

required for a global locality optimization framework that applies both loop and data transformations to a sequence of loop nests for

optimizing locality. Our method uses a single linear algebra framework to represent both data layouts and loop transformations. It

computes a nonsingular loop transformation matrix such that, in a given loop nest, data locality is exploited in the innermost loops,

where it is most useful. The inverse of a nonsingular transformation matrix is built column-by-column, starting from the rightmost

column. In addition, our approach can work in those cases where the data layouts of a subset of the referenced arrays is unknown; this

is a key step in optimizing a sequence of loop nests and whole programs for locality. Experimental results on an SGI/Cray Origin 2000

nonuniform memory access multiprocessor machine show that our technique reduces execution times by as much as 70 percent.

Index TermsÐData reuse, cache locality, memory layouts, loop transformations, program optimization.

æ

1 INTRODUCTION

AS the disparity between processor and memory speeds
continues to increase, most modern computer systems

have resorted to the use of memory hierarchies with one or
more levels of cache memory [11]. This results in a possible
reduction of the average memory access times. The
performance of programs on such systems can be signifi-
cantly improved if they are written in such a way that a
majority of memory references are satisfied by the cache.
Manual performance improvement by restructuring code
and data is tedious, error prone, and leads to nonportable
code. Therefore, it is important that this task be left to an
optimizing compiler [30]. Several automatic restructuring
strategies have been proposed by compiler researchers,
including loop (iteration space) as well as array layout (data
space) transformations [30], [27], [39], [26], [19], [31]. The
basic idea is to automatically modify the access pattern of a
program such that the data (a single element or a cache
block) brought into cache after a cache miss is reused as
much as possible before being discarded from the cache.
These techniques can be classified into three groups as
described below.

Loop transformations: Consider an array reference
U�i; j� in a two-deep loop nest where the outer loop is i
and the inner loop is j. Assuming that array U is stored in
memory in column-major order (as in Fortran) and the trip
count N of both loops is very large, successive iterations of
the j-loop will touch different columns of array U that will
very likely be mapped to different cache lines. Let us focus
on a particular cache line that holds the initial part of a
column. Before that column is accessed again, the j-loop
sweeps through N different values, so, it is very likely that
this cache line will be discarded from the cache before it is
reused. Consequently, in the worst case, every access to U
will involve a data transfer between the cache and main
memory resulting in high access latencies. A solution to this
problem is to interchange the loops i and j, making the i-loop
innermost. As a result, a cache line brought into memory
will be reused in a number of successive iterations of the
i-loop, provided that the cache line is large enough to hold a
number of array elements. Previous research in optimizing
compilers [39], [27], [28], [30], [42] has resulted in several
algorithms that detect and perform this loop interchange
and other loop-based locality enhancing transformations
automatically. These well-understood loop transformations
can be used for optimizing temporal as well as spatial
locality. But, data dependences in a nest may prevent the
application of certain loop transformations [42]. Also, loop
transformations are not very successful in optimizing
locality in imperfectly nested [23] and explicitly parallelized
loops [7].

Data transformations: Alternately, the locality problem
can be tackled by a technique called data (memory layout)
transformation or array restructuring. It is easy to see that if
the memory layout of array U mentioned above is changed
from column-major to row-major (without changing the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001 1321

. M. Kandemir is with the Department of Computer Science and
Engineering, Pennsylvania State University, University Park, PA
16802. E-mail: kandemir@cse.psu.edu.

. J. Ramanujam is with the Department of Electrical and Computer
Engineering, Louisiana State University, Baton Rouge, LA 70803.
E-mail: jxr@ee.lsu.edu.

. A. Choudhary and P. Banerjee are with the Department of Electrical and
Computer Engineering, Northwestern University, Evanston, IL 60208.
E-mail: {choudhar, banerjee}@ece.nwu.edu.

Manuscript received 6 Apr. 1999; revised 19 June 2000; accepted 19 Oct.
2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109554.

0018-9340/01/$10.00 ß 2001 IEEE

loop order), then successive iterations of the inner j-loop can
reuse the data in the cache. Recently, several authors [31],
[7], [26], [18], [19] have proposed techniques to determine
optimal memory layouts automatically. Such data transfor-
mation techniques are promising because they are not
constrained by data dependences and are applicable to
imperfect nests and explicitly parallelized loops, but the
effect of a layout transformation is global, meaning that it
affects the cache behavior of all loop nests that access the
array assuming a fixed layout for each array throughout the
execution of the program. In this paper, we consider the
possibility that different arrays in the program may have
different layouts. Therefore, in the general case, given a
loop nest, the compiler is faced with an optimization
problem that involves finding an appropriate loop trans-
formationm assuming that the arrays in the nest may have
differentÐperhaps unspecifiedÐlayouts. Unfortunately,
current loop transformation techniques are unable to
handle this since they assume a fixed (column-major, as in
Fortran, or row-major, as in C) memory layout for all arrays
in the program. Another significant problem with data
layout transformations is that they cannot optimize a given
reference for temporal locality [7], [26].

Combining data and loop transformations: It seems
reasonable to combine loop and data transformations,
resulting in a framework that is more powerful than using
just loop or just data transformations. To motivate the
discussion, consider the program fragment in Fig. 1a,
assuming that arrays U and V are stored column-major by
default. The first loop nest accesses array U diagonally and
array V by rows; the second loop nest accesses both arrays
by rows. Due to data dependence and conflicting access
patterns of the arrays, the first loop nest cannot be
optimized for locality of both arrays using loop transforma-
tions alone. Using a data layout transformation framework,
one can determine that array U should be diagonally stored
in memory and array V should be row-major. Now, having
optimized the first loop nest, we focus on the second. A
quick analysis shows that, for the best locality, either the
loops should be interchanged and the arrays should be
stored diagonally in memory or both the arrays should have
row-major layouts without the need for any loop transfor-
mations. We note that neither of these solutions is
satisfactory. The reason is that the layout of U is fixed as
diagonal and that of array V as row-major in the first loop

nest. Since we do not consider dynamic layout changes,
accesses to one of the arrays in the second loop nest is
unoptimized in both the solutions discussed. What we need
for this second loop nest is a loop transformation that
optimizes both the references under the assumption that the
memory layout of the associated arrays are distinct: One of
them is diagonal and the other one is row-major, as found
in the first nest. This is the main problem addressed in this
paper and we present a framework, using which such a
loop transformation can be derived. The resulting code is
shown in Fig. 1b. Notice that this program exhibits very
good locality if array U is stored diagonally and V has a
row-major layout. Notice also that this optimized code
requires an additional data transformation step in a
compiler that assumes a default (canonical) memory layout
for all arrays. This last transformation step is rather
mechanical; the associated details are beyond the scope of
this paper and can be found elsewhere [26], [15], [31].

When data transformations are used in a program that
involves multiple loop nests, in order to select suitable
memory layouts, an optimizing compiler needs to consider
multiple loop nests before making a decision. The key point
here is that when we determine the layout of an array in a
loop nest, we need to propagate this new layout informa-
tion to the other nests in which the same array is accessed.
There is a distinct possibility that this new layout will not be
suitable (let alone optimal) for some of these other loop
nests [26], [15], [31], [32].

In this paper, we present a framework that, given a loop
nest, derives a loop transformation for the case where
distinct arrays accessed in the nest may have different
memory layouts. In addition, our solution works in the
presence of unspecified (or undetermined) layouts for a
subset of the arrays referenced; this is of particular interest
in enhancing locality beyond a single nest in a global
locality optimization problem involving multiple nests. The
framework subsumes previous iteration space-based local-
ity-enhancing linear transformation techniques that assume
a fixed memory layout for all arrays. Our solution can be
used as part of a larger framework that restructures array
layouts globally for multiple loop nests.

Outline: The remainder of this paper is organized as
follows: In Section 2, we present a brief review of the
necessary technical background, followed by our frame-
work used for a mathematical representation of the memory

1322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

Fig. 1. (a) The original code. (b) The transformed code. (Note: The transformed code exhibits good spatial locality if array U has diagonal memory

layout and array V is row-major.)

layout information. Section 3 presents a loop transformation
framework assuming that the memory layout for all arrays
is column-major. In Section 4, we generalize our approach
to attack the problem of optimizing a loop nest, assuming
that the arrays referenced may have distinct memory
layouts. We give our experimental results, obtained on an
eight-processor SGI/Cray Origin 2000 nonuniform memory
access multiprocessor, in Section 5. We review related work
on data locality in Section 6 and conclude the paper in
Section 7.

2 BACKGROUND

In this paper, we consider nested loops. An iteration in an

n-nested loop is denoted by an iteration vector �I �
�i1; i2; � � � ; in�T : Note that we write column vectors as a

transpose of row vectors. We assume that the array

subscript expressions and loop bounds are affine functions

of enclosing loop indices and symbolic constants. In such a

loop nest, each reference to an m-dimensional array U can

be modeled by an access (or reference) matrix L of size m� n
and an m-dimensional offset vector �o [27], [39], [42]. For

example, a reference U �i1 � i2; i2 � 1� in a loop nest of depth

two can be represented by L�I � �o, where

L � 1 1
0 1

� �
and �o � �0; 1�T : We focus on loop transformations that can
be represented by integer nonsingular n� n matrices. The
effect of such a transformation T is that each iteration vector
�I in the original loop nest is transformed to T �I. Therefore,
loop bounds and subscript expressions should be modified
accordingly. Let �I 0 � T �I. Since T is invertible, the trans-
formed reference can be written as L�I � �o � LT ÿ1 �I 0 � �o:
The new loop bounds are computed using Fourier-Motzkin
elimination. An iteration space transformation is legal if it
preserves all data dependences in the original loop nest
[42]. A linear transformation, represented by T , is legal if,
after the transformation, T �d is lexicographically nonnega-
tive for each data dependence vector �d in the original nest.
The approach presented in this paper attempts to determine
a T matrix for a given loop nest. The uniqueness of our
approach is that (unlike previous loop transformation
techniques) it determines T even if the arrays referenced
in the nest have different memory layouts.

2.1 Memory Layout Representation Using
Hyperplanes

In a previous paper [15], we presented a framework that
represents memory layouts of arrays using hyperplanes. In
this section, we briefly review the concepts presented there.
A hyperplane defines a set of elements �|1; � � � ; |m�T that
satisfies the equation g1|1 � g2|2 � � � � � gm|m � c for a
constant c. Here, g1; � � � ; gm are rational numbers called
hyperplane coefficients and c is a rational number called the
hyperplane constant [33]. The hyperplane coefficients can
be written collectively as a hyperplane vector
�g � �g1; � � � ; gm�T . Where there is no confusion, we omit the
transpose. A hyperplane family is a set of hyperplanes

defined by �g for different values of c. It can be used to
partially represent the memory layout of an array. We
assume that the array elements on a specific hyperplane are
stored in consecutive memory locations. Thus, for an array
whose memory layout is column-major, each column
represents a hyperplane whose elements are stored in
memory consecutively. Given a large array, the relative
storage order of the hyperplanes with respect to each other
may not be important. Consequently, the hyperplane vector
�1; 0�T denotes a row-major layout, �0; 1�T denotes column-
major layout, and �1;ÿ1�T defines a diagonal layout, all for
two-dimensional arrays. Two array elements, �J and �J 0,
belong to the same hyperplane �g if the locality constraint
�gT �J � �gT �J 0 holds. For example, in a two-dimensional array
stored as row-major, array elements �5; 4�T and �5; 9�T belong
to the same hyperplane (i.e., the same row), but elements
�5; 4�T and �6; 4�T do not. We say that two array elements
which belong to the same hyperplane have spatial locality.
Although this definition of spatial locality is somewhat
coarse and does not hold at the array boundaries, it is
suitable for our locality optimization strategy.

In a two-dimensional array space, a single hyperplane
family is sufficient to partially define a memory layout. In
higher dimensions, however, we may need more hyper-
plane families. Consider a three-dimensional array U whose
layout is column-major. Such a layout can be represented
using two hyperplanes: �g � �0; 0; 1�T and �h � �0; 1; 0�T . We
can write these two hyperplanes collectively as a layout
constraint matrix or, simply, a layout matrix:

LU � �gT

�hT

� �
� 0 0 1

0 1 0

� �
:

In such a case, two data elements �J , and �J 0, are said to have
spatial locality if the locality constraints �gT �J � �gT �J 0 and
�hT �J � �hT �J 0 hold. The elements that have spatial locality
should be stored in consecutive memory locations. This
idea can easily be generalized to higher dimensions. Unless
stated otherwise, we assume a column-major memory
layout for all arrays. In Section 4, we show how to
generalize our technique to optimize a given loop nest
where a number of arrays with different memory layouts are
accessed. Our optimization technique can work with any
memory layout that can be represented using hyperplanes.
In general, the column-major layout for an m-dimensional
array can be represented by an �mÿ 1� �m matrix L � �lij�,
where li�mÿi�1� � 1 for 1 � i � �mÿ 1� and lij � 0 for the
remaining elements. A thorough discussion of matrix-based
layout representation can be found elsewhere [15].

3 TRANSFORMATIONS FOR THE SINGLE LAYOUT

CASE

3.1 Optimizing Spatial Locality

Our goal is to transform a loop nest such that spatial locality
will be exploited in the inner loops in the transformed nest.
That is, when we transform a loop nest, we want two
consecutive iterations of the innermost loop to access array
elements that have spatial locality. In particular, wherever
possible, we want the accessed array elements to be next to
each other so that they can be in the same cache line (or

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1323

neighboring cache lines). This can be achieved if, in the

transformed loop nest, the elements accessed by consecu-

tive iterations of the innermost loop satisfy appropriate

locality constraints discussed in the previous section.
Let Q � T ÿ1 for convenience. Ignoring the offset vector

(as it does not have any effect on self-spatial locality), after

transformation T , the new iteration vector �I accesses

(through L) the array element LQ�I.
We first focus on two-dimensional arrays. For such an

array U , the layout constraint matrix for the column-major

layout is LU � �0; 1�. Except for iteration space boundaries,

two consecutive iteration vectors can be written as1 �I �
�{1; {2; � � � ; {nÿ1; {n�T and �Inext � �{1; {2; � � � ; {nÿ1; 1� {n�T . The

data elements accessed by �I and �Inext through a reference

represented by access matrix L will have spatial locality if

�0; 1�LQ�I � �0; 1�LQ�Inext) �0; 1�LQ�0; � � � ; 0; 1�T � 0

) �l2 �qn � 0) �qn 2 Ker �l2
� 	

;

where �l2 and �qn are the last row of matrix L and last column

of matrix Q, respectively. Since �l2 is known, we can always

choose �qn from its null set (Ker set).
Notice that this technique determines only the last column

of the matrix Q. The remaining elements can be filled in any

way as long as the resulting matrix Q is nonsingular and its

inverse (T) does not violate any data dependence. Later, we

will focus on how to complete a partially filledQmatrix. For

now, to see why the last column of Q is so important for

locality and to obtain the generalization of this fixed-layout

based model for higher-dimensional arrays, let us consider a

reference to an m-dimensional array in an n-dimensional loop

n e s t . A s s u m e t h a t L � � �l1 �l2 � � � �lm �T a n d

Q � � �q1 �q2 � � � �qn �, where �lj is the jth row of L and �qk
is the kth column of Q. Assuming i1, i2, � � � , in are the loops

in the nest after the transformation, omitting the offset

vector, the new reference matrix is

LQ�i1; � � � ; in�T �
��l1 �q1i1 � � � � � �l1 �qnin; � � � ; �lm �q1i1 � � � � � �lm �qnin�:

Since the spatial locality behavior of a reference is mainly

determined by the innermost loop (in our case, in) and all �lj
are known, �qn is the sole factor that determines spatial

locality. Our objective is to select �qn such that �lj �qn will be 0

for each j, where 2 � j � n and �l1 �qn will be a small integer

constant. In the two-dimensional case, since m � 2, select-

ing �qn from Ker �l2
� 	

achieves precisely this goal. Using a

similar reasoning, we can see that, in higher-dimensional

cases, for good spatial locality in the innermost loop, the

following relations should be satisfied:

�qn 2 Ker �l2
� 	

; �qn 2 Ker �l3
� 	

; � � � ; �qn 2 Ker �lm
� 	

:

To illustrate this, we consider the program fragment shown

in Fig. 2a. The access matrices are

LC �
1 0 0

0 1 0

0 0 1

264
375;LA � 1 0 0

0 0 1

0 1 0

264
375;

and LB �
0 0 1

0 1 0

1 0 0

264
375:

We first use �l3 for each array:

For array C : �q3 2 Ker �0; 0; 1�f g) �q3 � �;�; 0� �T ;

For array A : �q3 2 Ker �0; 1; 0�f g) �q3 � �; 0;�� �T ;

For array B : �q3 2 Ker �1; 0; 0�f g) �q3 � 0;�;�� �T :
These three equations, together, imply that
q13 � q23 � q33 � 0; in other words, �q3 should be the zero
vector. Since we cannot have a zero column in the inverse of
a transformation matrix (as the transformation matrix
should be nonsingular by definition), we have to eliminate
one of the equations and then reattempt to find a solution.

Our elimination scheme is based on profile information
collected. With each reference in the nest, we associate a
weight that represents the number of times this reference is
touched in a typical execution. Note that, in our formula-
tion, we have an equation per reference.2 In cases where we
need to eliminate an equation, we select the one whose
associated reference has the minimum weight among all.
Obviously, this strategy tries to minimize the runtime
impact of an equation not taken into account. In our current
example, since the references to arrays A and B have the
same weight, we can select either and eliminate its
equation. Note that, in case a single elimination does not
lead to a solution, we continue by eliminating the equation
of reference with the next minimum weight and so on.
Returning to our example, if we eliminate the equation on
B, we have q23 � q33 � 0. We now focus on �l2 (middle row)
from each reference matrix:

For array C : �q3 2 Ker �0; 1; 0�f g) �q3 � �; 0;�� �T ;

For array A : �q3 2 Ker �0; 0; 1�f g) �q3 � �;�; 0� �T ;

For array B : �q3 2 Ker �0; 1; 0�f g) �q3 � �; 0;�� �T :
From these three relations, we have q23 � q33 � 0, which is
consistent with the previous findings. We now have a
partially filled matrix

Q �
� � �
� � 0
� � 0

24 35:
We consider only the two permutation matrices:3

Q1 �
0 0 1
0 1 0
1 0 0

24 35

1324 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

1. The following formulation will be based on this assumption that two
consecutive iteration vectors do not fall into an iteration space boundary.
This is reasonable as, in a nest that consists of loops with large trip counts,
the majority of the consecutive iteration vector pairs do not fall into
boundaries.

2. In the current example, the two references to array C have the same
equation, so, they can be considered as a single reference with twice the
weight.

3. Notice that our approach in general can result in any nonsingular
transformation matrix. Here, in order to keep the presentation simple, we
use only permutation matrices. In the rest of the paper, we will focus on
unimodular matrices explicitly.

and

Q2 �
0 0 1
1 0 0
0 1 0

24 35
which result in

T 1 �
0 0 1
0 1 0
1 0 0

24 35
and

T 2 �
0 1 0
0 0 1
1 0 0

24 35;
respectively. Notice that the original loop nest has a data
dependence vector �d � �1; 1;ÿ1�T due to array C. Since T 1

�d
is lexicographically negative, this dependence vector
renders T 1 illegal, leaving only T 2 as a legal permutation
matrix. The transformed code is shown in Fig. 2b. Here,
spatial locality is very good for arrays C and A, whereas
spatial locality for array B is exploited only by the middle
loop. This is the result of eliminating the equation
associated with B.

3.2 Exploiting Temporal Locality

An important issue now is to integrate the handling of
temporal locality into our framework. It is well-known that,
as far as the innermost loops are concerned, optimizing
temporal locality is more important than optimizing spatial
locality because, if the innermost loop carries temporal
reuse for a given reference, that reference can be kept in a
register throughout the execution of the innermost loop
(provided that there is no aliasing involving that reference).
If, however, the reference in question can only be optimized
for spatial locality, misses at cache line boundaries will be
inevitable.

It is relatively easy to extend our approach to handle

temporal reuse. Recall that, for spatial locality in the

innermost loop, the following conditions should hold:

�l1 �qn � y; �qn 2 Ker �l2
� 	

; �qn 2 Ker �l3
� 	

; � � � ; �qn 2 Ker �lm
� 	

;

where y is a small integer value. For temporal locality,

however, we should have the following:

�qn 2 Ker �l1
� 	

; �qn 2 Ker �l2
� 	

;

�qn 2 Ker �l3
� 	

; � � � ; �qn 2 Ker �lm
� 	

:

That is, �qn should belong to the null space of all the rows of

the access matrix.
We illustrate the approach for optimizing temporal

locality using the example nest given in Fig. 3a. The access

matrices are

LU � 0 1 1
1 0 0

� �
and LV � 1 0 1

1 0 0

� �
:

The data locality theory developed by Wolf and Lam [39]

shows that it is not possible to optimize both the references

for temporal locality. Therefore, let us attempt to optimize

the reference to array U for temporal locality and the

reference to array V for spatial locality. For the temporal

locality of array U , �q3 2 KerfLUg, i.e.,

�q3 2 Ker 0 1 1
1 0 0

� �� �
:

To ensure spatial locality of array V , on the other hand,

�q3 2 Ker �1; 0; 0�f g should be satisfied. The vector �q3 �
0; 1;ÿ1� �T satisfies both conditions. With �q3 as the last

column, we can complete Tÿ1 as

Tÿ1 �
1 0 0
0 0 1
0 1 ÿ1

24 35:

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1325

Fig. 2. (a) Original loop nest. (b) Transformed loop nest.

Fig. 3. (a) Original loop nest. (b) Transformed loop nest.

The resulting program is shown in Fig. 3b. Note that
temporal locality is exploited for array U and spatial locality
is obtained for array V ; both in the innermost loop.

An important problem in optimizing temporal locality is
to select the reference(s) for which temporal locality can be
optimized. For instance, in the example above, we could
have easily tried to optimize array V for temporal locality
instead of array U . Fortunately, Wolf and Lam [39] tell us
how to check whether we can achieve temporal locality for
a given reference. The idea is to compute the kernel set of
the access matrix of the reference in question: If the kernel
set is empty, we cannot achieve temporal locality; other-
wise, at least in principle, temporal locality might be
possible for that reference.

Our current approach to select the references to be
optimized for temporal locality is rather straightforward.
Simply put, we try to improve temporal locality for as many
references as possible. For example, suppose that, in a given
loop nest that has four references, only three of the
references can be optimized for temporal locality. Then,
we build our equations such that these three references are
to be optimized for temporal locality and the remaining
reference for spatial locality. If we cannot achieve this, then
(instead of starting to eliminate the equations right away)
we optimize one of these three references for spatial locality
instead. We try to accomplish this by trying all three
combinations in turn, where two references (out of three
with potential temporal locality) are optimized for temporal
locality. If any of these combinations leads to a solution, we
stop. If all of them fail, then we can only achieve temporal
locality for a single reference, in which case, we try to
optimize each of these three references for temporal locality
in turn.

3.3 Locality in Outer Loops

So far, we have only concentrated on determining the
elements of the last column of Q. While, for most cases, this
is sufficient to improve locality, in situations where the trip
count of the innermost loop is small and where some
references exhibit temporal locality in the innermost loop,
we may need to pay attention to the spatial locality carried
by the outer loops as well. Let us focus on the spatial
locality in the second innermost loop. This corresponds to
determining the elements of the second rightmost column
of Q. We define �Ik � �{1; � � � ; {kÿ1; {k; {k�1; � � � ; {n�T and
�I 0k � �{1; � � � ; {kÿ1; 1� {k; {k�1; � � � ; {n�T . This means that itera-
tion vectors �Ik and �I 0k have exactly the same values for all
loop index positions except the kth index, where they differ
by one. In this case, we can exploit the spatial locality in the
second innermost loop if

�0; 1�LQ�Inÿ1 � �0; 1�LQ�I 0nÿ1 or �0; 1�LQ�0; � � � ; 0; 1; 0�T � 0;

i:e:; �lm �qnÿ1 � 0) �qnÿ1 2 Ker �lm
� 	

:

4 TRANSFORMATIONS FOR THE MULTIPLE LAYOUT

CASE

In this section, we present the formulation for the most
general case, where a number of arrays with possibly
different memory layouts are referenced in a given loop nest.

Our goal is to find a transformation matrix T such that
locality is good for as many references as possible. We use
the following notation:

. � 0: the number of distinct references.

. R�: the reference � where 1 � � � � 0.

. L� � �a�ij�: the �mÿ 1� �m layout matrix for the
m-dimensional array associated with R�.

. L� � �l�ij�: the m� n access (reference) matrix for R�.

In order to resolve conflicts arising from different refer-
ences, we assume that, prior to our analysis, the references
are ordered according to their relative importance. Without
loss of generality, let the references be ordered as
R1; � � � ; R� 0 , where R1 is the most important reference and
R� 0 is the least important. Ideally, the references should be
ordered according to their access frequencies. But, in
practice, unknown loop bounds, complex subscript expres-
sions and conditional control flows make it difficult to
estimate at compile time the number of times a reference
will be executed. Therefore, we currently use profiling to
determine the number of times each reference will be
touched in a typical execution. As explained earlier, for each
reference, we compute a weight and order the references
according to their weight values.

Let us now focus on a single reference R�. Assuming �I
and �Inext are two consecutive iteration vectors after
applying T � Qÿ1, the two data elements accessed by these
iteration vectors through R� will have spatial locality if
L�L�Q�I � L�L�Q�Inext or L�L� �qn � �0, where �qn is the last
column of Q. On expanding this constraint, we derive the
relation

a�11 a�12 � � � a�1m
a�21 a�22 � � � a�2m

..

. ..
. . .

. ..
.

a��mÿ1�1 a��mÿ1�2 � � � a��mÿ1�m

2666664

3777775�
l�11 l�12 � � � l�1n
l�21 l�22 � � � l�2n

..

. ..
. . .

. ..
.

l�m1 l�m2 � � � l�mn

266664
377775

q1n

q2n

..

.

qnn

266664
377775 �

0

0

..

.

0

266664
377775:

�1�

Setting b�ij �
Pm

k�1 a
�
ikl

�
kj for 1 � i � mÿ 1 and 1 � j � n, we

can rewrite the matrix equation above as

b�11 b�12 � � � b�1n
b�21 b�22 � � � b�2n
..
. ..

. . .
. ..

.

b��mÿ1�1 b��mÿ1�2 � � � b��mÿ1�n

26664
37775

q1n

q2n

..

.

qnn

26664
37775 �

0
0
..
.

0

2664
3775;

or, in compact form, as B� �qn � �0, where B� � �b�ij�. Then, the
determination of the last column of Q can be expressed as
the problem of finding a vector from the solution space of
this homogeneous system.4 Notice that this solution only
takes care of the reference R�. It is possible that, for some �,
where 1 � � � � 0, the equation B� �qn � �0 has no nontrivial

1326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

4. Additionally, we might want to add the constraints on �qnÿ1 in order to
exploit the spatial reuse in the second innermost loop. We do not consider
this any further in this paper.

solution, i.e., the only solution is �qn � �0. We do not consider
any such references further. Let � (� � � 0) be the number of
references for which the equation B� �qn � �0 has nontrivial
solutions. In order to obtain a transformation that satisfies
all � references, we have to set up and solve the following
system

B1 �qn � �0; B2 �qn � �0; � � � ; B� �qn � �0: �2�
Given a large number of references, this homogeneous

system may not have a nontrivial solution. In that case, we

eliminate all the equations arising due to some reference �

from consideration (i.e., from the system) and repeat the

process. Our approach is to find the largest k �1 � k � ��
such that the system

B1 �qn � �0; B2 �qn � �0; � � � ; Bk �qn � �0: �3�
has a nontrivial solution. Since the references are arranged

in decreasing order of importance, this appears to be

reasonable. Note that this is a greedy strategy and may be

suboptimal in some cases. A full discussion of profiling and

a weighted selection of the set of references to use in the

system is beyond the scope of this paper. The complete

algorithm is given in Fig. 4.

Our approach to the problem of finding Q is based on

first attempting to find solutions using simple methods and

then resorting to expensive ones only as needed. We now

describe a simple method. A solution to this homogeneous

system is of the form �qn � �x � �1 �x1 � �2 �x2 � � � � � �p �xp,

where �1; �2; � � � ; �p are integers and �x1; �x2; � � � ; �xp is a set of

linearly independent vectors.
The first case we handle is one where �qn is a unit vector,

i.e., a vector in which exactly one element is one and the

remaining are zero. For n-element vectors, �ek is defined as

the kth unit vector if its kth element is one and the

remaining elements are zero. A matrix consisting of any

permutation of unit vectors �ek is called a permutation

matrix. If �qn � �ek, we fill out the first nÿ 1 columns of Q
with some permutation of unit vectors �e1; � � � ; �ekÿ1; �ek�1; �en.

Since the inverse of a permutation matrix Q is its transpose,

this is equivalent to filling out the matrix T � Qÿ1 whose

last row is �qTn . We pick any such T that satisfies all the

dependence vectors and we are done. Note that we can add

extra constraints on �qnÿ1 in order to exploit the spatial reuse

in the second innermost loop.
Suppose now that �qn is not a unit vector. We fill out Q

such that it is of the form

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1327

Fig. 4. Algorithm for determining the transformation matrix (it is assumed that qnn 6� 0).

Q �

1 0 � � � 0 q1n

0 1 � � � 0 q2n

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 q�nÿ1�n
0 0 � � � 0 qnn

266666664

377777775:

Assuming qnn 6� 0,

T � Qÿ1 �

1 0 � � � 0 ÿ q1n

qnn

0 1 � � � 0 ÿ q2n

qnn

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 ÿ q�nÿ1�n
qnn

0 0 � � � 0 1
qnn

26666664

37777775: �4�

We have assumed that qnn 6� 0 in order to keep the
discussion simple. Note that if qnn < 0, then the vector
ÿ �qn is a solution and we use that. We will now discuss the
case qnn > 0 without loss of generality. With this assump-
tion, we are able to derive a closed form expression for
T � Qÿ1 as shown in (4). If qnn � 0, we use the completion
method described by Bik and Wijshoff [5] or by Li [27] and
construct a nonsingular Q: Note, however, that these
methods do not provide a closed form expression for T .

Recall that a solution to (3) is of the form

�qn � �q1n; q2n; � � � ; qnn�T � �1 �x1 � �2 �x2 � � � � � �p �xp; �5�
where �1; �2; � � � ; �p are integers and �x1; �x2; � � � ; �xp is a set
of linearly independent vectors. We will refer to the
collection of vectors f �x1; �x1; � � � ; �xpg as the matrix X,
where xki denotes the kth element of �xi. We denote the
components of the vector �qn as �q1n; q2n; � � � ; qkn�. Thus,
one can write qkn �

Pp
i�1 �ixki: Let D be the original

dependence matrix and let �d 2 D be a dependence vector,
where �d � �d1; d2; � � � ; dnÿ1; dn�T . After the transformation
T , using the closed form for T from (4), we have the
transformed dependence vector as

T �d � d1 ÿ q1n

qnn
dn; d2 ÿ q2n

qnn
dn; � � � ; dnÿ1 ÿ

q�nÿ1�n
qnn

dn;
dn
qnn

� �T
:

Thus, if T �d is lexicographically positive, then the transfor-
mation T is legal. We note that if dn is equal to zero, then
this resulting dependence vector is always legal, provided
that �d is legal to begin with.

Since we have assumed that qnn > 0 without loss of
generality, the transformed dependence vector can be
written as

d1qnn ÿ q1ndn
qnn

;
d2qnn ÿ q2ndn

qnn
; � � � ; dnÿ1qnn ÿ q�nÿ1�ndn

qnn
;
dn
qnn

� �T
:

Since qnn > 0, the transformed dependence is legal if

�d1qnn ÿ q1ndn; d2qnn ÿ q2ndn; � � � ; dnÿ1qnn ÿ q�nÿ1�ndn; dn�T i s

legal. Since qnk can be written is terms of �i and �xi, this

translates into conditions on �i. A sufficient condition is

that every element of the vector �q1n; q2n; � � � ; q�nÿ1�n� is � 0.

This is derived by reasoning about the level of the

dependence �d for each dependence vector. Thus, if there

is a valid transformation, the parameters �1; �2; � � � ; �p in (5)

can be chosen such that T �d is lexicographically nonnegative

[27]. A full discussion of the legality is beyond the scope of

this paper and the reader is referred to the associated

technical report [20].

4.1 Handling Temporal Locality

Note that the approach currently explained aims at

obtaining good spatial locality for as many references as

possible. In order to handle temporal locality, we can use

Wolf and Lam's method [39] to determine the references

that can be optimized for temporal locality and then try to

maximize the number of references with temporal locality.

The most important modification is made to (1). For a given

reference to have temporal locality, this equation should be

satisfied no matter what the memory layout is, that is, in

this case, we can rewrite the said equation as

l�11 l�12 � � � l�1n
l�21 l�22 � � � l�2n
..
. ..

. . .
. ..

.

l�m1 l�m2 � � � l�mn

26664
37775

q1n

q2n

..

.

qnn

26664
37775 �

0
0
..
.

0

2664
3775: �6�

In other words, we set b�ij � l�ij for all i and j. Note that this

modified form needs to be used only for the references for

which we would like to optimize temporal locality. It

should also be noted that our approach to temporal locality

as explained so far stops the algorithm when a solution with

maximum references with temporal locality is found. Of

course, it might be the case that another solution with the

same number of references with temporal locality has better

performance. A more aggressive approach can find all

possible solutions with the maximum number of references

(with temporal locality) and then select the best one among

them, using a selection criterion. The advantage of this

scheme is that (depending on the accuracy of the selection

criterion) it has a potential for finding a better solution than

our current scheme. The drawback is that it might increase

the compilation time significantly. Our experiments re-

vealed that just picking up the first solution found and

stopping the algorithm generally results in the best solution

without unduly increasing compile time.

4.2 Example

As an application of this algorithm, consider the matrix

multiplication code shown below. We assume that arrays A

and C are row-major, whereas array B is column-major.

do i = 1, N

do j = 1, N

do k = 1, N

C[i,j] += A[i,k] * B[k,j]

end do

end do

end do

The equations in our homogeneous system are

�1; 0; 0��q13; q23; q33�T � 0, �1; 0; 0��q13; q23; q33�T � 0, a n d

�0; 1; 0��q13; q23; q33�T � 0, corresponding to references to

arrays C, A, and B, respectively. A solution is
�q3 � �0; 0; 1�T . The partially filled matrix

1328 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

Q �
� � 0
� � 0
� � 1

24 35;
completed as

Q �
1 0 0
0 1 0
0 0 1

24 35;

thus,

T �
1 0 0
0 1 0
0 0 1

24 35:
Therefore, given the mentioned memory layouts, the
original loop order i-j-k (from outermost to innermost
position) is the best loop order from the locality point of
view.

Table 1 shows the loop orders detected by our algorithm
for the matrix multiplication nest under all possible
permutation-based layout combinations. The middle col-
umn gives the order for sequential (uniprocessor) execu-
tion, whereas the rightmost column gives that for parallel
(multiprocessor) execution. The order for parallel execution
differs from that for sequential execution when the outer-
most loop in the sequential order cannot be parallelized due
to either data dependence contraints [4] or data decom-
position contraints (among parallel processors) [1]. In this
case, we can interchange this loop with the closest loop that
does not carry any data dependence if it is legal to do so.
Determining the suitability of a locality-optimized sequen-
tial program for a parallel architecture is beyond the scope
of this paper and is definitely an important issue that needs
to be revisited in the future.

4.3 Partial Layout Information

A direct generalization of the approach presented in the
previous section is important for optimizing a loop nest,
assuming that some of the arrays have fixed, but possibly
different, layouts, whereas the remaining arrays have not
been assigned memory layouts yet. In such cases, an
optimizing compiler should derive the best loop transfor-
mation as well as the optimal memory layouts for the arrays
that have no assigned layout yet. This situation arises

frequently in the task of optimizing a sequence of loop nests
when we reach a loop nest in which some of the arrays
referenced have their layouts determined while the layouts
of the remaining arrays is yet to be determined (see the next
section). We handle this problem using the following two
steps: 1) Find a loop transformation that satisfies the
references to the arrays whose layouts have already been
determined and 2) taking into account this loop transforma-
tion (from the previous step), determine the optimal layouts
of the remaining arrays referenced in the nest. The first step
is handled using the approach discussed so far in this
paper. The second step is, on the other hand, an array
restructuring problem discussed in [15] and [19]. More
details on utilizing the partial layout information can be
found in [20].

5 EXPERIMENTAL RESULTS

In this section, we demonstrate how our iteration space
transformation technique improves performance on an
8-processor SGI/Cray Origin 2000 nonuniform memory
access multiprocessor. The important characteristics of our
platform are given in Table 2. Our presentation is in two
main parts. First, we evaluate the effectiveness of our
approach using a set of nine programs assuming a fixed
memory layout for all arrays. Then, we measure the
improvements in execution time with different layout
combinations.

We experimented with the following programs: ADI

from Livermore kernels; matmult, the classical i-j-k

matrix multiplication routine; cholesky from [27];
vpenta, btrix, and cholsky

5 from the Spec92/Nasa7
benchmark suite; syr2k from Blas; and, finally, fnorm and
bnorm from Odepack, a collection of solvers for the initial
value problem for systems of ordinary differential equa-
tions. We use the C versions of these programs6 and the
codes are transformed for locality by a source-to-source
translator written using the Omega library [21]. The
resulting optimized codes are then compiled by the native
optimizing compiler using the -O2 option with all low-level
optimizations. In the experiments performed on multiple
processors, for each program, we have chosen the best

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1329

TABLE 1
Loop orders for Different Layout Combinations

in the Matrix-Multiplication Code

A triple x-y-z in the first column refers to memory layouts for arrays C,
A, and B, respectively, where c means column-major and r means row-
major.

TABLE 2
Platform Used in the Experiments

5. Different from cholesky; uses two three-dimensional arrays.
6. In converting the programs from Fortran to C, we maintained the

original locality by transforming the array layouts as well. This simply
corresponds to permuting array subscript expressions.

possible data decompositions to eliminate interprocessor
communication entirely. During the optimization process,
we first tried to optimize as many references as possible for
temporal locality. In cases where we cannot achieve any
temporal locality, we tried to achieve spatial locality for the
references. In deciding the equation(s) to be eliminated (to
reach a solution), we used reference weights (as explained
earlier) obtained through profiling. In cases where we need
to decide between two references of the same weight, we
have chosen the first reference encountered during parsing.

Fig. 5 shows the performance results for the benchmark
programs. For each program, the unoptimized version
refers to the original program and the optimized version
is the code generated by our technique. Both versions are
then parallelized using the native compiler such that, for
each loop, maximum degree of parallelism is obtained. We
note that, except for cholsky, we have improvements for
all programs against the unoptimized versions over all
processor sizes. The cholsky code consists of a number of
imperfectly nested loops; thus, it is difficult to optimize by a
linear loop transformation technique such as ours. How-
ever, loop distribution [42] can substantially improve the
performance by enabling linear loop transformations, as
explained in the second part of our experimental results. In
the case of syr2k, fnorm, and bnorm, the optimized

programs do not scale well, mostly due to the use of static
scheduling [42] for nonrectangular loop bounds. Apart from
those, the results reveal that our approach is quite
successful in optimizing locality on the SGI/Cray Origin
2000 machine. It should be noted that the data sizes that we
use for the programs from Spec92/Nasa7 are higher than
the sizes used by previous researchers as the Origin 2000
has a 4 MB L2 cache that could easily capture the original
data set sizes, thereby obviating the need for locality
optimizations.

We also studied the interaction between tiling and our
optimization technique using the benchmarks in our suite.
Fig. 6 shows the results (execution times in seconds on a
single processor) for the tiled versions of the unoptimized
(unopt) and optimized (opt) codes. The tile sizes used in
the experiments are determined by the native compiler. The
results show that applying linear loop transformation
before tiling is very beneficial, indicating that linear locality
optimizations and tiling are complementary. Also, in two
codes (vpenta and btrix), the optimized untiled code
performed better than the unoptimized tiled code.

In the second part, we evaluated the effectiveness of our
approach in optimizing loop nests assuming that the
memory layouts of the arrays might be different. Let us first
focus on two programs: matmult and cholsky. Table 3a

1330 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

Fig. 5. Execution times on SFI/Cray Origin 2000 multiprocessors. The problem sizes are (in double precision elements) as follows:
ADIÐ1; 000� 1; 000� 3 arrays; matmultÐ1; 200� 1; 200 matrices; choleskyÐ1; 024� 1; 024 matrices; vpentaÐ4� 720� 720 3D arrays and
720� 720 2D arrays; btrixÐthe size parameters are set to 150; cholskyÐthe size parameters are set to 2,500; syr2kÐ1; 024� 1; 024 matrices
and b � 400; fnorm and bnormÐ6; 144� 6; 144 matrices. The programs from Spec92Nasa7, AdI, and matmult have outermost timing loops that
iterate twice. The timing loops enclose the entire program code except array initialization. The unoptimized version refers to the original program
and the optimized version is the code generated by the technique discussed in this paper.

shows the single processor execution times for all permuta-

tion-based layout combinations of matmult, which com-

putes C � AB. The legend x-y-z means that the memory

layouts for C, A, and B are x, y, and z, respectively, where

c means column-major and r means row-major (as in

Table 1). For each combination, we experimented with all

possible loop permutations. The boldfaced figures in each

row denote the minimum times (in seconds) under the

corresponding memory layout combinations. The preferred

loop order detected for each layout combination by our

algorithm is marked with a
p

. The loop order detected

using only loop transformations that work with fixed

layouts, namely, all row-major or all column-major for all

arrays, is denoted by a y. When we compare these results

with the sequential loop orders given in Table 1, it is easy to

see that, except for two cases, our technique is able to find

the optimal loop orders in every layout combination. In

those two cases mentioned, our technique results in an

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1331

Fig. 6. Performance results for the tiled versions of unoptimized and optimized codes.

TABLE 3
Execution Times (in Seconds) of matmult under All Permutation-Based Memory Layouts and Loop Orders on SGI Origin

Minimum times for each layout combination are in boldface.

execution time which is close to the minimum time. Notice
also that a loop transformation approach based on fixed
memory layouts can only optimize two cases: c-c-c and
r-r-r. Table 3b, on the other hand, shows the execution
times in eight processors. Except for the two cases, the
results are again consistent with those given in the last
column of Table 1. Notice that the set of layouts used in
Table 3a and Table 3b is not exhaustive; our approach can
also optimize the matmult code when, say, array C is
diagonal, array A is row-major, and array B is antidiagonal.

Next, we focus on the cholsky program from Spec92/
Nasa7 benchmarks. This program accesses two three-
dimensional arrays. First, we applied loop distribution to
obtain as many perfectly nested loops as possible. Then, we
conducted experiments with all four permutation-based
layout combinations. The performance results given in
Table 4 show that our technique is able to optimize the
program for all layout combinations we experimented with.
We note that the improvements are between 50 percent and
72 percent.

Finally, Fig. 7 summarizes the percentage improve-
ments obtained applying our approach to the codes in
our experimental suite. The numbers shown in this table
are the mean values over all possible (permutation-based)
layout combinations obtained using row-major and
column-major layouts only. These results demonstrate
that our approach is very successful in optimizing
scientific codes when the arrays referenced have different
memory layouts.

6 RELATED WORK

Many earlier papers dealt with iteration space transforma-
tions. Here, we focus mostly on the related work on
optimizing locality. McKinley et al. [30] presented a loop
reordering technique to optimize locality and parallelism.
In addition to loop permutations, their approach also
employs loop distribution and loop fusion. Li [27], [28]
and Wolf and Lam [39] developed frameworks which
represent the data reuse information explicitly using the
notion of reuse vectors. Wolf and Lam defined a localized
iteration space and applied unimodular loop transformations
to change the loops such that the vectors defining the
localized space will capture the reuse vector space. In
contrast, Li's approach takes into account loop bounds as
well and can represent reuse information more accurately.

Our technique is different from those mentioned above
in the sense that we can optimize a loop nest for locality,
assuming that different arrays referenced in the nest may
have distinct memory layouts, including row-major, col-
umn-major, higher dimensional equivalents of row- and
column-major, as well as any type of skewed (e.g., diagonal)
layout that can be expressed by hyperplanes. We believe
that the approaches presented in [39] and [27], [28] can be
extended to work with layouts consisting of a mix of
column-major and row-major, but extending these
approaches to skewed layouts (which might be very useful
in banded matrix codes [26]) appears to be nontrivial. In
fact, it is not clear to us how an iteration space-based
locality enhancing technique can optimize a loop nest

1332 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

TABLE 4
Execution Times (in Seconds) of the Optimized and Unoptimized Versions of cholsky and Percent Improvements:

(a) Number of Processors = 1, (b) Number of Processors = 8

Fig. 7. Percentage improvements for single processor (p = 1) and multiprocessor (p = 8) cases.

enclosing arrays of different layouts (including skewed
layouts) without using an explicit layout representation as
we have done in this paper.

Tiling, a nonlinear locality optimization technique based
on strip-mining and loop permutation, has been studied by
Carr and Kennedy [6], Coleman and McKinley [8], Lam
et al. [25], Ramanujam and Sadayappan [34], Wolf and Lam
[39], and Wolfe [41]. It is well-known that tiling can
improve cache locality for a given loop nest significantly
by exploiting the reuse in outer loop nests [30]. A significant
problem with tiling is the selection of good tile sizes.
Previous studies have shown that the performance of tiling
is very sensitive to the tile size and a wrong tile size, in fact,
can degrade performance [39], [25], [8]. In that respect, we
believe that our approach is a suitable step prior to the
application of tiling. This is because improving spatial
locality before tiling improves the intertile locality, thereby
reducing the sensitivity of tiling to the tile size; this has been
observed by Li [27], [28] as well. In addition, by increasing
the number of loops, tiling increases the runtime overhead
of nest execution. Our approach is useful in that respect,
too, as we try to place all the spatial locality in the
innermost loops and obviate the need for tiling the
outermost loops that do not carry any type of reuse.
Overall, our approach helps a compiler to apply tiling more
judiciously. Our experiments confirm the benefits of using
linear loop optimizations before tiling is applied.

More recently, there has been some work on optimizing
locality using data layout transformations. The motivation
is that some loop nests, either because they are imperfectly
nested or because the data dependences enforce some
execution order, cannot be optimized using loop transfor-
mations alone. In this context, Leung and Zahorjan [26] and
O'Boyle and Knijnenburg [31] present array restructuring
algorithms for optimizing locality. Although these techni-
ques may be effective for some cases where locality
enhancing loop transformations fail, the question of how
to mitigate the global effect of a layout transformation
remains to be solved. We believe that, for the global layout
optimization problem, the loop transformation theory
should be augmented so that the loop nests accessing a
number of arrays with different layouts can be optimized.
Leung and Zahorjan [26] and Kandemir et al. [15] handle
multiple loop nests by enclosing them first with an
imaginary outermost loop that iterates only once. The
problem is that if there are conflicting references requiring
different layouts in different loop nests, then the locality
may not be exploited for all of them. Of course, it is possible
to assign weights to references and consider these weights
in selecting layouts. However, this scheme in general may
lead to sacrificing locality for some references. The point
here is that using loop transformations in conjunction with
data transformations may enable the compiler to solve more
layout conflicts without sacrificing too much locality.
Another problem with the approaches based on pure data
transformations is that they cannot optimize temporal
locality.

Anderson et al. [2] propose a transformation technique
that makes data elements accessed by the same processor
contiguous in the shared address space. Their method is

mainly for shared-memory parallel architectures. They use
only permutations (of array dimensions) and strip-mining
for possible data transformations. Our work can be
extended to transform a given loop nest assuming that
some of the arrays accessed have blocked memory layouts.

There have been a few attempts at a unified framework
for locality optimizations. Cierniak and Li [7] and Kandemir
et al. [18], [16], [17], [19] propose algorithms for optimizing
cache locality using a blend of loop and data transforma-
tions. Unfortunately, since the solution space for combined
loop and data transformations is very large, they make
some simplifying assumptions. For example, Cierniak and
Li [7] assume that the data transformations are restricted to
be permutations; the loop transformation matrices can
contain only ones and zeros. In [18], [19], on the other
hand, only data transformations are restricted. In contrast,
the technique presented in this paper can work with any
type of memory layout that can be expressed by hyper-
planes and can derive general nonsingular [35], [36]
iteration space transformation matrices. We believe that
our algorithm can be used as part of a global locality
optimization framework that employs both loop and data
transformations.

Kodukula et al. [24] have proposed a new form of tiling,
called data shackling, using which imperfectly nested loops
can also be handled successfully. Although it is ultimately a
modification of the iteration space, data-shackling is a data-
driven approach that can be successful in some cases where
the traditional tiling may fail. Kodukula et al. [24] do not
block the data in memory and whether or not such a data
blocking will further enhance the performance is an open
research issue, just as the precise interaction between linear
layout transformations and iteration space tiling is. As with
traditional tiling, we view this work as being complemen-
tary to ours.

Rivera and Tseng [37] have observed that conflict misses
severely hinder the performance that would otherwise be
obtained from exploiting spatial locality. They offer pad-
ding techniques that can improve the performance of
sequential as well as parallel codes. Our work is orthogonal
to their work in a sense. After a good locality is obtained
using our approach, the arrays can be padded to prevent
the devastating effect of potential conflict misses.

Transformations have been used for purposes other than
improving locality. For example, Eggers and Jeremiassen
[9], [13] use a number of data transformation techniques to
eliminate false sharing on shared memory architectures and
Ju and Dietz [14] use data transformations to reduce cache
coherence overhead on shared-memory parallel machines.
Wolf and Lam [40], Banerjee [4], Anderson et al. [2], and
Ramanujam and Sadayappan [33], among others, use
transformations for enhancing parallelism in loop nests.

There are a number of published techniques oriented
toward processor locality (i.e., ensuring that an access by a
processor can be satisfied locally without the need for
interprocessor communication; this is important for dis-
tributed-memory machines) rather than the cache locality
[29], [3], [10], [38], [22]. For example, on distributed-
memory NUMA (nonuniform memory access) machines,
such as SGI/Cray Origin 2000 or HP/Convex Exemplar,

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1333

careful distribution of data across processor memories may
boost performance [38]. In order to obtain good processor
locality, modern NUMA machines either use large cluster
caches (as in HP/Convex Exemplar) or use dynamic page
migration techniques (as in SGI/Cray Origin 2000) to
mitigate the negative impact of an initial poor data
distribution. An important question is whether having
good processor locality obviates the need for techniques for
improving cache locality and vice versa. Our experience
shows that optimizing for cache locality influences proces-
sor locality significantly. The reason is that if we have good
spatial locality in the innermost loop, a processor that starts
to perform unit-stride accesses to the global data will cause
the relevant parts of that data to transfer to its local memory
(either through dynamic page migration or by taking a copy
of it into the cluster cache). This means that, after a certain
number of nonlocal accesses, most of the remaining
accesses will be local. Our position is that optimizing cache
locality is necessary for both uniprocessors and shared-
memory NUMA architectures whether processor locality is
essential or not.

7 CONCLUSIONS

In this paper, we have presented a technique to improve
data locality in loop nests. Our technique uses explicit
layout information available to our analysis in the form of
layout constraint matrices. This information allows our
technique to optimize loop nests in which each array may
have a distinct memory layout. We believe that such a
capability is necessary for global locality optimization
techniques that optimize the loop nests in a program by
applying an appropriate combination of loop and data
transformations. This paper also discusses how our
technique can be made to work with partial layout
information as well. The experimental results validate the
effectiveness of our approach in optimizing a given loop
nest accessing arrays of different memory layouts. We see
our work as a first step in integrating loop and data
transformations fully.

We are currently looking at the interaction between our
solution and tiling. Ongoing work includes extensively
evaluating the relative performances of tiled code versus
the resultant code from our approach and comparing our
approach to data-centric tiling [24]. As mentioned earlier in
the paper, our approach is most useful in an optimization
framework that uses both loop and data transformations to
optimize cache locality. Obviously, an important issue in a
such a framework is the handling of procedure calls; we are
working on this issue as well. In addition, our paper
considers only linear memory layout transformations. It is
worthwhile to investigate the effectiveness of blocked data
layoutsÐin which the elements accessed by a tile are stored
contiguously in memoryÐin conjunction with tiling in
improving the cache performance further.

ACKNOWLEDGMENTS

Mahmut Kandemir and Alok Choudhary were sup-
ported in part by US National Science Foundation (NSF)
Young Investigator Award CCR-9357840 and NSF grant

CCR-9509143. The work of J. Ramanujam is supported in

part by NSF grant CCR-0073800 and by NSF Young

Investigator Award CCR-9457768. Prithviraj Banerjee is

supported in part by the NSF under grant CCR-9526325 and

in part by the US Defense Advanced Research Projects

Agency under contract F30602-98-2-0144. A preliminary

version of this paper was presented at the Workshop on

Languages and Compilers for Parallel Computing, Chapel

Hill, North Carolina, August 1998.

REFERENCES

[1] J. Anderson, ªAutomatic Computation and Data Decomposition
for Multiprocessors,º PhD dissertation, Stanford Univ., Mar. 1997.
Also available as Technical Report CSL-TR-97-179, Computer
Systems Laboratory, Stanford Univ.

[2] J. Anderson, S. Amarasinghe, and M. Lam, ªData and Computa-
tion Transformations for Multiprocessors,º Proc. Fifth ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming,
July 1995.

[3] E. Ayguade, J. Garcia, M. Girones, M.L. Grande, and J. Labarta, ªA
Research Tool for Automatic Data Distribution in HPF,º Scientific
Programming, vol. 6, no. 1, pp. 73-95, 1997.

[4] U. Banerjee, ªUnimodular Transformations of Double Loops,º
Proc. Advances in Languages and Compilers for Parallel Processing, A.
Nicolau et al., eds., MIT Press, 1991.

[5] A. Bik and H. Wijshoff, ªOn a Completion Method for
Unimodular Matrices,º Technical Report 94-14, Dept. of Compu-
ter Science, Leiden Univ., 1994.

[6] S. Carr and K. Kennedy, ªImproving the Ratio of Memory
Operations to Floating-Point Operations in Loops,º ACM Trans.
Programming Languages and Systems, vol. 16, no. 6, pp. 1768-1810,
Nov. 1994.

[7] M. Cierniak and W. Li, ªUnifying Data and Control Transforma-
tions for Distributed Shared Memory Machines,º Proc. SIGPLAN
Conf. Programming Language Design and Implementation, June 1995.

[8] S. Coleman and K. McKinley, ªTile Size Selection Using Cache
Organization and Data Layout,º Proc. SIGPLAN Conf. Program-
ming Language Design and Implementation, June 1995.

[9] S. Eggers and T. Jeremiassen, ªEliminating False Sharing,º Proc.
1991 Int'l Conf. Parallel Processing (ICPP '91), pp. 377-381, Aug.
1991.

[10] M. Gupta and P. Banerjee, ªDemonstration of Automatic Data
Partitioning Techniques for Parallelizing Compilers on Multi-
computers,º IEEE Trans. Parallel and Distributed Systems, vol. 3,
no. 2, pp. 179-193, Mar. 1992.

[11] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1995.

[12] C.-H. Huang and P. Sadayappan, ªCommunication-Free Partition-
ing of Nested Loops,º J. Parallel and Distributed Computing, vol. 19,
pp. 90-102, 1993.

[13] T. Jeremiassen and S. Eggers, ªReducing False Sharing on Shared
Memory Multiprocessors through Compile Time Data Transfor-
mations,º Proc. SIGPLAN Symp. Principles and Practices of Parallel
Programming, pp. 179-188, July 1995.

[14] Y. Ju and H. Dietz, ªReduction of Cache Coherence Overhead by
Compiler Data Layout and Loop Transformation,º Languages and
Compilers for Parallel Computing, U. Banerjee et al., eds., pp. 344-
358, Springer, 1992.

[15] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J.
Ramanujam, ªA Linear Algebra Framework for Automatic
Determination of Optimal Data Layouts,º IEEE Trans. Parallel
and Distributed Systems, vol. 10, no. 2, pp. 115-135, Feb. 1999.

[16] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, ªA
Matrix-Based Approach to the Global Locality Optimization
Problem,º Proc. Int'l Conf. Parallel Architecture and Compiler
Techniques (PACT '98), Oct. 1998.

[17] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee,
ªImproving Locality Using Loop and Data Transformations in an
Integrated Approach,º Proc. MICRO-31, Dec. 1998.

[18] M. Kandemir, J. Ramanujam, and A. Choudhary, ªCompiler
Algorithms for Optimizing Locality and Parallelism on Shared
and Distributed Memory Machines,º Proc. Int'l Conf. Parallel

1334 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

Architecture and Compiler Techniques (PACT '97), pp. 236-247, Nov.
1997.

[19] M. Kandemir, J. Ramanujam, and A. Choudhary, ªImproving
Cache Locality by a Combination of Loop and Data Transforma-
tions,º IEEE Trans. Computers, vol. 48, no. 2, pp. 159-167, Feb. 1999.
A preliminary version appears in Proc. 11th ACM Int'l Conf.
Supercomputing (ICS '97), pp. 269-276, July 1997.

[20] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee, ªA
Locality Optimization Algorithm Based on Explicit Representa-
tion of Data Layouts,º Technical Report CSE-00-008, Dept. of
Computer Science and Eng., Pennsylvania State Univ., May 2000.

[21] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D.
Wonnacott, ªThe Omega Library Interface Guide,º Technical
Report CS-TR-3445, Computer Science Dept., Univ. of Maryland,
College Park, Mar. 1995.

[22] K. Kennedy and U. Kremer, ªAutomatic Data Layout for High
Performance Fortran,º Proc. Supercomputing '95, Dec. 1995.

[23] I. Kodukula and K. Pingali, ªTransformations of Imperfectly
Nested Loops,º Proc. Supercomputing 96, Nov. 1996.

[24] I. Kodukula, N. Ahmed, and K. Pingali, ªData-Centric Multi-Level
Blocking,º Proc. Programming Language Design and Implementation
(PLDI '97), June 1997.

[25] M. Lam, E. Rothberg, and M. Wolf, ªThe Cache Performance and
Optimizations of Blocked Algorithms,º Proc. Fourth Int'l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS '91), 1991.

[26] S.-T. Leung and J. Zahorjan, ªOptimizing Data Locality by Array
Restructuring,º Technical Report TR 95-09-01, Dept. of Computer
Science and Eng., Univ. of Washington, Sept. 1995.

[27] W. Li, ªCompiling for NUMA Parallel Machines,º PhD thesis,
Dept. of Computer Science, Cornell Univ., 1993.

[28] W. Li, ªCompiler Cache Optimizations for Banded Matrix
Problems,º Proc. Ninth ACM Int'l Conf. Supercomputing (ICS '95),
pp. 21-30, July 1995.

[29] J. Li and M. Chen, ªCompiling Communication Efficient Programs
for Massively Parallel Machines,º J. Parallel and Distributed
Computers, vol. 2, no. 3, pp. 361-376, 1991.

[30] K. McKinley, S. Carr, and C.W. Tseng, ªImproving Data Locality
with Loop Transformations,º ACM Trans. Programming Languages
and Systems, vol. 18, no. 4, pp. 424-453, July 1996.

[31] M. O'Boyle and P. Knijnenburg, ªNon-Singular Data Transforma-
tions: Definition, Validity, Applications,º Proc. Sixth Workshop
Compilers for Parallel Computers (CPC '96), pp. 287-297, 1996.

[32] M. O'Boyle and P. Knijnenburg, ªIntegrating Loop and Data
Transformations for Global Optimisation,º Proc. Int'l Conf. Parallel
Architectures and Compilation Techniques (PACT '98), Oct. 1998.

[33] J. Ramanujam and P. Sadayappan, ªCompile-Time Techniques for
Data Distribution in Distributed Memory Machines,º IEEE Trans.
Parallel and Distributed Systems, vol. 2, no. 4, pp. 472-482, Oct. 1991.

[34] J. Ramanujam and P. Sadayappan, ªTiling Multidimensional
Iteration Spaces for Multicomputers,º J. Parallel and Distributed
Computing, vol. 16, no. 2, pp. 108-120, Oct. 1992.

[35] J. Ramanujam, ªNon-Unimodular Transformations of Nested
Loops,º Proc. Supercomputing '92, pp. 214-223, Nov. 1992.

[36] J. Ramanujam, ªBeyond Unimodular Transformations,º J. Super-
computing, vol. 9, no. 4, pp. 365-389, 1995.

[37] G. Rivera and C.-W. Tseng, ªData Transformations for Eliminat-
ing Conflict Misses,º Proc. SIGPLAN Conf. Programming Language
Design and Implementation, June 1998.

[38] S. Tandri and T. Abdelrahman, ªAutomatic Partitioning of Data
and Computations on Scalable Shared Memory Multiprocessors,º
Proc. 1997 Int'l Conf. Parallel Processing (ICPP '97), pp. 64-73, Aug.
1997.

[39] M. Wolf and M. Lam, ªA Data Locality Optimizing Algorithm,º
Proc. SIGPLAN Conf. Programming Language Design and Implemen-
tation, pp. 30-44, June 1991.

[40] M. Wolf and M. Lam, ªA Loop Transformation Theory and an
Algorithm to Maximize Parallelism,º IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 4, Oct. 1991.

[41] M. Wolfe, ªMore Iteration Space Tiling,º Proc. Supercomputing '89,
pp. 655-664, Nov. 1989.

[42] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison Wesley, 1996.

Mahmut Kandemir received the BSc and
MSc degrees in control and computer en-
gineering from Istanbul Technical University,
Istanbul, Turkey, in 1988 and 1992, respec-
tively. He received the PhD degree from
Syracuse University, Syracuse, New York, in
electrical engineering and computer science
in 1999. He has been an assistant professor
in the Computer Science and Engineering
Department at Pennsylvania State University

since August 1999. His main research interests are optimizing
compilers, I/O intensive applications, and power-aware computing.
He is a member of the IEEE and the ACM.

J. Ramanujam (Ram) received the BTech
degree in electrical engineering from the Indian
Institute of Technology, Madras, India, in 1983,
and the MS and PhD degrees in computer
science from Ohio State University, Columbus,
Ohio, in 1987 and 1990, respectively. He is
currently an associate professor of electrical and
computer engineering at Louisiana State Uni-
versity, Baton Rouge, Louisiana. His research
interests are in embedded systems, compilers

for high-performance computer systems, software optimizations for low-
power computing, high-level hardware synthesis, parallel architectures
and algorithms. He has published more than 90 papers in refereed
journals and conferences in these areas in addition to several book
chapters. Dr. Ramanujam received the US National Science Founda-
tion's Young Investigator Award in 1994. He has served on the program
committees of several conferences and workshops, such as the ACM
SIGPLAN Workshop on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES 2001), the Workshop on Power Management
for Real-Time and Embedded Systems, IEEE Real-Time Applications
Symposium, 2001, the International Conference on Parallel Architec-
tures and Compilation Techniques (PACT 2000), the International
Symposium on High Performance Computing (HiPC '99) and the
1997 International Conference on Parallel Processing. He is
coorganizing a workshop on compilers and operating systems for
low power to be held in conjunction with PACT 2001 in October
2001. He coorganized the first workshop in this series as part of
PACT 2000 in October 2000. He has taught tutorials on compilers
for high-performance computers at several conferences such as the
International Conference on Parallel Processing (1998, 1996),
Supercomputing '94, Scalable High-Performance Computing Con-
ference (SHPCC '94), and the International Symposium on
Computer Architecture (1993 and 1994). He has been a frequent
reviewer for several journals and conferences. He is a member of
the IEEE.

KANDEMIR ET AL.: A LAYOUT-CONSCIOUS ITERATION SPACE TRANSFORMATION TECHNIQUE 1335

Alok Choudhary received the PhD degree from
the University of Illinois, Urbana-Champaign, in
electrical and computer engineering in 1989, the
MS degree from the University of Massachu-
setts, Amherst, in 1986, and the BE (honors)
degree from the Birla Institute of Technology and
Science, Pilani, India, in 1982. He is a professor
of electrical and computer engineering at North-
western University. From 1993 to 1996, he was
an associate professor in the Electrical and

Computer Engineering Department at Syracuse University and, from
1989 to 1993, he was an assistant professor in the same department.
He worked in industry for computer consultants prior to 1984. He
received the US National Science Foundation's Young Investigator
Award in 1993 (1993-1999). He has also received an IEEE Engineering
Foundation award, an IBM Faculty Development award, and an Intel
Research Council award. His main research interests are in high-
performance computing and communication systems and their applica-
tions in many domains, including multimedia systems, information
processing, and scientific computing. In particular, his interests lie in the
design and evaluation of architectures and software systems (from
system software such as runtime systems, compilers, and programming
languages to applications), high-performance servers, high-perfor-
mance databases, and input-output. He has published more than 130
papers in various journals and conferences in the above areas. He has
also written a book and several book chapters on the above topics. His
research has been sponsored by (past and present) DARPA, NSF,
NASA, AFOSR, ONR, DOE, Intel, IBM, and TI.

Dr. Choudhary served as the conference cochair for the
International Conference on Parallel Processing and as a program
chair and general chair for the International Workshop on I/O
Systems in Parallel and Distributed Systems. He also served as
program vice-chair for HiPC 1999. He is an editor of the Journal of
Parallel and Distributed Computing and an associate editor of the
IEEE Transactions on Parallel and Distributed Systems. He has also
served as a guest editor for Computer and IEEE Parallel and
Distributed Technology. He serves (or has served) on the program
committee of many International conferences in architecture, parallel
computing, multimedia systems, performance evaluation, distributed
computing, etc. He is a senior member of the IEEE and a member
of the IEEE Computer Society and the ACM. He also serves on the
High-Performance Fortran Forum, a forum of academic, industry,
and government labs working on standardizing programming
languages for portable programming on parallel computers.

Prithviraj Banerjee received the BTech degree
in electronics and electrical engineering from the
Indian Institute of Technology, Kharagpur, India,
in August 1981, and the MS and PhD degrees in
electrical engineering from the University of
Illinois at Urbana-Champaign in December
1982 and December 1984, respectively. He is
currently the Walter P. Murphy Professor and
Chairman of the Department of Electrical and
Computer Engineering and Director of the

Center for Parallel and Distributed Computing at Northwestern
University in Evanston, Illinois. Prior to that he was the director of the
Computational Science and Engineering Program and professor of
electrical and computer engineering and the Coordinated Science
Laboratory at the University of Illinois at Urbana-Champaign. His
research interests are in parallel algorithms for VLSI design automation,
distributed memory parallel vompilers, and vompilers for adaptive
computing and he is the author of more than 300 papers in these
areas. He leads the PARADIGM compiler project for compiling programs
for distributed memory multicomputers, the ProperCAD project for
portable parallel VLSI CAD applications, the MATCH project on a
MATLAB compilation environment for adaptive computing, and the
PACT project on power aware compilation and architectural techniques.
He is also the author of the book Parallel Algorithms for VLSI CAD
(Prentice Hall, 1994). He has supervised 27 PhD and 30 MS student
theses so far.

Dr. Banerjee has received numerous awards and honors during his
career. He received the IEEE Taylor L. Booth Education Award from the
IEEE Computer Society in 2001. He became a fellow of the ACM in
2000. He was the recipient of the 1996 Frederick Emmons Terman
Award of ASEE's Electrical Engineering Division sponsored by Hewlett-
Packard. He was elected to the fellow grade of IEEE in 1995. He
received the University Scholar award from the University of Illinois in
1993, the Senior Xerox Research Award in 1992, the IEEE senior
membership in 1990, the US National Science Foundation's Presidential
Young Investigators' Award in 1987, the IBM Young Faculty Develop-
ment Award in 1986, and the President of India Gold Medal from the
Indian Institute of Technology, Kharagpur, in 1981. He served as the
program chair of the High-Performance Computing Conference in 1999
and program chair of the International Conference on Parallel Proces-
sing for 1995. He served as general chairman of the International
Conference on Parallel and Distributed Computing Systems in 1997 and
the International Workshop on Hardware Fault Tolerance in Multi-
processors, 1989. He served on the program and organizing committees
of the 1988, 1989, 1993, and 1996 Fault-Tolerant Computing Symposia,
the 1992, 1994, 1995, 1996, and 1997 International Parallel Processing
Symposia, the 1991, 1992, 1994, and 1998 International Symposia on
Computer Architecture, the 1998 International Conference on Architec-
tural Support of Programming Languages and Operating Systems, the
1990, 1993, 1994, 1995, 1996, 1997, and 1998 International Symposia
on VLSI Design, the 1994, 1995, 1996, 1997, 1998, and 2000
International Conferences on Parallel Processing, and the 1995, 1996,
and 1997 International Conferenced on High-Performance Computing.
He is an associate editor of the IEEE Transactions on Parallel and
Distributed Systems and IEEE Transactions on Computers. In the past,
he served as an associate editor of the Journal of Parallel and
Distributed Computing, the IEEE Transactions on VLSI Systems, and
the Journal of Circuits, Systems, and Computers. He has been a
consultant to many companies and was on the Technical Advisory
Board of Ambit Design Systems.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

1336 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 12, DECEMBER 2001

