
On reducing false sharing while improving locality on shared memory multiprocessors

Mahmut Kandemir� Alok Choudhary� J. Ramanujamy Prith Banerjee�

Abstract

The performance of applications on large shared-memory multiprocessors
with coherent caches depends on the interaction between the granularity of
data sharing, the size of the coherence unit and the spatial locality exhibited
by the applications, in addition to the amount of parallelism in the applica-
tions. Large coherence units are helpful in exploiting spatial locality, but
worsen the effects of false sharing. We present a mathematical framework
that allows a clean description of the relationship between spatial locality
and false sharing. We first show how to identify a severe form of multiple-
writer false sharing and then demonstrate the importance of the interac-
tion between optimization techniques aimed at enhancing locality and the
techniques oriented toward reducing false sharing. Given the conflicting
requirements, a compiler based approach to this problem holds promise.
We investigate the use of data transformations in addressing spatial locality
and false sharing, and derives an approach that balances the impact of the
two. Experimental results demonstrate that such a balanced approach out-
performs those approaches that consider only one of these two issues. On
an eight-processor SGI Origin2000 system, our approach brings an addi-
tional9% improvement over a powerful locality optimization technique that
uses both loop and data transformations. Also, our approach obtains an ad-
ditional 19% improvement over an optimization technique that is oriented
specifically toward reducing false sharing. Our study also reveals that in
addition to reducing synchronization costs and improving memory subsys-
tem performance, obtaining large granularity parallelism also helps these
two optimization techniques, namely, enhancing locality and reducing false
sharing, be compatible.

1 Introduction

With the increasing disparity between processor and memory speeds,
exploiting the memory hierarchy characteristics of modern machines
has become extremely important. In recent years, there has been
much work on improving data locality of programs for uniproces-
sors [32, 24, 25, 26, 27, 23, 21, 16]. However, there is another crit-
ical issue to be considered in the case of shared-memory parallel
machines, namely,false sharing. False sharing arises when two or
more processors that are executing parallel parts of a program ac-
cess distinct data elements in the same coherence unit [9, 13]. Here,
some form of synchronization is required between the two proces-
sors even though there is no data dependence between the computa-
tions on the processors. The negative impact of false sharing on the
memory performance can be devastating. Eggers and Jeremiassen
[9] show that a number of programs—that exhibit good spatial lo-
cality on uniprocessors—perform very poorly on multiprocessors.

The interaction between locality and false sharing on shared-
memory parallel machines is quite well known. It is known that
with smaller cache lines, improving spatial locality also results in a
reduction of false sharing. But at the page level (where the coher-
ence unit is much larger), just targeting spatial locality may not be
sufficient [11]. In this paper, we present a mathematical framework

�Center for Parallel and Distributed Computing, Department of Electrical and
Computer Engineering, Northwestern University, Evanston, IL 60208. e-mail:
fmtk,choudhar,banerjeeg@ece.nwu.edu

yDepartment of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, LA 70803. e-mail:jxr@ee.lsu.edu

that allows us to succinctly represent and study the interaction be-
tween the two. More importantly, for array-based regular floating-
point scientific codes, this framework enables the derivation ofdata
transformationsto address the conflicting effects of techniques that
improve locality and the techniques that reduce false sharing.

False sharing can be studied at the level of a cache line as well
as at the memory page level; our approach does not distinguish be-
tween these two types of false sharing. Instead, our interest is in
identifying those cases in which optimizations aimed at enhancing
locality and optimizations for reducing false-sharing do not con-
flict with each other. For this purpose, we first represent the poten-
tial multiple-writer false sharing in a given loop nest in the form
of vectors. Although this representation is approximate, it gives
the compiler some idea as to which references may cause asevere
form of multiple-writerfalse sharing if not addressed correctly. We
then show how locality optimizations and loop parallelization tech-
niques affect false sharing. In order to do that, we represent the
available locality in a loop nest and the available parallelism op-
tions also in mathematical terms. Then, we present an analysis
of the cases in which locality optimizations and false sharing op-
timizations conflict with each other and the cases where they do
not. We believe that an analysis of this kind is very useful for com-
piler writers as well as for the end-users of shared-memory parallel
architectures. Our results emphasize the importance of obtaining
large-granularity (outermost loop) parallelism. Experimental re-
sults on an eight-processor SGI Origin2000 system demonstrate
significant improvements. While the importance of outermost loop
parallelism in handling other problems has been shown by previous
researchers, we show that obtaining outermost loop parallelism is
also important to ensure that enhancing locality and reducing false
sharing are not incompatible.

The remainder of this paper is organized as follows. Section 2
presents the relevant background and shows how a specific form
of false sharing can be represented in a mathematical framework.
Section 3 discusses the impact of loop and data transformations in
reducing false sharing and in optimizing locality. In Section 4, we
present our heuristic to obtain a balance between enhancing locality
and reducing false sharing. Section 5 discusses preliminary experi-
mental results. In Section 6, we discuss related work and conclude
in Section 7 with a summary and a brief outline of ongoing and
planned research.

2 Preliminaries

Temporal reuseis said to occur when a reference in a loop nest ac-
cesses the same data in different iterations. Similarly, if a reference
accesses nearby data, i.e., data residing in the same coherence unit,
in different iterations, we say thatspatial reuseoccurs. It should be
emphasized that the most useful forms of reuse (temporal or spa-
tial) are those exhibited by theinnermostloop. If the innermost
loop exhibits temporal reuse for a reference, then the accessed ele-
ment can be placed in a register for the entire duration of the inner-
most loop. Similarly, spatial reuse is most beneficial when it occurs
in the innermost loop, since in that case it may enable unit-stride
accesses, leading to repeated accesses to the same coherence unit.

False sharingoccurs when two or more processors access (and

at least one of themwrites) different data elements in the same co-
herence unit (cache line, memory page etc.) [13, 30, 9]. In this
section we show how to identify a severe form of false sharing that
occurs when an array dimension that exhibitsspatial reuseis ac-
cessed bymultiple writers, i.e., multiple processors that write to
data in the same coherence unit. For example, this form of false
sharing might occur when each processor updates a different row
of a two-dimensional array stored in column-major order. Note
that, depending on the array and the size of the coherence units,
multiple-writer false sharing can also occur if each processor up-
dates a different column of the said array; however, this type of
false sharing occurs only at the boundaries of columns and is not
as severe. Now, we introduce two key concepts, namely, theparal-
lelism vectorand thereuse summary vector.Note that in this paper,
we sometimes write a column vector�x as(x1; :::; xn)T when there
is no confusion.

Theparallelism vectorindicates which loops in a loop nestwill
beexecuted in parallel. These loops are asubsetof the loops that
may beexecuted in parallel; this parallelism information is typi-
cally obtained through data dependence analysis [34]. Assuming
a loop nest of depthn; an elementpi of the parallelism vector
�p = (p1; :::; pn)

T is one if the iterations of the corresponding loop
will be executed in parallel, otherwisepi is zero.

Consider an access to anm-dimensional array in a loop nest
of depthn. We assume that the array subscript functions and loop
bounds areaffine functionsof enclosing loop indices and symbolic
loop-independent parameters. Let�I denote theiteration vector
(consisting of loop indices starting from the outermost loop to the
innermost). Under these assumptions, each array reference is rep-
resented asL�I + �o; where them� n matrixL is called theaccess
(or reference) matrix [32] and them-element vector�o is referred
to as theoffset vector.The data reuse theory introduced by Wolf
and Lam [32] and later refined by Li [24] can be used to identify
the types of reuses in a given loop nest. Two iterations represented
by vectors�I1 and �I2 (where �I1 precedes�I2 in sequential execu-
tion) access the same data element using the reference represented
asL�I + �o if L�I1 + �o = L�I2 + �o: In this case, thetemporal reuse
vectoris defined as�r = �I2 � �I1; and it can be computed from the
relationL�r = �0: Assumingcolumn-majormemory layouts, spatial
reuse can occur if the accesses are made to the same column. We
can compute thespatial reuse vector�s from the equationLs�s = �0;
whereLs is L with all elements of the first row replaced by zero
[32, 24].

A collection of individual reuse vectors is referred to as areuse
matrix. We now focus on spatial reuse vectors. We call the ma-
trix built from these vectors thespatial reuse matrix. For a given
reuse vector, the first non-zero element from the top (also called
the leading element) corresponds to the loop thatcarries the asso-
ciated reuse. Areuse summary vectorfor a given reuse vector is
a vector in which all the elements are zero except the element that
corresponds to the loop carrying the reuse (in the associated reuse
vector); this element is set to one. Thereuse summary matrixand
thespatial reuse summary matrixare defined analogously. Figure 1
shows an example loop nest and illustrates these concepts. In this
paper we focus onself-reuses(i.e., reuses that originate from in-
dividual references), but our approach can be extended to include
group-reuses[32] as well. Unless stated otherwise, all the memory
layouts are assumed to becolumn-major.

2.1 Identifying false sharing due to an LHS reference

We begin by noting that a common cause of false sharing is the par-
allelization of a loop that carries spatial reuse [24]. For example, in
Figure 2(a) parallelizing thei-loop can cause false sharing of array
U: The reason is that the spatial reuse for the referenceU(i; j) is
carried by thei-loop, and parallelizing this loop can cause multiple

processors to share (i.e., write to) each column of this array. Note
that false sharing occurs as a result of the interplay between mem-
ory layouts, array subscript functions, coherence unit size, sharing
granularity, and parallelization decisions.

We now express the condition for the existence of this form of
multiple-writer false sharing in mathematical terms. Let�s0 be a
spatial reuse summary vector for a given LHS reference in a nest
and let�p be the parallelism vector for the nest. A severe form of
multiple-writer false sharing can occur if�pT �s0 6= 0; i.e., if the loop
carrying the spatial reuse is parallelized. Considering all the LHS
references in the nest, multiple-writer false sharing can occur if
�pTS0 6= �0;whereS0 is the spatial reuse summary matrix comprised
of the reuse summary vectors for the LHS references. We define the
false sharing vector�f as

�pTS0 = �fT : (1)

The non-zero entries in the false sharing vector�f identify the ref-
erences that can cause false sharing. Based on previous work in
compilers, one can determine the desired values for�pT ; S0 and
�fT : It is well known that a desired form of�pT has non-zero ele-
ments only at the beginning of it [34]. In effect, many compilers
attempt to obtain a single1 in the leftmost position which corre-
sponds to parallelizing only theoutermostloop in the nest. Previ-
ous work on optimizing locality [32, 25, 24] tells us that for each
�s0 2 S0, the index of the first non-zero element (starting with1
corresponding to the outermost loop going ton for the innermost
loop in ann-nested loop) should be as high as possible. This will
ensure that inner loops carry the reuse. In the ideal case, we would
prefer the leading element to be the last element in each�s0; i.e.,
�s0 = (0; :::; 0; 1)T . This corresponds to the case where the spatial
reuse is carried by theinnermostloop. In practice, it may not be
possible to obtain this ideal reuse summary vector for every refer-
ence because of conflicts. Also, as we have hinted above, the ideal
false sharing vector should be a zero vector, and the likelihood of
multiple-writer false sharing increases with the number of ones in
the false sharing vector.

Our focus is on false sharing that is due to one reference per ar-
ray (self-variable false sharing [6]). It is relatively straightforward
to extend the approach presented here to address false sharing due
to multiple references to thesamearray. In this case we need to
consider every pair of references to an array that can cause false
sharing, and fork such reference pairs the resulting false sharing
vector havek elements. On the other hand, false sharing due to dif-
ferent arrays (multiple-variable false sharing [6]) is in general not
severe and can be eliminated by the alignment of array variables
on coherence unit boundaries; therefore, it is not investigated in
this study. Also, we focus mainly on multiple-writer false sharing.
Note that although both reader-writer false sharing and multiple-
writer false sharing can be avoided on machines that employ weak
memory consistency models, it is always better for compiler to do
it, since there is cache coherence overhead at runtime. Our ap-
proach can be extended to deal with reader-writer false sharing as
well.

2.2 Examples

We note that if we can optimize an LHS reference (which may
cause false sharing) such that only the innermost loop carries the
spatial reuse for it, then the possibility of multiple-writer false shar-
ing can be reduced if the compiler can derive outermost parallelism
after the locality optimization. This strategy works fine as long as
outermost loop parallelism is available. If this is not the case, then
the interplay between locality, parallelism and false sharing merits
further study.

Let us now consider the code in Figure 2(a) and show how the
false sharing vector is computed. Assume that the nest shown is

do i = 1, N
do j = 1, N
do k = 1, N
U(i+j,j,i) = V(i,j+k,i+j+1)

end do
end do

end do

ArrayU : Lu =

1 1 0
0 1 0
1 0 0

!
; �ou =

0
0
0

!
) �ru =

0
0
1

!
; �su = �s0u =

0
0
1

!

Array V : Lv =

1 0 0
0 1 1
1 1 0

!
; �ov =

0
0
1

!
) �sv =

1

�1
1

!
; �s0v =

1
0
0

!

S = (�su; �sv) =

0 1
0 �1
1 1

!
;S0 = (�s0u; �s

0

v) =

0 1
0 0
1 0

!
;

Figure 1:An example loop nest and the concepts used in this paper. Notice that the reference to arrayV doesnot have temporal reuse.Lu andLv are the
access matrices and�ou and�ov are the offset vectors;�ru is the temporal reuse vector,�su and�sv are the spatial reuse vectors;�s0u and�s0v denote the spatial
reuse summary vectors. And,S is the spatial reuse matrix, andS0 is the spatial reuse summary matrix.

do i = 1, N
do j = 1, N
do k = 1, N
U(i,j)=...
V(i,k)=...
W(k,j)=...

end do
end do

end do
(a)

do i = 1, N
do j = 1, N
do k = 1, N
U(k,i,j+k)=...

end do
end do

end do

(b)

do i = 1, N
do j = 1, N
U(i,j)=...
V(j,i)=...
W(i+j,j)= ...
X(i,i+j)= ...

end do
end do

(c)

do i = 1, N
do j = 1, N
do k = 1, N
U(i,j,k)=...
V(i+j,i+k,j+k)=...

end do
end do

end do

(d)

do i = 2, N-1
do j = 2, N-1
U(i,j)=(U(i-1,j)

+U(i+1,j)
+U(i,j-1)
+U(i,j+1))/4.0

end do
end do

(e)

do j’ = 4, 2N-2
do i’ = max(2,j’-N+1),

min(j’-2,N-1)
U(i’,j’-i’)=(U(i’-1,j’-i’)

+U(i’+1,j’-i’)
+U(i’,j’-1-i’)
+U(i’,j’+1-i’))/4.0

end do
end do

(f)

Figure 2:Several example loop nests that can incur false sharing depending on the parallelization strategy used.

enclosed by a sequential timing loop and thei-loop is to be par-
allelized, i.e.,�p = (1; 0; 0)T . The spatial reuse summary vec-
tors computed using reuse analysis are�s0

u = (1; 0; 0)T , �s0

v =
(1; 0; 0)T , �s0

w = (0; 0; 1)T . This means that the spatial reuses
for U andV are carried by thei-loop, and the spatial reuse forW
is carried by thek loop. Thus, the spatial reuse summary matrix is

S
0 =

1 1 0
0 0 0
0 0 1

!
:

Hence, �fT = �pTS0 = (1; 1; 0): This means that if thei-loop is
parallelized, then bothU(i; j) and V (i; k) may incur multiple-
writer false sharing. We also note that in our example loop nest,
if we parallelize thej-loop (instead of thei-loop), then the false
sharing vector will be a zero vector (the ideal case), but we will
not have outermost loop parallelism anymore. Therefore, there is
a trade-off between optimizing for parallelism and reducing false
sharing. Ideally, the best parallelism vector is one that enables
outermost loop parallelism and maximizes the number of zeroes
in the false sharing vector. From�fT = �pTS0 = �0, we obtain
S0T �p = �0) �p 2 KerfS0T g. In other words,KerfS0T g in-
cludes all those parallelism vectors that lead to the ideal false shar-
ing vector, the zero vector. From among these candidate parallelism
vectors, we need to choose one that islegal and that enables the
maximum degree of outermost loop parallelism.

We now concentrate on the loop nest shown in Figure 2(b). For
the only reference shown, the spatial reuse vector is�s = (0; 1;�1)T

which leads to the spatial reuse summary vector�s0 = (0; 1; 0)T . In
order to reduce the extent of false sharing, the parallelism vector�p
should either be(1; 0; 0)T or (0; 0; 1)T (assuming only one loop
will be parallelized). To exploit outermost loop parallelism, it is
better to select�p = (1; 0; 0)T :

3 Impact of transformations on false sharing

Given a loop nest with a single LHS reference, the compiler faces
the task of determining suitable values for the vectors�p, �s0 and
�f . In order to realize this goal, we consider both loop transforma-
tions and data transformations. We first briefly evaluate the effect
of loop transformations, and then make a case for using data trans-
formations.

3.1 Loop transformations

We assume that the set of applicable loop transformations for an
n-deep loop nest are those that can be represented byn � n non-
singular integer transformation matrixT . From data reuse theory
[24], we know that if�s is the spatial reuse vectorbeforethe transfor-
mation then�s+ = T �s is the new spatial reuse vectorafter the trans-
formation. From�s+, we can easily compute�s0+, the new spatial
reuse summary vector. Unfortunately, finding�p+, the new paral-
lelism vectorafter the transformation is not as easy. In most cases,
we need to run the dependence analyzer to find it. Now, from a
loop transformation point of view, we can take three different ap-
proaches to the problem.
Parallelism-oriented approach: Using one of the algorithms in
the literature (e.g., [33, 25]), we can find a transformationT that
results in the best possible parallelism vector�p+. Then, fromT �s
we find the new spatial reuse vector, and finally using Equation (1)
we can check whether the reference incurs false sharing.
Locality-oriented approach: Using one of the algorithms in the
literature (e.g., [24, 32]), we can find a transformationT that gives
us the best spatial reuse vector�s+. Then, using dependence anal-
ysis, we can find the new parallelism vector, and, as before, using
Equation (1) we can check whether the reference incurs false shar-
ing.
False sharing-oriented approach:We can try to determine aT
which will make dot-product of�p+ and�s+ zero. Unfortunately, it
does not seem trivial to find such a loop transformation matrix.

Although we present the alternative strategies here in terms of
a reuse summary vector�s0, they can easily be stated using reuse
summary matrices by substitutingS0 for �s0. A problem with loop
transformation techniques is that loop transformations impactboth
the parallelism vector and the spatial reuse vector (matrix). That
is, in most cases either some parallelism or some locality must be
sacrificed for the sake of the other. What we need is an optimiza-
tion technique such as data transformation (explained next) which
affects only one of the two.

3.2 Data transformations

Recently a number of researchers have proposed data transforma-
tions (or also calledmemory layout transformations) as an alterna-
tive to loop transformations for optimizing locality (see [27], [16],
[23], [7], [14] and the references therein). In contrast to loop trans-
formations, memory layout transformations are not constrained by
data dependences and can be applied to imperfectly-nested loops
as well as to explicitly-parallelized codes [7]. Moreover, in a given
loop nest, the memory layout of each array can be chosen indepen-
dent of the memory layouts of other arrays. We first summarize our
memory layout representation framework presented in [16] and uti-
lized in this work, and then show the effect of data transformations
on spatial locality and false sharing.

In our framework, we represent the memory layouts of multi-
dimensional arrays using hyperplanes. In two dimensions, ahy-
perplanedefines a set of array elements(�1; �2)T that satisfy the
relation

g1�1 + g2�2 = c (2)

for some constantc. In this equation,g1 andg2 are rational num-
bers calledhyperplane coefficientsandc is a rational number called
thehyperplane constant[28]. The hyperplane coefficients in Equa-
tion (2) are written as a hyperplane vector�g = (g1; g2)

T : A hy-
perplane familyis a set of hyperplanes defined by�g for different
values ofc:

A hyperplane family can be used to partially define the mem-
ory layout of a multi-dimensional array [16]. In a two-dimensional
data (array) space, a hyperplane family defines parallel hyperplanes
(lines), each corresponding to a different value ofc:We assume that
the array elements on a specific hyperplane are stored in consecu-
tive memory locations. As an example, for an array whose mem-
ory layout is column-major, each column represents a hyperplane
(a line) whose elements are stored in consecutive locations in mem-
ory. Given a large array, the relative storage order of the columns
is not important to us in this paper. Therefore, we can represent
the column-major layout with the hyperplane vector�g = (0; 1)T

which simply indicates the orientation of the hyperplanes. Simi-
larly, the vectors(1; 0)T , (1;�1)T , and(1; 1)T correspond to row-
major, diagonal, and anti-diagonal memory layouts, respectively.
Two array elements�� = (�1; �2)

T and��0 = (�0

1; �
0

2)
T belong to

the same hyperplane�g = (g1; g2)
T if and only if

(g1; g2)(�1; �2)
T = (g1; g2)(�

0

1; �
0

2)
T
: (3)

Consider an array stored in column-major order; i.e., the layout
hyperplane vector is(0; 1)T . Based on Equation (3), the array ele-
ments(2; 3)T and(5; 3)T belong to the same hyperplane. We say
that two array elements that belong to the same hyperplane have
spatial locality[16]. Although this definition of spatial locality is
somewhat coarse, it is sufficient for the purposes of this work.

In a two-dimensional space, a single hyperplane family is suf-
ficient to partially define a memory layout. In higher dimensions,
however, we may need to use more hyperplane families. Let us con-
centrate on a three-dimensional arrayU whose layout is column-
major. Such a layout can be represented using two hyperplanes:

�g = (0; 0; 1)T and�g0 = (0; 1; 0)T : We can write these two hyper-
planes collectively as alayout constraint matrixor simply alayout
matrix

Gu =
�

�gT

�g0T

�
=
�

0 0 1
0 1 0

�
:

In that case, two data elements�� and��0 have spatial locality if both
the following conditions are satisfied:�gT �� = �gT ��0 and�g0T �� =
�g0T ��0. The elements that have spatial locality should be stored in
consecutive memory locations. Note how this layout representation
matches the column-major layout of a three-dimensional array in
Fortran. For such an array, in order for two elements to have spatial
locality (according to our definition), all the array indices except
maybe the first one should be equal. Notice that the two conditions
given above ensure that these index equalities hold.

It is important to note that memory layout transformations do
not have any effect on the parallelism vector. This is an important
advantage over loop transformations. As a result,we can start with
the best possible parallelization strategy and then use data trans-
formations to strike a balance between spatial locality and false
sharing without disturbing the available parallelism.This is the
approach taken in this paper. Let�I and �I 0 be two iteration vec-
tors and let�s denote�I 0 � �I: The data elements accessed by these
two vectors through a reference represented byL and�o to a two-
dimensional array areL�I + �o andL�I 0 + �o; respectively. Using
Equation (3) given above, these two elements have spatial locality
if �gT (L�I+ �o) = �gT (L�I 0+ �o) (where�s is the spatial reuse vector),
or

�gTL(�I 0 � �I) = 0 or �gTL�s = 0 or �gT 2 Ker(L�s): (4)

Now, we have two important equations: Equation (1) and Equa-
tion (4), both related to locality. The former gives the relationship
between parallelization decisions and locality, whereas the latter
shows the relationship between locality and memory layout. Let us
concentrate on a single LHS reference with one spatial reuse vec-
tor in ann-deep loop nest. Assume that we want to parallelize only
the outermost loop in the nest, i.e.,�p = (1; 0; :::; 0)T . In order
to reduce the chances for multiple-writer false sharing due to this
reference,�pT �s0 should be zero. Substituting the value for�p, we get
(1; 0; :::; 0)�s0 = 0) �s0 = (0;�; :::;�;�)T ; where� stands for
dont-care.A simple spatial reuse vector�s that satisfies the�s0 vec-
tor above is(0; :::; 0; 1)T . If we substitute this spatial reuse vector
in Equation (4), we can find an appropriate memory layout using
�gT 2 KerfL�sg; or �gT 2 Kerf�lng; where�ln is the last column
of L.

What we have done here is (assuming outermost loop paral-
lelism) to find a spatial reuse vector, and then by using that vector
to find a memory layout. Notice that the spatial reuse vector that
we derived reduces false sharing. It is important to note that such
a vector isideal from the spatial locality point of view as well. Li
[24] has observed that the form of the ideal spatial reuse vector is
(0; :::; 0; 1)T since it exploits spatial locality in the innermost loop.
To sum up, in this case we are able to reduce false sharing and
optimize spatial locality together.

In general, (after obtaining maximum granularity parallelism
using loop transformations) from a data transformation point of
view, we can define the problem as one offinding a memory layout
such that (1) false sharing will be reduced; and (2) spatial locality
will be enhanced.

Let us now consider the loop nest shown in Figure 2(c). As-
suming that the outermost loopi is parallelized, from(1; 0)�s0 = 0,
we obtain�s0 = (0;�)T . Using this summary vector, we can select
�s = (0; 1)T for all the references in the nest.

ArrayU : �gT 2 Ker

n�
0
1

�o
) �g =

�
1
0

�
Array V : �gT 2 Ker

n�
1
0

�o
) �g =

�
0
1

�

ArrayW : �gT 2 Ker

n�
1
1

�o
) �g =

�
1

�1

�
ArrayX : �gT 2 Ker

n�
0
1

�o
) �g =

�
1
0

�
With these hyperplane vectors, it is clear that the arraysU andX

should be row-major, arrayV should be column-major, and array
W should have a diagonal memory layout (see the discussion in
Section 3.2). Note that (provided thei loop is parallel) these layouts
do not incur severe multiple-writer false sharing and lead to good
spatial locality in the innermostj loop.

An important question now is under what circumstances we
cannotoptimize spatial locality and reduce false sharing without
any conflict. Before answering this question, consider the loop
nest shown in Figure 2(d). Assume that we parallelize both the
i andj loops. Thus, in mathematical terms,�p = (1; 1; 0)T . From
(1; 1; 0)�s0 = 0, we obtain�s0 = (0; 0;�)T . Using this summary
vector, we can select�s = (0; 0; 1)T for both the references in the
nest. Therefore,

ArrayU : �gT 2 Ker
�
(0; 0; 1)T

	
) Gu =

�
1 0 0
0 1 0

�
Array V : �gT 2 Ker

�
(0; 1; 1)T

	
) Gv =

�
1 0 0
0 1 �1

�
As in the previous example, with these layouts1 we are able to

reduce false sharing and optimize spatial locality together. In fact,
it is easy to see that a parallelism vector such as(1; :::; 1; 0; :::; 0)T

can always be treated as(1; 0; :::; 0)T ; that is, all the outermost
parallel loops can be collapsed into one loop. We can conclude:

In a given parallelism vector, if all the1s are in the leftmost
positions consecutively (without a0 in between them), then it is
possible to reduce false sharing and optimize locality together for
a given LHS reference.

3.3 Outer and inner loop parallelization

It may not always be possible to obtain outermost loop parallelism
in loop nests. For ann-nested loop, letD denote the dependence
distance matrix [33], the columns of which are the (constant) de-
pendence distance vectors [34]. Ifrank(D) < n, then the outer-
mostn� rank(D) loops can be run in parallel. Ifrank(D) = n;
then the loop nest can be transformed such that the outermost is
sequentialbut the innern� 1 loops can be run in parallel [33]. As
noted earlier in this paper, in the case of an outermost parallel loop,
we set the parallelism vector to(1; 0; :::; 0)T and then optimize
each reference using(0; 0; :::; 0; 1)T as the spatial reuse vector.
This allows us to optimize spatial locality and reduce false shar-
ing together.If rank(D) = n, then outermost loop parallelism is
not available and therefore optimizing for improving spatial local-
ity and optimizations for reducing false sharing will conflict.

Consider now the loop nest shown in Figure 2(e). This nest
represents the core computation in the successive-over-relaxation
(SOR) code. Both thei and thej loops carry data dependences; so,
as it is, none of the loops can be executed in parallel. By skewing
the inner loop with respect to the outer loop, followed by inter-
changing the loops, we can derive the code shown in Figure 2(f).
Now the innermost loop (i0) can run in parallel, giving a parallelism
vector(0; 1)T . In order to reduce false sharing, we need to choose
�s = (1; 0)T . Using this reuse vector,

�gT
�

0 1
1 �1

��
1
0

�
= 0;

i.e., �gT 2 Kerf(0; 1)T g; or �g = (1; 0)T : Thus, the layout of
the array should be row-major. With this choice, there is no false

1
Gu corresponds to a row-major layout,Gv represents a non-conventional layout.

See [16] for a precise interpretation of layout matrices for arrays of dimension three
and higher.

sharing due to multiple writes to the LHS reference, but spatial
locality is very poor as successive iterations of the local portion of
a processor touch different rows of the array.

Let us now find the result of using a locality-oriented approach
for the same nest. We use�s = (0; 1)T as our (best) spatial reuse
vector. From

�gT
�

0 1
1 �1

��
0
1

�
= 0;

we get�gT 2 Kerf(1;�1)T g; or �g = (1; 1)T : Here, the layout
of the array should be anti-diagonal. Now, we have spatial locality
exploited in the innermost loop since successive iterations of the
innermost loop access a given anti-diagonal; but, we incur false
sharing at the coherence block boundaries. This example shows the
potential conflict between optimizing spatial locality and reducing
false sharing.

4 Heuristic for reducing false sharing and enhancing spa-
tial locality

In this section we propose a solution for enhancing spatial locality
and reducing false sharing together. Note that while false sharing
is an issue for arrays that have at least one reference on the LHS,
spatial locality is an issue for all the arrays referenced in the nest.
Therefore, we divide the arrays referenced in the nest being ana-
lyzed into two groups: (1) arrays referenced on the RHS only, and
(2) arrays referenced on both sides. Supposing that there is a to-
tal of arrays referenced in the nest,A1; :::; A�; A(�+1); :::; A :
Without loss of generality, we can assume that� of these arrays fall
into the first group and � � fall into the second. In the following
we donotdistinguish between spatial reuse vector and spatial reuse
summary vector, as these two vectors are usually the same for most
loop nests that we come across in practice.

The first group is easy to handle. Since false sharing is not an
issue for this group, all we need is to use Equation (4) for opti-
mizing their locality. Specifically, let us consider an arrayj where
1 � j � �. Assume that the number of references to this array
is tj : We can use the constraint�gTj Ljk�sjk = 0 to find the optimal
layout for this array whereLjk is thekth reference to this array
and�sjk is thekth spatial reuse vector. In the ideal case, we want
to choose�sjk = (0; :::; 0; 1)T for each referencek (1 � k � tj).
However, given a large number of references this may not be pos-
sible. That is, different references to the same array may impose
conflicting layout requirements. In that case, using profile infor-
mation we favor some references over the others, and optimize for
only those favored references. In the following we briefly discuss
a profile-based reference selection scheme. For each referenceLjk
we associate a weight functionweight(Ljk), which gives the num-
ber of times this reference is touched in a typical execution of the
program at hand. We use profiling to get the values ofweight(Ljk).
Then the solution process is as follows:

(1) Set�sjk = (0; :::; 0; 1)T for each referencek (1 � k � tj).

(2) Sort the reference according to theirweightsin non-increasing
order.

(3) Attempt to solve�gTj Ljk�sjk = 0 for eachk.

(4) If there is a solution return; else omit the reference with the
smallest weight, and go to Step (3).

When the process terminates, we will have�j � tj references op-
timized for the locality in theinnermostloop. This process is inde-
pendently repeated for all� arrays in the first group.

As for the second group, false sharing might be an important
issue especially at the page-level. Let us now focus again on a
single arrayj where� + 1 � j � . We divide the references for
this array into two groups:

(1) the LHS references,Ljk where1 � k � �, and

(2) the RHS references,Ljk0 where�+ 1 � k0 � tj .

The constraints to be satisfied are as follows:

for the LHS references for the RHS references

�pT �sj1 = 0 �gTj Lj1�sj1 = 0 �gTj Lj(�+1)�sj(�+1) = 0
�pT �sj2 = 0 �gTj Lj2�sj2 = 0 �gTj Lj(�+2)�sj(�+2) = 0

...
...

...
�pT �sj� = 0 �gTj Lj��sj� = 0 �gTj Ljtj �sjtj = 0

In this case we try two options and select the one that performs bet-
ter. In the first option, we set:�sj1 = �sj2 = ::: = �sj� 2 Kerf�pT g
and�sj(�+1) = �sj(�+2) = �sjtj = (0; :::; 0; 1)T : In other words, in
this option, for the LHS references we favor reducing false sharing
over enhancing locality; and for the RHS references we are trying
to maximize locality. After these settings, we attempt to solve the
constraints given above for�gj . As before, if there is no solution we
omit the (constraints belonging to the) reference with the smallest
weightand try to solve the system again. In the second option, we
set �sj1 = �sj2 = ::: = �sj� = �sj(�+1) = �sj(�+2) = �sjtj =

(0; :::; 0; 1)T : That is, we favor optimizing locality over reducing
false sharing for both LHS and RHS references. The rest of the
process is the same as the previous option.

After obtaining the solutions from these two options, we com-
pare them and select the best one. Our comparison scheme is rather
simple. For each option, we calculate acumulative weight, which
is the sum of the weights of the references that are satisfied (i.e.,
not omittedduring the solution process). We prefer the option with
the larger cumulative weight. The overall algorithm is given in Fig-
ure 3.

Note that in general, a layout that is suitable for one array in
one loop nest maynot be suitable for the same array in another
loop nest. Our solution to this problem is as follows. First we
determine an order of processing the nests; that is, if a nest is more
important (costly) than another, we optimize the more important
nest first. Again, profiling is used to determine the estimated cost
of a nest, which is defined as the sum of the weights (number of run-
time occurrences) of the references it encloses. Then, for the most
important nest we optimize it using the approach explained in this
paper. After optimizing this nest, the memory layouts of some of
the arrays referenced in it will be fixed. Then, we consider the next
important nest and optimize it using a slightly different version of
our approach which takes the layouts found in the most important
nest into account. Then we move to the third most important nest,
and in optimizing it we take all the layouts determined so far (in the
most important and the second most important nests) into account,
and so on. The details of the global layout propagation algorithm
is outside the scope of this paper; it is similar to those presented in
[18, 17].

5 Experimental Results

We present preliminary experimental results obtained on an eight-
processor SGI Origin2000 distributed shared memory multipro-
cessor. This machine uses R10K processors each of which is a4-
way super-scalar microprocessor operating at a clock frequency of
195 MHz. Each processor has a32 KB on-chip instruction cache,
and can issue instructions to its four functional units out-of-order.
It also has a32 KB 2-way set-associative on-chip data cache, and4
MB external cache, which are calledprimaryandsecondarycache,
respectively. The latency ratio between the first and second level
caches is approximately1 : 5. The cache line size is128 bytes

INPUT: A loop nest that accesses the arrays
A1; A2; :::; A�; A�+1; ::::; A

OUTPUT: An optimized loop nest with
layout-transformed arrays

Begin
Using a parallelization algorithm obtain largest granular

parallelism; i.e., determine�pT

LetA = fA1; A2; :::; A�g be the arrays
which do not have any LHS reference

LetB = fA�+1; A�+2; ::::; Ag be the remaining arrays
ForeachAj 2 A do

Order the references according to their
dynamic occurrences (weights)

LetLj1;Lj2; :::;Ljtj be the
(ordered) access matrices for the references to this array

Set�sjk = (0; :::; 0; 1)T

Setsolution= false
While (not solution)

Solve the system�gTj Ljk�sjk = 0 for �gTj
If there is a solution, then setsolution= true; else

omit the constraint for the smallest weighted reference
EndWhile

EndForeach
ForeachAj 2 B do

Order the references according to their
dynamic occurrences (weights)

LetLj1;Lj2; :::;Lj� be the (ordered) access
matrices for the LHS references to this array

LetLj(�+1);Lj(�+2); :::;Ljtj be the (ordered)
access matrices for the RHS references to this array

//* Option 1 *//
Set�sjk 2 Kerf�pT g for 1 � k � �
Set�sjk0 = (0; :::; 0; 1)T for �+ 1 � k0 � tj
Setsolution= false
While (not solution)
Solve the system

�pT �sjk = 0; �gTj Ljk�sjk = 0; �gTj Ljk0 �sjk0 = 0
If there is a solution, then setsolution= true; else

omit the constraint for the smallest weight reference
EndWhile
Computecumulative weight(Option 1) as the sum

of the weights of the satisfied references
//* Option 2 *//
Set�sjk = (0; :::; 0; 1)T for 1 � k � �
Set�sjk0 = (0; :::; 0; 1)T for �+ 1 � k0 � tj
Setsolution= false
While (not solution)
Solve the system

�pT �sjk = 0; �gTj Ljk�sjk = 0; �gTj Ljk0 �sjk0 = 0
If there is a solution, then setsolution= true; else

omit the constraint for the smallest weight reference
EndWhile
Computecumulative weight(Option 2) as the sum

of the weights of the satisfied references
Compare thecumulative weightsof Options 1 and 2
Choose the option with the larger weight

EndForeach
Using�gTj vectors found (1 � j �)

layout-transform the arrays in the nest
End

Figure 3:An algorithm that reduces false sharing while improving locality.

and the page size is16 KB. The local memory of each node (which
consists of two processors) is made up of128 MB SDRAM.

We conducted extensive experiments to measure the impact of
our approach on locality and false sharing using twenty programs
that can benefit from layout optimizations. For each code, we used
an aggregate data size larger than the secondary cache capacity but
smaller than the main memory. The second column of Table 2 gives
the name of each code. The first nine programs are from bench-
marks (B), programs 10 through 15 are codes from libraries (L),
and programs 16 through 20 are example code fragments from an
application called NWchem (A).

Table 1 shows theversionsused in our experiments. The opti-
mized versions can be divided into several groups. In the first group
consisting ofLOL, LOD andLOU, the optimizations used are aimed
only at enhancing spatial locality; among these,LOU is the most
powerful as it employs both loop and data transformations. In the
second group (consisting ofFOL, FOD andFOU), the optimizations
attempt to reduce false sharing rather than optimizing spatial local-
ity exclusively; therefore, they are most useful on multiprocessors.
In this group, the most powerful technique isFOU which uses both
loop and data transformations for minimizing false sharing. For
each version we tried to use as many techniques as possible and
selected the one that performs best. We also note that all arrays
are padded [29] (where necessary) by a small amount to eliminate
power-of-two sizes. In all these six versions, onlylinear loop and
data transformations were used; tiling or loop unrolling were not
used as they blur inherent locality. TheBAL version refers to the
approach discussed in this paper andHND is the hand-optimized
version using both linear and non-linear (e.g., tiling) loop and data
transformations. Note that with the hand-optimized version (HND),
we did not pay great attention to choosing tile sizes; the use of
tile size selection heuristics [22] may further improve the perfor-
mance of theHND version. For all the versions, before transforming
the code for locality and/or false sharing, we detected the largest
granularity parallelism using the native compiler with locality opti-
mizations turned off.2 Note thatFOL, FOD, FOU, BAL, andHND take
parallelism decisions explicitly into account whereasLOL, LOD, and
LOU can reduce false sharing only as a side effect of improving lo-
cality. After the different versions were obtained, we again used
the native compiler (with the-O2 option and all the scalar opti-
mizations turned on) to generate the executables.

The results for the eight-processor case are presented in Ta-
ble 2. In this table, the third column (ORI) gives the total execution
times inseconds. Columns four through eleven show thepercent-
age improvementobtained by using the respective versionsover
ORI. The improvement here meansreductionin the overall execu-
tion time, and a negative entry indicates an increase in the execution
time with respect toORI. The imprv1column gives the difference
betweenBAL and the next best version from among the columns
four through nine (usuallyLOU). This means that theBAL version
outperforms a hypothetical approach which appliesall these tech-
niques and selects the best one. Theimprv2 column, on the other
hand, shows the difference betweenHND andBAL.

From Table 2 we see thatFOU is able to reduce the original exe-
cution times by nearly9%. However, this is below the performance
of LOU (which is around19%). This is consistent with the conclu-
sion of Torrellas et al. [30] that reducing false sharing at any cost
is not a good idea. For lack of space, we did not present the results
for just one processor.

The BAL version takes the parallelism decisions into account,
and achieves a28:49% improvement on the average; it reduces
memory system delays, decreases the working set size per proces-
sor, and minimizes the coherence overhead in multiprocessor runs.
By including hand optimizations we can get an additional6% ben-
efit, most of which can be obtained by applying a judicious tiling

2The locality optimizations are turned on for generating theLOL version.

(tiling only the loops that carry some reuse [32]) after usingBAL.
In particular, the14:14% performance gap betweenBAL andHND
in application codes encourages us to use data-centric tiling [21]
and control-centric tiling [12] once our approach has been applied.
An in-depth understanding of the interaction between our approach
and tiling, however, merits further study and is outside the scope of
this paper.

6 Related work

Compiler researchers attacked the locality optimization problem
from several points of view. Most of the research focused on en-
hancing the cache locality of scientific computations using loop
transformations. Wolf and Lam [32] presented formal definitions
of several types of reuse and offered a framework that uses uni-
modular loop transformations as well as tiling. Li [24] also fo-
cused on cache locality but considered general non-singular loop
transformation matrices. McKinley et al. [26] presented a sim-
ple algorithm that unifies loop permutation, fusion, and distribu-
tion. Other researchers also considered tiling [12, 21, 32]. All
of these approaches use only iteration space transformations, and
consequently they are constrained by intrinsic data dependences in
the program. Since it might be difficult to find a loop transforma-
tion that satisfies all the references in a loop nest, these approaches
are limited in their ability to the improve locality for all the arrays
referenced in a nest. Moreover, since most of these techniques are
specifically for optimizing the performance of uniprocessor caches,
they do not take false sharing into account.

Recently techniques based on memory layout transformations
for improving locality have been proposed. Leung and Zahorjan
[23], O’Boyle and Knijnenburg [27], and Kandemir et al. [16] pro-
posed techniques that change memory layouts. Although such tech-
niques can improve the spatial locality characteristics of the pro-
grams significantly, they may not be as effective on multiprocessors
due to false sharing as they do not take parallelism information into
account. In contrast, Cierniak and Li [7] and Kandemir et al. [17]
offered techniques that employ both loop and data transformations
to improve locality. Besides suffering from disadvantages of loop
transformations, these techniques also suffer from the effects of
false sharing in those cases where outermost loop parallelism is
not available. Anderson et al. [1] also propose data transformations
to improve locality and eliminate false sharing; they use permuta-
tions and strip-mining for possible data transformations. Our work
is more general as we consider a larger search space for possible
layout transformations.

Kennedy and McKinley [20] explore the tradeoffs between ef-
fectively utilizing parallelism and memory hierarchy on shared mem-
ory parallel machines. They use strip-mining and loop permutation
in order to exploit both parallelism and data locality. There is also
considerable work on reducing false sharing in shared-memory par-
allel machines. Torrellas et al. [30] applied a number of data trans-
formations such as array padding and block alignment to eliminate
false sharing. They hypothesize that false sharing is not the major
source of cache misses on shared-memory machines; instead, most
of the misses are due to poor spatial locality. However, they offer
no systematic approach that can be automated for balancing spatial
locality and false sharing for array-based codes. Jeremiassen and
Eggers [13, 9] also proposed data transformations to reduce false
sharing. Their optimizations either group data that is accessed by
the same processor or separate individual data items that are shared.
Although some of their transformations help improve spatial local-
ity, others may adversely affect locality. In comparison, we focus
more on structured codes and demonstrate how spatial locality and
false sharing can be treated in an optimizing compiler framework.

Eggers and Katz [10] and Bianchini and LeBlanc [2] also ob-
serve the impact of false sharing on parallel programs and propose

Table 1:Different versions used in our experiments.
version brief description references

ORI original (unoptimized) code with column-major memory layouts for all arrays
LOL locality optimized version using loop (iteration space) transforms only native compiler, [24], [19]
LOD locality optimized version using data (memory layout) transforms only [23], [27], [16]
LOU locality optimized version using both loop and data transforms [18], [17], [7]
FOL false sharing optimized version using loop (iteration space) transforms onlyauthors, [11], [3]
FOD false sharing optimized version using data (memory layout) transforms onlyauthors, [30], [13]
FOU false sharing optimized version using both loop and data transforms authors, [8], [11]
BAL version obtained using the approach discussed in this paper authors
HND hand optimized version using both linear and non-linear transforms authors

Table 2:Results on8 processors;ave. (B), (L) , and(A) denote the averages for the benchmark (B), library (L), and application codes (A).
program # code ORI LOL LOD LOU FOL FOD FOU BAL HND imprv1 imprv2

(sec.) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 hydro2d/T1 21:72 0:00 0:00 2:30 0:00 0:00 0:00 9:11 9:86 6:81 0:75

2 hydro2d/fct 9:61 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

3 vpenta 10:89 0:00 63:21 64:40 0:00 0:00 0:00 87:17 87:17 22:77 0:00

4 emit 3:27 2:90 5:05 7:05 4:90 6:33 6:90 30:01 30:01 22:96 0:00

5 btrix 20:19 13:07 55:91 70:04 19:16 �1:15 24:35 70:04 70:04 0:00 0:00

6 mxm 21:03 3:90 �16:51 4:40 8:21 8:21 8:21 9:87 24:55 1:66 14:68

7 cholsky 16:95 �8:21 0:00 0:00 �9:33 0:00 0:00 0:00 10:86 0:00 10:86

8 gmtry 13:90 0:00 0:00 0:00 0:00 0:00 0:00 0:00 1:08 0:00 1:08

9 adi 5:90 40:00 24:61 40:00 7:75 0:00 7:75 65:16 71:04 25:16 5:88

ave. (B) 13:72 5:74 14:70 20:91 3:41 1:49 5:25 30:15 33:85 9:24 3:70

10 bakvec 10:27 2:05 4:20 15:65 4:49 6:91 6:91 40:86 40:86 25:21 0:00

11 htribk 9:25 �27:02 42:24 44:00 �11:00 �7:14 �7:14 44:00 51:07 0:00 7:07

12 qzhes 7:50 0:00 �1:00 0:00 0:00 8:95 0:00 8:95 14:69 0:00 5:74

13 fnorm 2:21 68:90 62:33 68:90 68:90 16:80 68:90 68:90 68:90 0:00 0:00

14 gfunp 17:28 0:00 0:00 10:11 0:00 0:00 0:00 20:04 22:67 9:93 2:63

15 r1mpyq 2:55 �7:66 0:00 5:13 0:00 0:00 0:00 8:00 8:00 2:87 0:00

ave. (L) 8:18 6:05 17:96 23:97 10:40 4:25 11:45 31:79 34:37 7:82 2:58

16 transpose 5:27 0:00 20:28 20:28 0:00 20:28 20:28 20:28 34:62 0:00 14:34

17 hnd nw hnd 9:17 2:30 3:15 3:15 2:30 3:15 3:15 3:15 5:55 0:00 1:40

18 hnd nwhnd tran 3:39 4:05 5:50 5:50 4:46 19:81 19:81 34:63 47:89 14:82 13:26

19 hnd int 1e studd 6:21 0:00 �9:50 0:00 13:21 13:21 13:21 29:85 49:55 16:69 19:70

20 hnd whermt 3:38 15:21 19:85 19:85 15:21 15:21 15:21 19:85 40:86 0:00 21:01

ave. (A) 5:48 4:31 7:86 9:76 7:04 14:33 14:33 21:55 35:69 7:22 14:14

ave. 9:99 5:47 13:97 19:04 6:41 5:53 9:38 28:49 34:46 9:01 5:97

several techniques to manage it. None of these works explicitly
studied the interaction between optimizing locality and reducing
false sharing. In contrast, Bolosky et al. [5] proposed coalescing
different data into a larger data set and padding data to page bound-
aries to eliminate false sharing at the page level. Since padding
to page boundaries can be very expensive and distorts spatial lo-
cality, it is not clear to us how successful this method will be on
modern cache-coherent architectures. Granston and Wijshoff [11]
discussed loop and data transforms for eliminating false sharing in
shared virtual memory systems; however, they do not propose a
complete methodology and no experimental results are presented.
Bodin et al. [3, 4] also proposed loop transformation techniques for
reducing page-level multiple-writer false sharing. However, they
do not investigate the interaction between parallelism decisions,
spatial locality and false sharing. Cierniak and Li [8] proposed
software caching and dynamic layout modifications to reduce false
sharing. They found that false sharing optimizations improve spa-
tial locality as well. Their results can be attributed to the avail-
able outermost loop parallelism in the kernels that they used. Fi-
nally, Chow and Sarkar [6] proposed the modification of run-time
scheduling parameters for eliminating multiple-writer false shar-
ing. We believe that their solution is complementary to our ap-
proach.

7 Summary and future work

The performance of programs on current shared-memory multi-
processors with coherent caches depends on several factors such
as the interaction between the granularity of data sharing, the size
of the coherence unit and the spatial locality exhibited by the ap-
plications, in addition to the amount of parallelism in the appli-
cations. In this paper we presented a mathematical framework
for studying the interaction between false sharing and locality for
programs on shared-memory multiprocessors. We found that in
those cases where the compiler can obtain outermost loop paral-
lelism, it might be possible to simultaneously enhance spatial lo-
cality and reduce false sharing using memory layout transforma-
tions, which do not affect parallelism decisions already made by
the compiler. On a collection of twenty programs drawn from var-
ious sources, the balanced approach presented in this paper brings
about an additional9% improvement over powerful loop and data
transformations aimed specifically at locality, and shows a19%
improvement over techniques aimed specifically at reducing false
sharing. This clearly demonstrates the benefits of balancing lo-
cality and false sharing. In those cases where the outermost loop
cannot be executed in parallel, we need to decide whether to fa-
vor eliminating false sharing or favor optimizing locality; detailed
profile informations might be useful in making this decision. We
are currently working on embedding loop transformations—other
than those aimed only at deriving parallel loops—into our frame-
work. In addition, we are working on a formulation of the problem

as a set of inequality constraints that can then be solved by existing
polyhedral tools.

Acknowledgments

The authors would like to thank the anonymous referees for provid-
ing helpful comments. The material presented in this paper is based
on research supported in part by the NSF grants CCR-9357840 and
CCR-9509143, and the Air Force Materials Command under con-
tract F30602-97-C-0026. Prith Banerjee is supported in part by the
DARPA under contract F30602-98-2-0144. J. Ramanujam is sup-
ported in part by an NSF Young Investigator Award CCR-9457768.

References

[1] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation
transformations for multiprocessors. InProc. 5th ACM SIGPLAN
Symp. Prin. & Prac. Para. Prog.,pp. 166–178, 1995.

[2] R. Bianchini and T. LeBlanc. Software caching on cache-coherent
multiprocessors. InProc. 4th IEEE Symposium on Parallel and Dis-
tributed Processing, December 1992.

[3] F. Bodin, E. Granston, and T. Montaut. Evaluating two loop trans-
formations for reducing multiple-writer false sharing. InProc. 7th
Workshop on Lang. & Compilers for Parallel Computing,1994.

[4] F. Bodin, E. Granston, and T. Montaut. Page-level affinity scheduling
for eliminating false sharing. InProc. 5th Workshop on Compilers for
Parallel Computing,Malaga, Spain, 1995.

[5] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective tech-
niques for NUMA memory management. InProc. 12th ACM Symp.
on Operating Systems Principles, Dec 1989.

[6] J. Chow and V. Sarkar. False sharing elimination by selection of run-
time scheduling parameters. InProc. 26th International Conference
on Parallel Processing, August 1997.

[7] M. Cierniak and W. Li. Unifying data and control transforma-
tions for distributed shared memory machines. InProc. SIGPLAN
Conf. Prog. Lang. Des. Impl.,pp. 205–217, 1995.

[8] M. Cierniak and W. Li. A practical approach to the compile-time
elimination of false sharing for explicitly parallel programs. In
Proc. 10th Annual Intl. Conf. on High Perf. Comp.,Canada, 1996.

[9] S. Eggers and T. Jeremiassen. Eliminating false sharing. InProc. In-
ternational Conference on Parallel Processing, volume I, pp. 377–
381, August 1991.

[10] S. Eggers and R. Katz. The effect of sharing on the cache and bus per-
formance of parallel programs. InProc. 3rd Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems,
pages 257–270, April 1989.

[11] E. Granston and H. Wijshoff. Managing pages in shared virtual mem-
ory systems: getting the compiler into the game. InProc. Interna-
tional Conference on Supercomputing, pp. 11–20, 1993.

[12] F. Irigoin and R. Triolet. Supernode partitioning. InProc. 15th Annual
ACM Symp. on Principles of Programming Languages, San Diego,
CA, pp. 319–329, January 1988.

[13] T. Jeremiassen and S. Eggers. Reducing false sharing on shared mem-
ory multiprocessors through compile time data transformations. In
Proc. 5th ACM SIGPLAN Symp. Prin. & Prac. Par. Prog.,1995.

[14] M. T. Kandemir.Compiler Techniques for Enhancing Data Locality.
Ph.D. Thesis, Department of Electrical Engineering and Computer
Science, Syracuse University, Syracuse, NY, August 1999.

[15] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A
graph-based framework to detect optimal memory layouts for im-
proving data locality. InProc. Intl. Para. Proc. Symp.,April 1999.

[16] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanu-
jam, A linear algebra framework for automatic determination of op-
timal data layouts.IEEE Transactions on Parallel and Distributed
Systems,Vol. 10, No. 2, February 1999.

[17] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Im-
proving locality using loop and data transformations in an integrated
framework. InProc. MICRO–31, Dallas, TX, December 1998.

[18] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A
matrix-based approach to the global locality optimization problem.
In Proc. 1998 Intl. Conf. Parallel Arch. & Comp. Tech.,, 1998.

[19] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee. An it-
eration space transformation algorithm based on explicit data layout
representation for optimizing locality. InProc. Workshop on Lang. &
Comp. for Par. Comp., August 1998.

[20] K. Kennedy and K. S. McKinley. Optimizing for parallelism and data
locality. In Proc. 1992 ACM International Conference on Supercom-
puting (ICS’92),Washington, D.C., July 1992.

[21] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level
blocking. InProc. SIGPLAN ’97 Conference on Programming Lan-
guage Design and Implementation, June 1997.

[22] M. Lam, E. Rothberg, and M. Wolf. The cache performance
of blocked algorithms. InProc. 4th Int. Conf. Arch. Supp. for
Prog. Lang. & Oper. Sys.,April 1991.

[23] S.-T. Leung and J. Zahorjan. Optimizing data locality by array re-
structuring. Technical Report TR 95–09–01, Dept. of Computer Sci-
ence and Engineering, University of Washington, September 1995.

[24] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis, Com-
puter Science Department, Cornell University, Ithaca, New York,
1993.

[25] W. Li and K. Pingali. Access normalization: Loop restructuring
for NUMA compilers. ACM Transactions on Computer Systems,
(11)4:353–375, 1993.

[26] K. McKinley, S. Carr, and C.W. Tseng. Improving data locality
with loop transformations.ACM Transactions on Programming Lan-
guages & Systems,18(4):424–453, July 1996.

[27] M. O’Boyle and P. Knijnenburg. Non-singular data transformations:
definition, validity, applications. InProc. 6th Workshop on Compilers
for Parallel Computers, pp. 287–297, Aachen, Germany, 1996.

[28] J. Ramanujam, and P. Sadayappan. Compile-time techniques for data
distribution in distributed memory machines. InIEEE Transactions
on Parallel and Distributed Systems, 2(4):472–482, Oct. 1991.

[29] G. Rivera and C.-W. Tseng. InProc. the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’98), Montreal, Canada, June 1998.

[30] J. Torrellas, M. Lam, and J. Hennessey. False sharing and spatial lo-
cality in multiprocessor caches.IEEE Transactions on Computers,
43(6):651–663, June 1994.

[31] E. Torrie, C-.W. Tseng, M. Martonosi, and M. Hall. Evaluating the
impact of advanced memory systems on compiler-parallelized codes.
In Proc. 1995 Intl. Conf. Parallel Arch. & Comp. Tech.,, 1995.

[32] M. Wolf and M. Lam. A data locality optimizing algorithm. InProc.
ACM SIGPLAN 91 Conf. Programming Language Design and Imple-
mentation, pp. 30–44, June 1991.

[33] M. Wolf and M. Lam. A loop transformation theory and an algorithm
to maximize parallelism.IEEE Trans. on Parallel and Distributed
Systems, 2(4):452–471, 1991.

[34] M. Wolfe. High Performance Compilers for Parallel Computing, Ad-
dison Wesley, CA, 1996.

