
A Graph Based Framework to Detect Optimal Memory
Layouts for Improving Data Locality

Mahmut Kandemir� Alok Choudhary� J. Ramanujamy Prith Banerjee�

Abstract

In order to extract high levels of performance from modern paral-
lel architectures, the effective management of deep memory hier-
archies is very important. While architectural advances in caches
help in better utilization of the memory hierarchy, compiler-directed
locality enhancement techniques are also important. In this paper
we propose a locality improvement technique that uses data space
(array layout) transformations in contrast to most of the previous
work based on iteration space (loop) transformations. In other
words, rather than changing the order of loop iterations, our tech-
nique modifies the memory layouts of multi-dimensional arrays. In
comparison with previous work on data transformations it brings
two novelties. First, we formulate the problem on a special graph
structure called the layout graph (LG) and use integer linear pro-
gramming (ILP) methods to determine optimal layouts. Second, in
addition to static layout detection, our approach also enables the
compiler to determine optimal dynamic layouts; that is, the layouts
that can be changed across loop nest boundaries. We believe that
this is the first attempt to determine optimal dynamic memory lay-
outs. We also present preliminary experimental results on the SGI
Origin2000 distributed shared memory multiprocessor. Our results
so far are encouraging and indicate that the additional compilation
time taken by the solver is tolerable.

1 Introduction

Users of shared-memory parallel machines realize that the perfor-
mance of programs strongly depends on how effectively the mem-
ory hierarchy characteristics are exploited. Cache memory utiliza-
tion is good whenever data blocks brought from memory to cache
are reused in the near future. Unfortunately a straightforward cod-
ing of many scientific applications does not exploit cache locality
despite the significant potential for reuse. Most of the data (mainly
arrays) that scientific codes manipulate get reused; but if the time
between two uses of the same piece of data is not short enough, the
chances are very high that the data will be displaced from cache
due to a combination of factors such as limited associativity, lim-
ited cache size and memory access patterns of the program.

Recently a large body of work has been done to enhance the
cache performance of scientific codes using compiler-based tech-
niques. These rely on the ability of an optimizing compiler to have
a global view of the program access patterns and data structures;
therefore, a compiler can modify the access patterns to attain high
levels of performance. The techniques that focused on access pat-
tern modifications generally target loop nest structures where most
of the execution time is spent. Along these lines, techniques such
as loop interchange, distribution, fusion and tiling [21, 16, 22, 14,
11, 12, 4, 2, 15] have found their way into commercial compiler
products. A common characteristic of these approaches is that they
change the execution order of loop iterations by applying some kind

�CPDC, Department of Electrical and Computer Engineering, Northwestern Uni-
versity, Evanston, IL 60208. e-mail:fmtk,choudhar,banerjeeg@ece.nwu.edu

yDepartment of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, LA 70803. e-mail:jxr@ee.lsu.edu

of iteration space transformations. The main problem here is that
changing the order of iterations may not always be legal; that is, the
resulting program may not have the same semantics as the original
program. Another problem is that changing the order of loop iter-
ations affects the locality properties of all the data structures (e.g.,
arrays) referenced in the nest. It may not be trivial to find a loop
transformation such that cache locality of all the data structures
referenced in the nest will be improved. And lastly the scope of
the iteration space transformations is limited, because they are not
easily applicable to imperfectly-nested loops and explicitly-parallel
loops [3].

More recently researchers have concentrated on data space ori-
ented approaches to improve cache locality characteristics of sci-
entific codes [3, 1, 18, 13, 9, 8]. Rather than changing the iteration
space traversal order, data space transformations focus on multi-
dimensional arrays and transform their memory layouts such that
the new layouts will better match the memory access patterns im-
posed by the loop nest. An important advantage of these techniques
is that they are not affected by data dependences; therefore, they
are constrained only by the sequence and association rules of the
language in question and not the program being transformed. The
main problem in modifying the memory layout of an array, how-
ever, is that this change should be propagated to all the loop nests
that reference this array. There is a distinct possibility that a mem-
ory layout that is suitable for a given array in a loop nest may be
highly inappropriate for the same array in another loop nest. Then
comes the question of selecting a memory layout for a given array
which will satisfy as many loop nests as possible. In order to solve
this problem several heuristics have been proposed. For example,
one may view multiple loop nests as a single imperfectly-nested
loop nest with an imaginary outermost loop that iterates only once
[13, 8]. Since data transformations are applicable to imperfectly
loop nests as well (as they do not change the loop structures), such
a view is possible. The problem with this approach is that when
the array in question is referenced in two loop nests with different
optimal layout requirements, we need to employ a conflict resolu-
tion scheme [8]. Such a scheme in general favors one of the refer-
ences over the other, resulting sometimes in a sub-optimal memory
layout for the latter. An alternative way of handling this global
array layout optimization problem is based on propagating mem-
ory layouts across loop nests. In an earlier paper [7], we proposed
a technique that starts with the most costly nest and optimizes it
using data transformations. After this step, the optimal memory
layouts for the arrays referenced in this loop nest are determined.
These layouts are then propagated to the next most costly nest. The
potential negative impact of these new layouts in this second loop
nest is decreased using iteration space transformations [18, 7]. This
approach has three main problems, though. First, it uses iteration
space transformations for all but the first nest, thereby bringing the
issue of legality into the picture again. Second, it may not always
be possible to find a loop transformation to lessen the negative im-
pact of data transformations, especially when more than one array
is involved. And finally, the success of this method depends greatly
on the order in which the loop nests are handled. It may not always
be easy to determine a suitable order to process the loop nests.

In this paper we describe a new approach to determine the op-
timal memory layouts for the multi-dimensional arrays referenced
in a given program automatically. Our approach differs from the
previous work on cache locality optimization in two important as-
pects. First, we formulate the problem on a graph structure that
we call thelayout graph(LG) and solve it using aninteger linear
programming(ILP) [17] optimally. Secondly, we consider memory
layout changes (i.e., dynamic memory layouts) between loop nests.
The first aspect enables the compiler to solve the problem without
resorting to heuristics based on linear algebra equations that need to
be built from the program structure, solved using techniques based
on matrix arithmetic, and converted back to the compiler’s internal
data structures. Instead, our approach works on a graph based rep-
resentation, thus requiring minimum additional help from the com-
piler, and finds optimal solutions. The second aspect mentioned
above might be interesting since scientific programs in general have
a number of loop nests with complex access patterns so that static
memory layouts may be insufficient to exploit the cache hierarchy
fully. The dynamic memory layout changes may be attractive alter-
natives for such programs. Of course, the added cost of changing
memory layouts between loop nests must be taken into account as
well.

We have evaluated our approach using a number of programs,
and the results so far show that it successfully optimizes the codes
in our experimental suite. We have also found that the extra time
taken by the solver used to determine optimal memory layouts was
never more than19% of the original compilation time. Our current
approach works on a single procedure at a time and does not take
inter-procedural analysis into account. If on-going work on inter-
procedural data transformations [19] proves to be successful, we
plan to extend our approach to an inter-procedural setting as well.

The remainder of this paper is organized as follows. Section 2
defines our notion of locality with respect to a reference and intro-
duces the layout graph. In Section 3 we formulate the memory lay-
out detection problem on the LG and show how our approach can
determine optimal static memory layouts for a given program. In
Section 4 we explain our solution to dynamic layout detection. We
present performance numbers for several programs on the SGI Ori-
gin 2000 distributed shared memory multiprocessor in Section 5.
The paper concludes with a summary along with pointers to work
in progress in Section 6.

2 Fundamental concepts in our framework

Our approach is based on building a graph called thelayout graph
for a given program and using integer linear programming to deter-
mine optimal memory layouts for multi-dimensional arrays. Strictly
speaking, when we attempt to solve the problem with integer linear
programming, building a graph is not necessary. If we decide to
build a graph, then a shortest path algorithm will suffice. However,
in this paper, we present both the views; this is because, a simple
shortest path formulation does not suffice when issues related to
parallelism and loop transformations are also taken into account.
For example, when, in addition to optimizing cache locality, ex-
plicit data distribution across memories of processors is involved,
we need to consider the cost of managing the data across memo-
ries as well. This, in its most general form, can be expressed as a
facility location problem[17].

We restrict ourselves to regular dense array codes. An impor-
tant characteristic of these codes is that their memory access pat-
terns can be determined to a certain extent at compile time. We
also confine ourselves to affine array bounds and affine subscript
functions as most scientific codes contain such references. We as-
sume that all loops have a unit step (which can be obtained using
loop normalization[22]). Since it is usually the case that programs
accessing large multi-dimensional arrays have serious cache local-

ity problems, throughout this paper we are concerned primarily
with optimizing cache locality for large multi-dimensional arrays.
We ignore references to scalars, to one-dimensional arrays, and to
small-sized arrays.

2.1 Memory layouts for multi-dimensional arrays

We assume that the memory layout of anm-dimensional array can
be in one ofm! forms, each of which corresponds to an order-
ing of the dimensions. For example, for a two-dimensional array
there are two possible memory layouts; namely, row-major (as in
C) and column-major (as in Fortran). For three-dimensional arrays,
we have six memory layouts, two of which are the row-major and
the column-major orders. For a given memory layout, we define the
fastest changing dimension(FCD) as the subscript position (dimen-
sion) whose indices change faster than any other dimension as we
traverse the elements in contiguous memory locations. As an ex-
ample, for a three-dimensional row-major array the third subscript
position is the FCD. Given large array bounds and large number
of loop iterations (trip counts), it is sufficient to determine just the
FCD for a given array. The ordering of the remaining outer array di-
mensions is of secondary importance. Once an optimal FCD is de-
termined for each array in the program, transforming the program
to implement these FCDs within a language with a fixed memory
layout for all arrays is quite mechanical; therefore, we do not dis-
cuss the code generation issue here and refer the reader to [18] and
[8].

2.2 Locality with respect to a subscript position

We now define the notion oflocality with respect to a subscript po-
sition. Given ann-dimensional loop nest (not necessarily perfectly-
nested) withjn as the innermost loop and anm-dimensional array,
we can say whether the memory accesses induced byjn exhibits
locality with respect to a given subscript position. Letl be a sub-
script position for the array in question(1 � l � m): If jn appears
only in thelth subscript position and does not appear in any other
subscript positions, we say that the reference in question exhibits
spatial localityin thelth position. Ifjn does not appear in any sub-
script position, we say that the reference exhibitstemporal locality
in the lth position (in fact, in every subscript position). If none of
these two conditions holds, then we say that the referencedoes not
exhibit any locality in thelth position. Notice that all these defini-
tions are only with respect to the innermost loop (jn) and a specific
subscript position (l). Therefore, a reference may have spatial lo-
cality with respect to a subscript position while it may not have
locality with respect to another. In this paper, we refer to the cases
with temporal locality, spatial locality, and no locality asTL, SL,
andNL, respectively. We will also use these abbreviations to refer
to thecosts(in terms ofcache misses) of having temporal locality,
spatial locality, or no locality, respectively, in the innermost loop.

To clarify these locality concepts, let us consider the loop nest
shown in Figure 1 that accesses five different three-dimensional ar-
rays: U; V;W;X andY: In this and the following program frag-
ments, the references used in a loop nest will be enclosed byf and
g. The actual computation performed inside the nest is irrelevant
for our purposes. Considering the reference to arrayU, since the
innermost loop indexk appears in all the subscript positions of this
reference, it has no locality with respect to any subscript position.
For the reference to arrayV, on the other hand, sincek appears only
in the first subscript position, this reference exhibits spatial locality
with respect to this subscript position, but does not exhibit locality
with respect to the other subscript positions. The reference to ar-
rayYexhibits temporal locality with respect to all the subscripts as
k does not appear in any of them. The localities exhibited by the
remaining references can be determined in a similar manner.

for i = li, ui
for j = lj, uj

for k = lk, uk
f U(i+k,k,j+k), V(k,i,j), W(i,j,k), X(i,k+i,i+j), Y(i,i+1,j-i) g

U V W X Y

S T
NL

NL

NL

SL

SL

SLNL

NL

NL

NL

NL

NL

TL

TL

TL

Figure 1: Top: A three-deep loop nest that accesses five three-
dimensional arrays. Bottom: The layout graph (LG) for this loop
nest. The thick lines and black nodes show an optimal solution
found by the solver.

2.3 Layout graph (LG)

After obtaining the locality information, our approach builds an
LG. The LG is essentially a graph in which the nodes correspond
to subscript positions of arrays, and the edges carry the locality in-
formation about the nodes. The nodes are grouped into the columns
where each column represents an array (assuming for now a single
loop nest and that each array in the nest is referenced only once).
In other words, each node in a given column represents an array
subscript position. The columns are placed one after another; the
order of the columns is not important. Between columnsU andV
(corresponding to arraysU andV) there aredim(U)�dim(V) edges
wheredim(.) returns the dimensionality for a given array. That is,
the edges betweenU andV connect every subscript position ofU
to every subscript position ofV. We define thecostof an edgego-
ing into a subscript positioni of an arrayU as the cost (in terms
of cache misses) of selectingi as the fastest changing dimension
(FCD) for U. This means that all the edges going into the same
node have the same costs associated with them (therefore, we write
each cost only once).

The LG also has a start node and a terminal node. The start node
Sis connected to each subscript position of the first column whereas
the terminal nodeT is connected to each subscript position of the
last column. Figure 1 also shows the LG for our example loop nest.
The LG, once built, contains all the memory access information for
all the arrays with respect to the innermost loop, and inspired by
the graph structure used by Garcia et al. [6] to solve the automatic
data distribution problem for message-passing machines. In Fig-
ure 1 the five columns correspond to the five arrays referenced in
the nest. The nodes in a specific column correspond to the subscript
positions; e.g., the first node denotes the first subscript position and
so on.

3 Static memory layout detection

The 0-1 integer programming problem is a linear integer program-
ming problem in which each variable is restricted to have a value
from the setf0; 1g [17].

Like Garcia et al. [6], we use the notationEUV to denote all the
dim(U)�dim(V) edges betweenU andV. EUV [i; j], on the other
hand, denotes the edge between theith subscript position ofU and
thejth subscript position ofV. We also useEUV [i; j] to denote the
0-1 integer variableassociated with the edge in question. Given a
path on the LG,EUV [i; j] has a value of1 if the edge belongs to
the path; otherwise its value is0. In other words, the final value for
eachEUV [i; j] variable indicates whether the corresponding edge
belongs to the optimal solution. LetCost(EUV [i; j]) be the cost

U V W

U VU V U V

U V W

(a) (b)

(c) (d) (e)

Figure 2: Acceptable and unacceptable LG segments. (a) accept-
able, as the selected edges constitute a path. (b) unacceptable,
as the selected edges do not constitute a path. (c) acceptable, as
there is a single selected edge between two neighboring columns.
(d) unacceptable, as no edge is selected between two neighboring
columns. (e) unacceptable as more than one edge are selected be-
tween two neighboring columns.

of the edge that connects theith node ofU with the jth node of
V. In practice the edge costs should be computed as accurately as
possible using the techniques based on miss rate estimations [20].
However, the derivation of exact cost expressions is beyond the
scope of this paper. Once the costs are determined, the rest of the
technique to be presented is fully automatic. LetCost

0(EUV [i; j])
beCost(EUV [i; j]) if EUV [i; j] is 1 (i.e.,EUV [i; j] is selected for
a given path on the LG); otherwiseCost 0(EUV [i; j]) is 0. The
objectiveof the locality optimization problem is to select apath
from S to T on a given LG such that

X

U;V

dim(U)X

i=1

dim(V)X

j=1

Cost
0(EUV [i; j]) (1)

is minimized, whereU; V denotes two adjacent columns. Notice
that this corresponds to selecting a data layout (FCD) for each array
such that the total number of misses will be minimized.

In the following discussion (for sake of simplicity of presenta-
tion) we assume thatCost 0(EUV [i; j]) can take only three possible
values: TL, SL, andNL. However, as mentioned above, our tech-
nique can accommodate more accurate cost estimations [20]. We
impose three conditions to ensure the correctness of the solution:

(1) We should select a path fromS to T in the LG,

(2) We should select a single node from each column, and

(3) We should select the edge between two selected nodes.

Consider now Figure 2 in order to interpret these conditions on
a few example LG segments. The first condition ensures that all
the selected edges should be connected. For example, Figure 2(a)
shows an acceptable solution where the two selected edges,EUV [3; 2]
andEVW [2; 1], are connected and form a path. Figure 2(b), on the
other hand, depicts an unacceptable case where two selected edges
(EUV [3; 2] andEVW [1; 3]) are not connected. In mathematical
terms, we can state this condition as

8j 2 [1:::dim(V)] :

dim(U)X

i=1

EUV [i; j] =

dim(W)X

k=1

EVW [j; k]:

Notice that this condition should be satisfied for all neighboring
triplesU; V; andW on the LG. The start and terminal nodes are
treated as if they represent one-dimensional arrays.

The second and the third conditions, together, guarantee that
each array will have one and only one FCD. For example, Fig-
ure 2(c) shows an acceptable situation where the first node ofU
and the last node ofV (as well as the edge connecting them) are se-
lected. These nodes correspond to the fastest changing dimensions
for the respective arrays. Figure 2(d) illustrates an unacceptable
case as no edge is selected between columnsU andV . Similarly,
the situation shown in Figure 2(e) is also unacceptable as there is
more than one edge selected between two columns. We can enforce
these two conditions as

dim(U)X

i=1

dim(V)X

j=1

EUV [i; j] = 1

for each neighboring pairsU andV .
Returning to our example in Figure 1, after assigning the costs

and formulating the conditions given above, if we run the solver we
obtain the path shown with the thick lines on the LG. The cost of
this path isTL+3SL+NL. Therefore, the FCD for arraysU andV is
the first subscript position; for arraysW andY the third subscript
position; and for arrayX the second subscript position. Notice that
this is not the only minimum cost path for this example. For arrays
U andYall the FCDs are equally acceptable.

It should be noted that this example represents the simplest
case, where there is a single loop nest, and each array is accessed
using a single reference. In fact, for this example we could have
easily worked on each array individually without building an LG.
However, we would like to keep our framework as general as pos-
sible so that the future extensions (e.g., loop transformations, data
distribution, false sharing related issues) can be incorporated easily.

We now discuss more general cases. We define two references
to the same array asuniformly generated with respect to loop in-
dexk if k appears in exactly the same subscript positions for both
the references. For example, the referencesU(i + j; j; k � 1) and
U(j; k + j; i+ 1) are uniformly generated with respect to loop in-
dex j but are not uniformly generated with respect toi or k. An
important observation is that if two references to the same array are
uniformly generated with respect to theinnermostloop index and
if they both exhibit spatial locality, they require the same subscript
position as their desired FCD. Therefore, if all the references to the
same array are uniformly generated with respect to the innermost
loop index, then there is no conflict in their layout demands. It
should be noted that this concept of uniformity is a relaxed form
of the concept of uniformly generated references (UGR) as defined
by Gannon et al. [5]. For the rest of the paper, when we say (non-
)uniform accesses we mean (non-)uniformly generated accesses
with respect to the innermost loop.

If two or more references to the same array are non-uniform,
then we have a conflict that should be resolved in favor of one of the
references in question. In that case we can represent each reference
with a column; that is, if an array is accessed usings non-uniformly
generated references, we can uses columns for this array, each
column corresponding to a reference. If the array ism-dimensional
each pair of adjacent columns for the same array can havem edges
between the corresponding subscript positions; we do not allow
cross edges (the edges going fromith node tojth node wherei 6=
j) between the nodes belonging to the references to the same array.
This is necessary for ensuring that asinglememory layout (FCD)
will be found for the array in question. In fact, in the static memory
layout detection problem, all columns representing the same array
can be replaced by a single column, summing the respective edge
costs.

for i = li, ui
for j = lj, uj
f U(i,j), V(j,i), W(i+j,i) g

for i = li, ui
for j = lj, uj
f U(j,i), W(j,i) g

W

T
SL

NL

S
U

NL

SL

SL

NL

V
S

U
SL

NL

T

W
SL

NL

W

TS
U

SL

NL

V
NL + SL

SL + NL

SL + SL

NL + NL

Figure 3: Top: A program fragment that consists of two nests. Mid-
dle: The layout graphs. Bottom: The combined LG.

We now focus on the problem of layout detection when multi-
ple loops are involved. Our approach is rather simple and is based
on graph combining. The idea is that when multiple loop nests ac-
cess the same array we combine the costs due to different nests into
the same subscript position. As an example, consider the program
fragment shown in Figure 3. In the middle portion of the figure, the
individual LGs corresponding to the nests are shown. The bottom
part, on the other hand, depicts the combined LG. Of course, for
example, anSLcost coming from different nests will usually have
different values (in terms of misses), depending on the number of
enclosing loops and their trip counts and so on. When more ac-
curate miss estimations [20] are available, our model incorporates
them as edge costs. Finally, notice that (for handling the multiple-
nest case) graph combining was made possible due to our assump-
tion (in this section) that for each array we determine a single static
layout.

4 Dynamic memory layout detection

For scientific codes with complex access patterns, it might be dif-
ficult to find static memory layouts that maximize locality for all
the loop nests and arrays. Changing the memory layouts dynam-
ically during the course of the program between loop nests may
be a more appropriate choice. The LG described in the previous
sections contains all the information required to determine optimal
static memory layouts. In order to handle dynamic layouts, we
need an extension that will basically allow us to select either of two
options for each array in a loop nest boundary: we either keep the
layout the same as in the previous loop nest, or we dynamically
change the layout. Here by dynamic layout change what we mean
is that we can change the FCD for the array. It should be empha-
sized that we attempt to dynamically change the memory layouts
only at loop nest boundaries.

We extend our framework by addingconverter nodesto accom-
modate layout changes. A converter node is required between the
columns of the same array accessed in different nests (see Figure 4).
The function of this node is to map an input layout to an output
layout for an array. If the input and output layouts are the same no
additional conversion cost is incurred. Otherwise, the input edges
to the converter node are annotated with the cost(s) of conversion.
The output edges of the converter node are connected to the input
of the column for the same array in the other nest. In Figure 4, the

i+1 Array Node

Array Node
Cross Edges Converter Node

For Nest For Nesti

Figure 4: Converter node for dynamic layout detection.

cross edges are used for layout conversions and carry the associated
(conversion) costs on them whereas the straight (non-cross) edges
indicate that there will be no layout changes between the two nests
in question and, of course, have zero costs. It should be stressed
that although the nests shown in Figure 4 are consecutive (i.e.,i
andi + 1), in general they do not need to be. For example, if an
array is accessed in nests1, 4, and6, in the resulting LG this array
will have three columns, and there will be converter nodes between
nest1 and nest4 as well as between nest4 and nest6. Note that
by treating the converter nodes as if they are ordinary nodes in the
LG, the 0-1 integer programming method introduced in the previ-
ous section can be used for determining the optimal layouts.

5 Experimental results

In this section we present preliminary experimental results on an
eight-node SGI Origin2000 distributed shared memory multipro-
cessor at Northwestern University. This machine uses MIPS R10000
processors, each of which is a4-way superscalar microprocessor
operating at a clock frequency of195 MHz. Each processor has
a 32 KB on-chip instruction cache, and can issue instructions to
its two integer and two floating-point functional units out-of-order.
It also has a32 KB 2-way set-associative on-chip data cache (pri-
mary), and4 MB external cache (secondary). The cache line size
is 128 bytes and page size is16KB. For the primary cache hits, the
latency is2 cycles; and for the primary cache misses that hit in the
secondary cache, the latency is8 to 10 cycles. For the nonlocal
misses, on the other hand, the latency is around20 cycles.

Table 1 provides information about the programs in our exper-
imental suite. Thesize column gives the size of a dimension of
any array used in the program. However, the small sized dimen-
sions (e.g., with a fixed value of4 or 5) are not modified. Theiter
column, shows how many times the outermost timing loop is iter-
ated for each code. We have used four versions of each code:CM
andRM are the original versions in which the memory layout for
every array is column-major and row-major, respectively. TheLP
version denotes a code obtained using linear loop transformation
techniques for locality (see [14]). In a sense this version repre-
sents the state-of-the-art (loop-nest-based) compiler technology for
optimizing locality. Finally, theDT version is the one obtained
using the approach proposed in this paper. For each version, the
original codes are first transformed automatically using the respec-
tive technique, and the resulting programs are then compiled using
the native compiler parallelizing only the outermost loops in each
nest with all the scalar optimizations (-O2) turned on. We used the
Omega library [10] as our solver (just to generate the enumerating
loops) and the binary (or 0-1) conditions were formulated explic-
itly. In future we plan to link our compiler to either CPLEX or
LINGO integer programming tools. We have noticed that the extra
time taken by the library was never more than19% of the original

Table 1: Programs used in our experiments.
Program Source size iter arrays

mxm Spec92/Nasa7 720 4 three 2-D
adi Livermore 3000 4 three 1-D, three 3-D
vpenta Spec92/Nasa7 920 25 seven 2-D, two 3-D
btrix Spec92/Nasa7 150 10 twenty-five 1-D, four 4-D
syr2k BLAS 1024 1 three 2-D
htribk Eispack 1600 4 five 2-D
gfunp Hompack 2500 10 one 1-D, five 2-D
trans NWChem (PNL) 4000 10 two 2-D

compilation time.
The overall performance of different versions on4 processors

of the Origin2000 is shown in Figure 5. In four out of eight pro-
gramsDT outperformsLT whereas in three codes the reverse oc-
curs. For comparison purposes, this figure also shows the MFLOPS
rates obtained using hand optimized version of each code. In ob-
taining this last version, we used loop transformations (e.g., permu-
tation, skewing, fusion, tiling) as well as data transformations (e.g.,
memory layout modifications, padding) in the best possible way we
could do. For the codes in our experimental suite, the improvement
brought by the hand optimizations uponDT is between4% and
44%; averaging22:2%: This result motivates us to seek ways of
combining loop and data transformations in the LG representation
and solve the problem optimally.

6 Conclusions and future work

In this paper we have presented a solution to the optimal memory
layout detection problem. Our approach is based on two important
elements: (a) formulation of the problem in a special graph struc-
ture (LG), and (b) the use of an ILP solver to determine memory
layouts. Such an approach not only allows us to solve the global
static layout detection problem optimally, but also helps us in the
simple formulation of the dynamic layout detection problem. To
the best of our knowledge, this is the first attempt to derive a frame-
work allowing dynamic layout modifications for cache locality. We
have shown in this paper that the framework is quite powerful.
However, whether dynamic layout modifications will be useful for
larger applications remains to be seen. Along this direction, we
plan to complete our implementation and make extensive experi-
ments to evaluate the impact of our approach on different codes
from matrix computations as well as to quantify more thoroughly
the time taken by our approach at compile-time.

We believe that the approach proposed here can be enhanced
in a number of ways. First, we can unify the loop and data trans-
formations in an enhanced LG representation. We can also take
additional parallelism-related factors into the account when build-
ing the LG (e.g., data distribution across processor memories). In
particular, we would like to use customized LGs for uniprocessors,
UMA, NUMA, and message-passing architectures. Lastly, we plan
to embed inter-procedural analysis [19] into our framework and
seek the ways of transforming array layouts uniformly across pro-
cessor boundaries.

Acknowledgments

The authors would like to thank Dr. Eduard Ayguade and the anony-
mous referees for providing helpful comments. The work of Mah-
mut Kandemir and Alok Choudhary was supported in part by NSF
Young Investigator Award CCR-9357840, NSF grant CCR-9509143
and Air Force Materials Command under contract F30602-97-C-
0026. J. Ramanujam was supported in part by NSF Young Investi-
gator Award CCR-9457768. Prith Banerjee was supported in part

mxm adi vpenta btrix syr2k htribk gfunp trans
0.0

40.0

80.0

120.0

160.0

200.0

240.0

280.0

320.0

360.0

400.0

M
F

LO
P

S

all column-major (CM)

all row-major (RM)

loop xforms (LP)

data xforms (DT)

hand optimized

Figure 5: MFLOPS rates.

by DARPA under contract F30602-98-2-0144 and by the NSF grant
CCR-9526325.

References

[1] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation
transformations for multiprocessors. InProc. 5th ACM SIGPLAN
Symp. Principles & Practice of Parallel Programming (PPoPP’95),
pages 166–178, Santa Barbara, CA, July 1995.

[2] L. Carter, J. Ferrante, S. Hummel, B. Alpern, and K. Gatlin. Hierar-
chical tiling: a methodology for high performance.UCSD Tech Re-
port CS 96-508, November 1996.

[3] M. Cierniak and W. Li. Unifying data and control transformations
for distributed shared memory machines.Proc. SIGPLAN Conf. Pro-
gramming Language Design & Implementation (PLDI’95), La Jolla,
CA, pages 205–217, June 1995.

[4] S. Coleman and K. McKinley. Tile size selection using cache organi-
zation and data layout. InProc. the SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation (PLDI’95), ACM,
New York.

[5] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local
memory management by global program transformations.Journal of
Parallel & Distributed Computing, 5(5):587–616, October 1988.

[6] J. Garcia, E. Ayguade, and J. Labarta. A novel approach towards au-
tomatic data distribution. InProc. Supercomputing’95, San Diego,
December 1995.

[7] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A
matrix-based approach to the global locality optimization problem.
To appear inProc. 1998 Intl. Conf. Parallel Architectures & Compi-
lation Techniques (PACT’98), Paris, France, October 1998.

[8] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanu-
jam. A hyperplane based approach for optimizing spatial locality in
loop nests. InProc. 1998 ACM International Conference on Super-
computing (ICS’98), pages 69–76, Melbourne, Australia, July 1998.

[9] M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algo-
rithm for optimizing locality in loop nests. InProc. 11th ACM Inter-
national Conference on Supercomputing (ICS’97), pages 269–276,
Vienna, Austria, July 1997.

[10] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
David Wonnacott. The Omega Library interface guide. Technical Re-
port CS-TR-3445, CS Dept., University of Maryland, College Park,
March 1995.

[11] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level
blocking. In Proc. Programming Language Design and Implemen-
tation (PLDI’97), June 1997.

[12] M. Lam, E. Rothberg, and M. Wolf. The cache performance and opti-
mizations of blocked algorithms. InProc. the 4th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’91), ACM, New York.

[13] S.-T. Leung and J. Zahorjan. Optimizing data locality by array re-
structuring. Technical Report TR 95-09-01, Dept. Computer Science
and Engineering, University of Washington, September 1995.

[14] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis, Cor-
nell University, Ithaca, NY, 1993.

[15] N. Manjikian and T. Abdelrahman. Fusion of loops for parallelism
and locality. InProc. the 24th International Conference on Parallel
Processing (ICPP’95), Oconomowoc, Wisconsin, August 1995.

[16] K. McKinley, S. Carr, and C. Tseng. Improving data locality with
loop transformations.ACM Transactions on Programming Lan-
guages & Systems,18(4):424–453, July 1996.

[17] G. Nemhauser and L. Wolsey.Integer and Combinatorial Optimiza-
tion, Wiley-Interscience Publications, John Wiley & Sons, New York,
1988.

[18] M. O’Boyle and P. Knijnenburg. Non-singular data transformations:
definition, validity, applications. InProc. 6th Workshop on Compilers
for Parallel Computers (CPC’96), pages 287–297, Aachen, Germany,
1996.

[19] M. O’Boyle and P. Knijnenburg. Integrating loop and data transfor-
mations for global optimisation. InProc. International Conference on
Parallel Architectures and Compilation Techniques (PACT’98), Octo-
ber 14–17, 1998, Paris, France.

[20] V. Sarkar, G. Gao, and S. Han. Locality analysis for distributed
shared-memory multiprocessors. InProc. the Ninth International
Workshop on Languages & Compilers for Parallel Computing
(LCPC’96), Santa Clara, California, August 1996.

[21] M. Wolf and M. Lam. A data locality optimizing algorithm. In
Proc. SIGPLAN Conf. Programming Language Design & Implemen-
tation (PLDI’91), pages 30–44, Toronto, Canada, June 1991.

[22] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley, CA, 1996.

