A Graph Based Framework to Detect Optimal Memory
Layouts for Improving Data Locality

Mahmut Kandemifr Alok Choudhary J. Ramanujari Prith Banerje&

Abstract of iteration space transformations. The main problem here is that
changing the order of iterations may not always be legal; that is, the
In order to extract high levels of performance from modern paral- resulting program may not have the same semantics as the original
lel architectures, the effective management of deep memory hier- program. Another problem is that changing the order of loop iter-
archies is very important. While architectural advances in caches ations affects the locality properties of all the data structures (e.g.,
help in better utilization of the memory hierarchy, compiler-directed arrays) referenced in the nest. It may not be trivial to find a loop
locality enhancement techniques are also important. In this papertransformation such that cache locality of all the data structures
we propose a locality improvement technigque that uses data spaceaeferenced in the nest will be improved. And lastly the scope of
(array layout) transformations in contrast to most of the previous the iteration space transformations is limited, because they are not
work based on iteration space (loop) transformations. In other easily applicable to imperfectly-nested loops and explicitly-parallel
words, rather than changing the order of loop iterations, our tech- loops [3].
nigue modifies the memory layouts of multi-dimensional arrays. In More recently researchers have concentrated on data space ori-
comparison with previous work on data transformations it brings ented approaches to improve cache locality characteristics of sci-
two novelties. First, we formulate the problem on a special graph entific codes [3, 1, 18, 13, 9, 8]. Rather than changing the iteration
structure called the layout graph (LG) and use integer linear pro- space traversal order, data space transformations focus on multi-
gramming (ILP) methods to determine optimal layouts. Second, in dimensional arrays and transform their memory layouts such that
addition to static layout detection, our approach also enables thethe new layouts will better match the memory access patterns im-
compiler to determine optimal dynamic layouts; that is, the layouts posed by the loop nest. Animportant advantage of these techniques
that can be changed across loop nest boundaries. We believe thais that they are not affected by data dependences; therefore, they
this is the first attempt to determine optimal dynamic memory lay- are constrained only by the sequence and association rules of the
outs. We also present preliminary experimental results on the SGI language in question and not the program being transformed. The
Origin 2000 distributed shared memory multiprocessor. Our results main problem in modifying the memory layout of an array, how-
so far are encouraging and indicate that the additional compilation ever, is that this change should be propagated to all the loop nests
time taken by the solver is tolerable. that reference this array. There is a distinct possibility that a mem-
ory layout that is suitable for a given array in a loop nest may be
highly inappropriate for the same array in another loop nest. Then
comes the question of selecting a memory layout for a given array

Users of shared-memory parallel machines realize that the perfor-Which will satisfy as many loop nests as possible. In order to solve
mance of programs strongly depends on how effectively the mem- this probler_n severql heuristics have been_ prop_osed. For example,
ory hierarchy characteristics are exploited. Cache memory utiliza- "€ may view multiple loop nests as a single imperfectly-nested
tion is good whenever data blocks brought from memory to cache |00p nest with an imaginary outermost loop that iterates only once
are reused in the near future. Unfortunately a straightforward cod- [13; 8] Since data transformations are applicable to imperfectly
ing of many scientific applications does not exploit cache locality loop nests as well (as they do not change the loop structures), such
despite the significant potential for reuse. Most of the data (mainly @ View is possible. The problem with this approach is that when
arrays) that scientific codes manipulate get reused; but if the time the array in question is referenced in two loop nests with different
between two uses of the same piece of data is not short enough, th@Ptimal layout requirements, we need to employ a conflict resolu-
chances are very high that the data will be displaced from cache tion scheme [8]. Such a scheme in general favors one of the refer-
due to a combination of factors such as limited associativity, lim- €Nces over the other, resulting sometimes in a sub-optimal memory
ited cache size and memory access patterns of the program. layout for the Ia_tte_r. An alternatlv_e way of handling thl_s global
Recently a large body of work has been done to enhance the@ay layout optimization problem is based on propagating mem-
cache performance of scientific codes using compiler-based tech-OrY layouts across loop nests. In an earlier paper [7], we proposed
niques. These rely on the ability of an optimizing compiler to have @ technique that starts with the most costly nest and optimizes it
a global view of the program access patterns and data structuresUsing data transformations. After this step, the optimal memory
therefore, a compiler can modify the access patterns to attain high!2youts for the arrays referenced in this loop nest are determined.
levels of performance. The techniques that focused on access pat- hese layouts are then propagated to the next most costly nest. The
tern modifications generally target loop nest structures where mostPotential negative impact of these new layouts in this second loop
of the execution time is spent. Along these lines, techniques suchN€stIs decreased using iteration space transforr_natlt_)ns [18,_ 7]. T_hls
as loop interchange, distribution, fusion and tiling [21, 16, 22, 14, @pproach has three main problems, though. First, it uses iteration
11, 12, 4, 2, 15] have found their way into commercial compiler SPace transfo_rmgtlons for_aII but the_flrst nest, th_ereby bringing the
products. A common characteristic of these approaches is that theyiSSue of legality into the picture again. Second, it may not always

change the execution order of loop iterations by applying some kind P& possible to find a loop transformation to lessen the negative im-
pact of data transformations, especially when more than one array

*CPDC, Department of Electripal and Computer Engineering, Northwestern Uni- s involved. And fina”y’ the success of this method depends great|y
versity, Evanston, IL 60208. e-maifntk, choudhar , baner jee}Gece .nwu. edu on the order in which the loop nests are handled. It may not always

 Department of Electrical and Computer Engineering, Louisiana State University, . .
Baton Rouge, LA 70803, 6-maifxroee . 1su. edu be easy to determine a suitable order to process the loop nests.

1 Introduction

In this paper we describe a new approach to determine the op-ity problems, throughout this paper we are concerned primarily
timal memory layouts for the multi-dimensional arrays referenced with optimizing cache locality for large multi-dimensional arrays.
in a given program automatically. Our approach differs from the We ignore references to scalars, to one-dimensional arrays, and to
previous work on cache locality optimization in two important as- small-sized arrays.
pects. First, we formulate the problem on a graph structure that
we call thelayout graph(LG) and solve it using aimteger linear
programming(ILP) [17] optimally. Secondly, we consider memory
layout changes (i.e., dynamic memory layouts) between loop nests.We assume that the memory layout ofrardimensional array can
The first aspect enables the compiler to solve the problem without be in one ofm! forms, each of which corresponds to an order-
resorting to heuristics based on linear algebra equations that need tdng of the dimensions. For example, for a two-dimensional array
be built from the program structure, solved using techniques basedthere are two possible memory layouts; namely, row-major (as in
on matrix arithmetic, and converted back to the compiler’s internal C) and column-major (as in Fortran). For three-dimensional arrays,
data structures. Instead, our approach works on a graph based repae have six memory layouts, two of which are the row-major and
resentation, thus requiring minimum additional help from the com- the column-major orders. For a given memory layout, we define the
piler, and finds optimal solutions. The second aspect mentioned fastest changing dimensigRCD) as the subscript position (dimen-
above might be interesting since scientific programs in general havesion) whose indices change faster than any other dimension as we
a number of loop nests with complex access patterns so that statidraverse the elements in contiguous memory locations. As an ex-
memory layouts may be insufficient to exploit the cache hierarchy ample, for a three-dimensional row-major array the third subscript
fully. The dynamic memory layout changes may be attractive alter- position is the FCD. Given large array bounds and large number
natives for such programs. Of course, the added cost of changingof loop iterations (trip counts), it is sufficient to determine just the
memory layouts between loop nests must be taken into account ag=CD for a given array. The ordering of the remaining outer array di-
well. mensions is of secondary importance. Once an optimal FCD is de-

We have evaluated our approach using a number of programs,termined for each array in the program, transforming the program
and the results so far show that it successfully optimizes the codesto implement these FCDs within a language with a fixed memory
in our experimental suite. We have also found that the extra time layout for all arrays is quite mechanical; therefore, we do not dis-
taken by the solver used to determine optimal memory layouts was cuss the code generation issue here and refer the reader to [18] and
never more tham9% of the original compilation time. Our current [8].
approach works on a single procedure at a time and does not take
inter-procedural analysis into account. If on-going work oninter- 2.2 | gcality with respect to a subscript position
procedural data transformations [19] proves to be successful, we
plan to extend our approach to an inter-procedural setting as well. We now define the notion dbcality with respect to a subscript po-

The remainder of this paper is organized as follows. Section 2 sition. Given am-dimensional loop nest (not necessarily perfectly-
defines our notion of locality with respect to a reference and intro- nested) withy,, as the innermost loop and an-dimensional array,
duces the layout graph. In Section 3 we formulate the memory lay- We can say whether the memory accesses induceg iaxhibits
out detection problem on the LG and show how our approach can locality with respect to a given subscript position. Ldte a sub-
determine optimal static memory layouts for a given program. In Script position for the array in questi¢h < I < m). If j, appears
Section 4 we explain our solution to dynamic layout detection. We only in thel** subscript position and does not appear in any other
present performance numbers for several programs on the SGI Ori-subscript positions, we say that the reference in question exhibits
gin 2000 distributed shared memory multiprocessor in Section 5. spatial localityin thel*" position. Ifj,, does not appear in any sub-
The paper concludes with a summary along with pointers to work script position, we say that the reference exhibétsiporal locality
in progress in Section 6. in the I*" position (in fact, in every subscript position). If none of
these two conditions holds, then we say that the referdoes not
exhibit any locality in thd*" position. Notice that all these defini-
tions are only with respect to the innermost logp)(and a specific
subscript positionlj. Therefore, a reference may have spatial lo-
cality with respect to a subscript position while it may not have
locality with respect to another. In this paper, we refer to the cases
with temporal locality, spatial locality, and no locality @&, SL,
andNL, respectively. We will also use these abbreviations to refer
to thecosts(in terms ofcache miss@f having temporal locality,
spatial locality, or no locality, respectively, in the innermost loop.

To clarify these locality concepts, let us consider the loop nest
shown in Figure 1 that accesses five different three-dimensional ar-
rays: U, V,W, X andY. In this and the following program frag-
ments, the references used in a loop nest will be enclos€dang

2.1 Memory layouts for multi-dimensional arrays

2 Fundamental concepts in our framework

Our approach is based on building a graph calleddkeut graph

for a given program and using integer linear programming to deter-
mine optimal memory layouts for multi-dimensional arrays. Strictly
speaking, when we attempt to solve the problem with integer linear
programming, building a graph is not necessary. If we decide to
build a graph, then a shortest path algorithm will suffice. However,
in this paper, we present both the views; this is because, a simple
shortest path formulation does not suffice when issues related to
parallelism and loop transformations are also taken into account.
For example, when, in addition to optimizing cache locality, ex-

licit data distribution across memories of processors is involved, ; e oL
P P }. The actual computation performed inside the nest is irrelevant

we need to consider the cost of managing the data across memof Considering the ref - h

ries as well. This, in its most general form, can be expressed as a/°" OUr Purposes. Considering the reference to atiagince the

facility location problen{17]. innermost I_oop indeX appears in all the subscript positions of t_h_ls
We restrict ourselves to regular dense array codes. An impor- reference, it has no locality with respect to any subscript position.

tant characteristic of these codes is that their memory access pat! ©f the reference to array on the other hand, sindeappears only

terns can be determined to a certain extent at compile time. Wein the first subscript position, this reference exhibits spatial locality
also confine ourselves to affine array bounds and affine subscriptw'th respect to this subscript position, but does not exhibit locality

functions as most scientific codes contain such references. We asWith respect to the other subscript positions. The reference to ar-

sume that all loops have a unit step (which can be obtained usingrayY exhibits temporal locality with respect to all the subscripts as

loop normalizatior[22]). Since it is usually the case that programs ~ does not afppear in any gf tgetm. Thedlqcalitigas_lexhibited by the
accessing large multi-dimensional arrays have serious cache local-'€Maining relerences can be determineéd in a simifar manner.

for i=li, ui

V] \% W V] \Y% w
for j=1j, uj
for k =1k, uk
{ U(i+k,k,j+k), V(K,i,j), W(i,j,K), X(i,k+i,i+j), Y(i,i+1,j-i) }
@ (b)
= =N u v u v u v
—
Figure 1: Top: A three-deep loop nest that accesses five three-
(© (d) (e)

dimensional arrays. Bottom: The layout graph (LG) for this loop

nest. The thick lines and black nodes show an optimal solution

found by the solver. Figure 2: Acceptable and unacceptable LG segments. (a) accept-

able, as the selected edges constitute a path. (b) unacceptable,
as the selected edges do not constitute a path. (c) acceptable, as
there is a single selected edge between two neighboring columns.

2.3 Layout graph (LG) (d) unacceptable, as no edge is selected between two neighboring

columns. (e) unacceptable as more than one edge are selected be-
tween two neighboring columns.

After obtaining the locality information, our approach builds an

LG. The LG is essentially a graph in which the nodes correspond
to subscript positions of arrays, and the edges carry the locality in-
formation about the nodes. The nodes are grouped into the columns
where each column represents an array (assuming for now a single

. ! of the edge that connects ttii¢ node ofU with the j** node of
loop nest and that each array in t_he nest is referenced only once).v_ In practice the edge costs should be computed as accurately as
In other words, each node in a given column represents an arra

. o . ypossible using the technigues based on miss rate estimations [20].
subscript position. Th_e colu_mns are placed one after another; theHowever the derivation of exact cost expressions is beyond the
order of the columns is not important. Between colurdrsndV '

. . . scope of this paper. Once the costs are determined, the rest of the
(corresponding to array$andV) there araim(U) xdim(V) edges technique to be presented is fully automatic. Cetst’ (Evv [i, j])
wheredim(.) returns the dimensionality for a given array. That is, be CostEvv[i, 5]) if Evvli,]is 1 (i.e., Evvl]i, 5] is selected for
the edges betvv_eeln an_d_V connect every subscript position Of a given path on the LG): otherwis€ost'(Evv [i, j]) is 0. The
to every SUbSC”p.t position 0’ We define theeostof an e(_:igego- objectiveof the locality optimization problem is to selectpath
ing into a subscript positiom of an arrayU as the cost (in terms

N from T onagiven L h th
of cache misses) of selectingas the fastest changing dimension om StoT onagiven LG such that

(FCD) for U. This means that all the edges going into the same dim(U) dim(V)

node have the same costs associated with them (therefore, we write ' L

each cost only once). Z Z Z Cost (Euvli, j]) 1)
U, v =1 =1

The LG also has a start node and a terminal node. The start node
Sis connected to each subscript position of the first column whereas
the terminal nod€l is connected to each subscript position of the
last column. Figure 1 also shows the LG for our example loop nest.
The LG, once built, contains all the memory access information for
all the arrays with respect to the innermost loop, and inspired by tion

the graph structure used by Garcia et al. [6] to solve the automatic values: TL, SL andNL. However, as mentioned above. our tech-

S?éaliﬁglﬁ\l/g%gl5;:1)2?::TZ):roersmoer?cﬁgetiqpeagilengrrr];aghrlngesrér:getil?r-lnique can accommodate more accurate cost estimations [20]. We
. P Y .impose three conditions to ensure the correctness of the solution:
the nest. The nodes in a specific column correspond to the subscript

positions; e.g., the first node denotes the first subscript position and (1) We should select a path frofito T' in the LG,
so on.

is minimized whereU, V' denotes two adjacent columns. Notice
that this corresponds to selecting a data layout (FCD) for each array
such that the total number of misses will be minimized.

In the following discussion (for sake of simplicity of presenta-

) we assume thafost'(Euv [i, j]) can take only three possible

(2) We should select a single node from each column, and
3 Static memory layout detection (3) We should select the edge between two selected nodes.

The 0-1 integer programming problem is a linear integer program- Consider now Figure 2 in order to interpret these conditions on
ming problem in which each variable is restricted to have a value a few example LG segments. The first condition ensures that all
from the sef{0, 1} [17]. the selected edges should be connected. For example, Figure 2(a)
Like Garcia et al. [6], we use the notatidf;y to denote all the shows an acceptable solution where the two selected eBged3, 2]
dim(U) xdim(V') edges betweeb andV. Eyv [i, 5], on the other andEvw |2, 1], are connected and form a path. Figure 2(b), on the
hand, denotes the edge betweenitfiesubscript position ot) and other hand, depicts an unacceptable case where two selected edges
thej*" subscript position of/. We also useZy v [i, j] to denote the (Euv[3,2] and Evw (1, 3]) are not connected. In mathematical
0-1integer variableassociated with the edge in question. Given a terms, we can state this condition as
path on the LGEuv[i, j] has a value ol if the edge belongs to
the path; otherwise its value (s In other words, the final value for
eachEy v [i, j] variable indicates whether the corresponding edge Vj € [1...dim (V)] : Z Eyvli, j] = Z Evwl[j, k].
belongs to the optimal solution. L&os{Eyv[i, j]) be the cost i=1 k=1

dim(U) dim (W)

Notice that this condition should be satisfied for all neighboring

triplesU, V, andW on the LG. The start and terminal nodes are for i =1i, ui
treated as if they represent one-dimensional arrays. for j =1j, uj
The second and the third conditions, together, guarantee that { UG, VG.0), W(i+,i) }
each array will have one and only one FCD. For example, Fig-
ure 2(c) shows an acceptable situation where the first nodé of for i =1i, ui
and the last node df (as well as the edge connecting them) are se- for j =1j, uj
lected. These nodes correspond to the fastest changing dimensions { UG, W(.i) }

for the respective arrays. Figure 2(d) illustrates an unacceptable
case as no edge is selected between colwhasd V. Similarly,

. U \% w u w
the situation shown in Figure 2(e) is also unacceptable as there iss Nt SL, SL, ;s SL T
more than one edge selected between two columns. We can enforc@m O<X>@
these two conditions as sL NL NL NC NL
dim(U) dim(V)

.. NL + s sLy st+s?
o= e
i=1 j=1
NL-" NL + N

SL + NL

for each neighboring pai@ andV'.

Returning to our example in Figure 1, after assigning the costs Figure 3: Top: A program fragment that consists of two nests. Mid-
and formulating the conditions given above, if we run the solver we dle: The layout graphs. Bottom: The combined LG.
obtain the path shown with the thick lines on the LG. The cost of
this path isTL+3SL+NL Therefore, the FCD for arrays$ andV is
the first subscript position; for array® andY the third subscript . .
position; and for arraiX the second subscript position. Notice that We now focus on the problem of layout detection when multi-

this is not the only minimum cost path for this example. For arrays PI€ 100ps are involved. Our approach is rather simple and is based
U andY all the FCDs are equally acceptable. on graph combining The idea is that when multiple loop nests ac-

It should be noted that this example represents the simplestcess the same ar_raywe_qombine the costs due to d_ifferent nests into
case, where there is a single loop nest, and each array is accesseif!® Same subscript position. As an example, consider the program
using a single reference. In fact, for this example we could have fragment shown in Figure 3. In the middle portion of the figure, the
easily worked on each array individually without building an LG. individual LGs corresponding to the nests are shown. The bottom
However, we would like to keep our framework as general as pos- Part, on the other hand, depicts the combined LG. Of course, for
sible so that the future extensions (e.g., loop transformations, data€X@mple, arsL cost coming from different nests will usually have
distribution, false sharing related issues) can be incorporated easilydifferent values (in terms of misses), depending on the number of

We now discuss more general cases. We define two reference<€nclosing loops and their trip counts and so on. When more ac-
to the same array asiformly generated with respect to loop in- curate miss estimations [20] are available, our m(_)del incorporates
dexk if k appears in exactly the same subscript positions for both them as edge costs. Finally, notice that (for handling the multiple-

the references. For example, the refereriéés+ j, j, k — 1) and nest case) graph combining was made possible due to our assump-
U(j, k + j,i + 1) are uniformly generated with respect to loop in- tion (in this section) that for each array we determine a single static
dex j but are not uniformly generated with respecttor k. An layout.

important observation is that if two references to the same array are
uniformly generated with respect to thenermostloop index and 4 Dynamic memory layout detection
if they both exhibit spatial locality, they require the same subscript
position as their desired FCD. Therefore, if all the references to the For scientific codes with complex access patterns, it might be dif-
same array are uniformly generated with respect to the innermostficult to find static memory layouts that maximize locality for all
loop index, then there is no conflict in their layout demands. It the loop nests and arrays. Changing the memory layouts dynam-
should be noted that this concept of uniformity is a relaxed form ically during the course of the program between loop nests may
of the concept of uniformly generated references (UGR) as defined be a more appropriate choice. The LG described in the previous
by Gannon et al. [5]. For the rest of the paper, when we say (non- sections contains all the information required to determine optimal
Juniform accesses we mean (non-)uniformly generated accessestatic memory layouts. In order to handle dynamic layouts, we
with respect to the innermost loop. need an extension that will basically allow us to select either of two
If two or more references to the same array are non-uniform, options for each array in a loop nest boundary: we either keep the
then we have a conflict that should be resolved in favor of one of the layout the same as in the previous loop nest, or we dynamically
references in question. In that case we can represent each referencehange the layout. Here by dynamic layout change what we mean

with a column; that is, if an array is accessed usimgn-uniformly is that we can change the FCD for the array. It should be empha-
generated references, we can yseolumns for this array, each sized that we attempt to dynamically change the memory layouts
column corresponding to a reference. If the arrayisimensional only at loop nest boundaries.

each pair of adjacent columns for the same array cante@dges We extend our framework by addimgnverter nodeto accom-
between the corresponding subscript positions; we do not allow modate layout changes. A converter node is required between the
cross edges (the edges going frith node toj** node where # columns of the same array accessed in different nests (see Figure 4).
j) between the nodes belonging to the references to the same arrayT'he function of this node is to map an input layout to an output
This is necessary for ensuring thasiagle memory layout (FCD) layout for an array. If the input and output layouts are the same no

will be found for the array in question. In fact, in the static memory additional conversion cost is incurred. Otherwise, the input edges
layout detection problem, all columns representing the same arrayto the converter node are annotated with the cost(s) of conversion.
can be replaced by a single column, summing the respective edgeThe output edges of the converter node are connected to the input
costs. of the column for the same array in the other nest. In Figure 4, the

Array Node For Nest i For Nest i+1 Table 1: Programs used in our experiments.

\‘[7777777777 ::: - \: P [Program | Source [[size [iter [| arrays I
! O\ L : O mxm Spec92/Nasa7 720 4]| three 2-D
: X ™~ ‘ adi Livermore 3000 4 || three 1-D, three 3-D
. ! i ' vpenta Spec92/Nasa7 920 25 || seven 2-D, two 3-D
! | n -

%X)C SO POA—— btrix Spec92/Nasa7 150 10 || twenty-five 1-D, four 4-D
| [I syr2k BLAS 1024 1 || three 2-D
Ny Sy S \ htribk || Eispack 1600 4]| five2-D
gfunp Hompack 2500 10 || one 1-D, five 2-D
Array Node trans NWChem (PNL) || 4000 10 |[two 2-D
Converter Node
Cross Edges
Figure 4: Converter node for dynamic layout detection. compilation time.

The overall performance of different versions #iprocessors
of the Origin2000 is shown in Figure 5. In four out of eight pro-

) . ramsDT outperformsLT whereas in three codes the reverse oc-
cross edges are used for layout conversions and carry the assomateaur& For comparison purposes, this figure also shows the MFLOPS
(conversion) costs on them whereas the straight (non-cross) edgesates obtained using hand optimized version of each code. In ob-
indicate that there will be no layout changes between the two neststaining this last version, we used loop transformations (e.g., permu-
in question and, of course, have zero costs. It should be stressedation, skewing, fusion, tiling) as well as data transformations (e.g.,
that .although the nests shown in Figure 4 are consecutive z(_l.e., memory layout modifications, padding) in the best possible way we
andi + 1), in general they do not need to be. For example, if an coyld do. For the codes in our experimental suite, the improvement
array is accessed in nedts4, and6, in the resulting LG this array brought by the hand optimizations up®T is betweerd% and
will have three columns, and there will be converter nodes between 44%, averaging22.2%. This result motivates us to seek ways of
nestl and nestt as well as between nestand nes6. Note that combining loop and data transformations in the LG representation
by treating the converter nodes as if they are ordinary nodes in the 3nd solve the problem optimally.

LG, the 0-1 integer programming method introduced in the previ-

ous section can be used for determining the optimal layouts. .
6 Conclusions and future work

5 Experimental results In this paper we have presented a solution to the optimal memory
. . e . layout detection problem. Our approach is based on two important
In this section we present preliminary experimental results on an gjements: (a) formulation of the problem in a special graph struc-
eight-node SGI Origir2000_distr?buted_shared_ memory multipro- e (LG), and (b) the use of an ILP solver to determine memory
cessor at Northwestern University. This machine uses MIRB®) layouts. Such an approach not only allows us to solve the global
processors, each of which isdavay superscalar microprocessor static layout detection problem optimally, but also helps us in the
operating at a clock frequency ¢b5 MHz. Each processor has simple formulation of the dynamic layout detection problem. To
a 32 KB on-chip instruction cache, and can issue instructions to the pest of our knowledge, this is the first attempt to derive a frame-
its two integer and two floating-point functional units out-of-order. yyork allowing dynamic layout modifications for cache locality. We
It also has &2 KB 2-way set-associative on-chip data cache (pri- have shown in this paper that the framework is quite powerful.
mary), and4 MB external cache (secondary). The cache line size However, whether dynamic layout modifications will be useful for
is 128 bytes and page size 16KB. For the primary cache hits, the |arger applications remains to be seen. Along this direction, we
latency is2 cycles; and for the primary cache misses that hitin the pjan to complete our implementation and make extensive experi-
secondary cache, the latency8igo 10 cycles. For the nonlocal ments to evaluate the impact of our approach on different codes

misses, on the other hand, the latency is ardtindycles. from matrix computations as well as to quantify more thoroughly
Table 1 provides information about the programs in our exper- the time taken by our approach at compile-time.

imental suite. T_hesize column gives the size of a dim_ension of We believe that the approach proposed here can be enhanced
any array used in the program. However, the small sized dimen- j 3 number of ways. First, we can unify the loop and data trans-
sions (e.g., with a fixed value dfor 5) are not modified. Théter formations in an enhanced LG representation. We can also take
column, shows how many times the outermost timing loop is iter- aqditional parallelism-related factors into the account when build-
ated for each code. We have used four versions of each €@de: jng the LG (e.g., data distribution across processor memories). In
andRM are the original versions in which the memory layout for particular, we would like to use customized LGs for uniprocessors,
every array is column-major and row-major, respectively. TRe UMA, NUMA, and message-passing architectures. Lastly, we plan

version denotes a code obtained using linear loop transformationto embed inter-procedural analysis [19] into our framework and

techniques for locality (see [14]). In a sense this version repre- seek the ways of transforming array layouts uniformly across pro-
sents the state-of-the-art (loop-nest-based) compiler technology forcessor boundaries.

optimizing locality. Finally, theDT version is the one obtained
using the approach proposed in this paper. For each version, theA K |
original codes are first transformed automatically using the respec- Acknowledgments

tive technique, and the resulting programs are then compiled usingThe authors would like to thank Dr. Eduard Ayguade and the anony-
the native compiler parallelizing only the outermost loops in each mous referees for providing helpful comments. The work of Mah-
nest with all the scalar optimizations (-02) turned on. We used the mut Kandemir and Alok Choudhary was Supported in part by NSF
Omega library [10] as our solver (just to generate the enumerating Young Investigator Award CCR-9357840, NSF grant CCR-9509143
loops) and the binary (or 0-1) conditions were formulated explic- and Air Force Materials Command under contract F30602-97-C-
itly. In future we plan to link our compiler to either CPLEX or 0026. J. Ramanujam was supported in part by NSF Young Investi-

LINGO integer programming tools. We have noticed that the extra gator Award CCR-9457768. Prith Banerjee was supported in part
time taken by the library was never more thed¥ of the original

400.0 m
360.0 | q
320.0 | M
280.0 | M
240.0
200.0
160.0
120.0
80.0
40.0

0.0

MFLOPS

1l

ad_i vper_n_a btrix syrﬂ htriB_k gfunp trans

all column-major (CM)
d Bl 2/ row-major (RM)
[1oop xforms (LP)

[] data xforms (DT)
[hand optimized

Figure 5: MFLOPS rates.

by DARPA under contract F30602-98-2-0144 and by the NSF grant [11] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level
CCR-9526325.

References

(1]

2

—

(3]

(4]

(5]

(6]

(7]

(8]

(9

(20]

J. Anderson, S. Amarasinghe, and M. Lam. Data and computation
transformations for multiprocessors. Rroc. 5th ACM SIGPLAN
Symp. Principles & Practice of Parallel Programming (PPoPP’95)
pages 166-178, Santa Barbara, CA, July 1995.

L. Carter, J. Ferrante, S. Hummel, B. Alpern, and K. Gatlin. Hierar-
chical tiling: a methodology for high performanddCSD Tech Re-
port CS 96-508November 1996.

M. Cierniak and W. Li. Unifying data and control transformations
for distributed shared memory machin&soc. SIGPLAN Conf. Pro-
gramming Language Design & Implementation (PLDI'9Ba Jolla,
CA, pages 205-217, June 1995.

S. Coleman and K. McKinley. Tile size selection using cache organi-
zation and data layout. Iaroc. the SIGPLAN '95 Conference on Pro-
gramming Language Design and Implementation (PLDI,95EM,
New York.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local
memory management by global program transformatidostnal of
Parallel & Distributed Computing5(5):587-616, October 1988.

J. Garcia, E. Ayguade, and J. Labarta. A novel approach towards au-
tomatic data distribution. IfProc. Supercomputing’95San Diego,
December 1995.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A
matrix-based approach to the global locality optimization problem.
To appear irProc. 1998 Intl. Conf. Parallel Architectures & Compi-
lation Techniques (PACT'98paris, France, October 1998.

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[29]

M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanu- [20]

jam. A hyperplane based approach for optimizing spatial locality in
loop nests. IProc. 1998 ACM International Conference on Super-
computing (ICS’98)pages 69—76, Melbourne, Australia, July 1998.

M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algo-
rithm for optimizing locality in loop nests. IRroc. 11th ACM Inter-
national Conference on Supercomputing (ICS;97ages 269-276,
Vienna, Austria, July 1997.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
David Wonnacott. The Omega Library interface guide. Technical Re-
port CS-TR-3445, CS Dept., University of Maryland, College Park,
March 1995.

[21]

blocking. In Proc. Programming Language Design and Implemen-
tation (PLDI'97), June 1997.

M. Lam, E. Rothberg, and M. Wolf. The cache performance and opti-
mizations of blocked algorithms. IRroc. the 4th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’9ACM, New York.

S.-T. Leung and J. Zahorjan. Optimizing data locality by array re-
structuring. Technical Report TR 95-09-01, Dept. Computer Science
and Engineering, University of Washington, September 1995.

W. Li. Compiling for NUMA Parallel MachinesPh.D. Thesis, Cor-
nell University, Ithaca, NY, 1993.

N. Manjikian and T. Abdelrahman. Fusion of loops for parallelism
and locality. InProc. the 24th International Conference on Parallel
Processing (ICPP’'9) Oconomowoc, Wisconsin, August 1995.

K. McKinley, S. Carr, and C. Tseng. Improving data locality with
loop transformationsACM Transactions on Programming Lan-
guages & System4&g(4):424-453, July 1996.

G. Nemhauser and L. Wolseinteger and Combinatorial Optimiza-
tion, Wiley-Interscience Publications, John Wiley & Sons, New York,
1988.

M. O'Boyle and P. Knijnenburg. Non-singular data transformations:
definition, validity, applications. IRroc. 6th Workshop on Compilers
for Parallel Computers (CPC'96pages 287—-297, Aachen, Germany,
1996.

M. O’'Boyle and P. Knijnenburg. Integrating loop and data transfor-
mations for global optimisation. IRroc. International Conference on
Parallel Architectures and Compilation Techniques (PACT, @B)to-

ber 14-17, 1998, Paris, France.

V. Sarkar, G. Gao, and S. Han. Locality analysis for distributed
shared-memory multiprocessors. Rroc. the Ninth International
Workshop on Languages & Compilers for Parallel Computing
(LCPC'96), Santa Clara, California, August 1996.

M. Wolf and M. Lam. A data locality optimizing algorithm. In
Proc. SIGPLAN Conf. Programming Language Design & Implemen-
tation (PLDI'91), pages 30-44, Toronto, Canada, June 1991.

[22] M. Wolfe. High Performance Compilers for Parallel Computing

Addison-Wesley, CA, 1996.

