
Compiler Optimizations for I/O-Intensive Computations

Mahmut Kandemir� Alok Choudhary� J. Ramanujamy

Abstract

This paper describes transformation techniques for out-of-core pro-
grams (i.e., those that deal with very large quantities of data) based
on exploiting locality using a combination of loop and data trans-
formations. Writing efficient out-of-core program is an arduous
task. As a result, compiler optimizations directed at improving
I/O performance are becoming increasingly important. We de-
scribe how a compiler can improve the performance of the code
by determining appropriate file layouts for out-of-core arrays and
finding suitable loop transformations. In addition to optimizing
a single loop nest, our solution can handle a sequence of loop
nests. We also show how to generate code when the file layouts
are optimized. Experimental results obtained on an Intel Paragon
distributed-memory message-passing multiprocessor demonstrate
marked improvements in performance due to the optimizations de-
scribed in this paper.

1 Introduction

As the speed of the disk subsystem is increasing at a much slower
rate than the processor, interconnection network and memory sub-
system speeds, any scalable parallel computer system running I/O-
intensive applications must rely on some sort of software technol-
ogy to optimize disk accesses. This is especially true for out-of-
core parallel applications where a significant amount of time is
spent in waiting for disk access. We believe that the time spent on
disk subsystem can be reduced through at least two complementary
techniques:

� reducing the number of data transfers between the disk sub-
system and main memory, and

� reducing the volume of data transferred between the disk
subsystem and main memory.

A user may accomplish these objectives by investing substantial
effort trying to understand the peculiarities of the I/O subsystem,
studying carefully the file access pattern, and modifying the pro-
grams to make them more I/O-conscious. This poses a severe prob-
lem in that user intervention based on low-level I/O decisions makes
the program less portable. It appears to us that it is possible and
in some cases necessary to leave the task of managing I/O to an
optimizing compiler for the following reasons. First, current opti-
mizing compilers are quite successful in restructuring the data ac-
cess patterns of in-core computations (i.e., computations that do not
use disk subsystem frequently) such that better cache and mem-
ory locality can be achieved. It is reasonable to expect that the
same compiler technology can be used (at least partly) in optimiz-
ing the performance of the main memory-disk subsystem hierarchy
as well. Second, although currently almost each scalable parallel
machine has its own parallel file system that comes with a suite of
commands to handle I/O, the standardization of I/O interface is un-
derway. In fact, MPI-I/O [8] is a result of such an effort. We believe
that an optimizing compiler can easily generate I/O code using such

�CPDC, Department of Electrical and Computer Engineering, Northwestern Uni-
versity, Evanston, IL 60208. e-mail:fmtk,choudharg@ece.nwu.edu

yDepartment of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, LA 70803. e-mail:jxr@ee.lsu.edu

a standard interface much like most compilers for message-passing
parallel architectures use MPI to generate communication code.

This paper presents a compiler approach for optimizing I/O ac-
cesses in regular scientific codes. Our approach is oriented towards
minimizing the number as well as the volume of the data transfers
between disk and main memory. It achieves this indirectly by re-
ducing the number of I/O calls made from within the applications.
Our experiments show that such an approach can lead to huge sav-
ings in disk access times.

The rest of this paper is organized as follows. Section 2 briefly
discusses several approaches to locality optimization and summa-
rizes the relevant work on data locality and out-of-core computa-
tions. Section 3 introduces our technique which is based on mod-
ifying both the loop access pattern and the file layouts and shows
through an example how an input program can be transformed to
out-of-core code. This technique is a direct extension of an ap-
proach originally designed for improving cache locality. We present
the algorithm as well as the additional I/O related issues. Section 4
presents performance results on the Intel Paragon at Caltech. Sec-
tion 5 concludes the paper with a summary and brief outline of the
work-in-progress.

2 Related Work

Abu-Sufah et al. [1] were among the first to derive compiler trans-
formations for out-of-core computations. They proposed optimiza-
tions to enhance the locality of programs in a virtual memory en-
vironment. Our approach is different from theirs in that we rely
on explicit I/O rather than leaving the job to the virtual memory
management system.

Compilation of out-of-core codes using explicit I/O has been
the main focus of several studies [6, 5, 4, 19]. Brezany et al. [6]
developed a run-time system called VIPIOS which can be used by
an out-of-core compiler. Bordawekar et al. [5, 4] focused on stencil
computations which can be re-ordered freely due to lack of flow de-
pendences. They present several algorithms to optimize communi-
cation and to indirectly improve the I/O performance of the parallel
out-of-core applications. Paleczny et al. [19] incorporate out-of-
core compilation techniques into the Fortran D compiler. The main
philosophy behind their approach is to choreograph I/O from disks
along with the corresponding computation.

These previous techniques were all based on re-ordering the
computation rather than on the re-organization of the data in files.
In contrast, we show that locality can be significantly improved us-
ing a combined approach which includes both loop (iteration space)
and data (file layout) transformations. This framework is poten-
tially more powerful than any existing linear transformation tech-
nique as it can manipulate both loop and data spaces, and can apply
non-singular linear transformations to both spaces. Due to the na-
ture of the domain we are dealing with, our approach includes loop
tiling as well.

Cormen and Colvin [9] introduce ViC* (Virtual C*), a prepro-
cessor that transforms a C* program which uses out-of-core data
structures into a program with appropriate library calls from ViC*
library that read/write data from/to disks. We believe that data lay-
out optimizations are complementary to computation re-ordering
optimizations, and there are some programs that can benefit from a
combined approach [7].



2.1 Data Locality Optimizations

Several techniques exist for optimizing data locality in loop nests.
In general, these techniques can be divided into three categories: (a)
Techniques based on loop transformations alone; (b) Techniques
based on data transformations alone; and (c) Techniques based on
combined loop and data transformations.

Techniques Based on Loop Transformations

These approaches attempt to improve locality characteristics of pro-
grams by modifying the iteration space traversal order. The extent
of this modification maybe an important factor in determining the
locality behavior of the program. The work in this category can be
grouped into two sub-categories described below:

Non-singular Linear Loop Transformations: These transfor-
mations can be expressed using square non-singular matrices, called
loop transformation matrices. A loop transformation should ob-
serve all data dependences [24] in the program. Apart from this,
some approaches also require the loop transformation matrix to be
of a specific form. The most widely used form is the permutation
matrix [24]. This matrix contains only a single1 in each row and
each column; the remaining entries are all zero. Using this transfor-
mation matrix, an optimizing compiler can interchange the order of
two loops in a loop nest in an attempt to improve spatial and/or tem-
poral locality. A more comprehensive group includes unimodular
transformation matrices. A unimodular matrix is an integer matrix
with a determinant�1:An important characteristic of a unimodular
transformation is that it preserves the volume of the iteration space.
Li [16] and Ramanujam [20] show how to generate code when a
loop nest is transformed using a general non-singular transforma-
tion matrix. In principle, the more general the loop transformation
matrix is, the more loop nests can be handled with it and also the
more difficult to generate code.

Iteration Space Tiling: In its general form tiling decomposes
each loop in a loop nest into two loops [24, 23]. The outer loop is
called thetile loop whereas the inner loop is referred to as theele-
ment loop.Then the tile loops are hoisted into upper levels in the
nest whereas the element loops are positioned inside. Typically,
the trip count (number of iterations) for the element loops is cho-
sen such that the amount of data accessed for an execution of all the
iterations of the element loops fit in the fastest level of the memory
hierarchy. Tiling can be used as a complementary solution along
with linear loop transformations. A suggested approach is first to
use linear loop transformations to optimize locality and then use
tiling to further improve it [17]. Wolf and Lam [23] use unimod-
ular loop transformations and then apply tiling to the loops which
carry reuse. Li [16] present a framework where general square loop
transformation matrices are used. He also illustrates how to gener-
ate the optimized code automatically. McKinley at al. [17] present
a locality optimization algorithm which uses loop permutation, dis-
tribution, and fusion. None of these approaches [23, 16, 17] con-
sider layout optimizations. Since a loop transformation may not be
able to exploit locality for all the arrays referenced in the nest, it
may result in sub-optimal performance.

Techniques Based on Data Transformations

These techniques focus on modifying layouts of multi-dimensional
arrays rather than modifying the loop access patterns. As before,
the extent of this modification is the main factor which distinguishes
between different approaches. The most important category is di-
mension re-ordering (or dimension re-indexing). This consists of
dimension-wise layout transformations (e.g., converting layout of

a two-dimensional array from column-major to row-major). In this
category, the layout of a multi-dimensional array is seen as a nested
traversal of its dimensions in a pre-determined order. Fortunately,
these types of transformations can handle a large set of access pat-
terns found in scientific applications. The second category consists
of general data transformations that can be expressed by square
non-singular transformation matrices. Using these transformations,
an optimizing compiler can convert, for example, a column-major
layout to a diagonal layout, if doing so improves spatial locality.
An important difference between this and dimension re-ordering is
that the former may cause some increase in the amount of the space
allocated to the array. The last category in data transformations
are blocked layouts. Anderson et al. [2] show that blocked layouts
can be useful in optimizing locality for distributed-shared-memory
multiprocessors.

Recently researchers have investigated the use of data transfor-
mations. Kandemir et al. [12], O’Boyle and Knijnenburg [18], and
Leung and J. Zahorjan [15] use general data transformations to im-
prove spatial locality. In [12], the explicit layout representations
are used whereas in [18] the primary focus is on how to generate
the optimized code given a data transformation matrix. Leung and
Zahorjan [15] concentrate more on minimizing extra space con-
sumption when array layouts are modified. The main limitation of
data transformations is that they cannot optimize temporal local-
ity directly, and a layout transformation impacts all the nests that
access the array in question.

Techniques Based on Combined Loop and Data Transfor-
mations

These techniques apply both loop and data transformations for op-
timizing locality. Both transformations may be of different extents.
In principle, the most general transformations are non-singular loop
and data transformations. The work on integrated loop and data
transformations is relatively new. Cierniak and Li [7] use both loop
and data transformations for optimizing locality. Their loop trans-
formation matrices can contain only1s and0s, and their data trans-
formations are dimension re-ordering. Kandemir et al. [11] also
use dimension re-ordering for array layout transformations. How-
ever, their loop transformations use general non-singular matrices
and cover a larger search space than the approach given in [7]. In
[13] Kandemir et al. proposed an integrated optimization approach
that uses general non-linear loop and data transformations for op-
timizing data locality. In this paper we use that algorithm for opti-
mizing out-of-core computations.

3 Our Approach

In this section we present a compiler-directed approach that em-
ploys both loop and data transformations. Our loop and data trans-
formation matrices are non-singular square matrices. To the best of
our knowledge, this is the most general framework that useslinear
transformations for optimizing locality in I/O-intensive codes. An-
other important characteristic of our approach is that we optimize
locality globally, i.e., for several loop nests simultaneously.

Our objective is to optimize the I/O accesses of out-of-core ap-
plications through compiler analysis. Since the data sizes in these
applications may exceed the size of main memory, data should be
divided into chunks calleddata tiles, and the program should oper-
ate on one chunk (from each array) at a time that is brought from
disk into memory. When the operation on this chunk is complete,
the chunk should be stored back on disk (if it is modified). In such
applications, the primary issue is to exploit the main memory–disk
subsystem hierarchy rather than cache–main memory hierarchy;
that is, a data tile brought into memory should be reused as much
as possible. Also the number of I/O calls required to bring the said



data tile into memory should be minimized. Note that the latter
problem is peculiar to I/O-intensive codes.

Notice that the necessity of working with data tiles implies that
loop tiling should be used. Thus, tiling, which is an optional opti-
mization for in-core computations, is a “must” for out-of-core pro-
grams. Given a series of loop nests that access (possibly different)
subsets of out-of-core arrays declared in the program, our optimiza-
tion strategy proceeds as follows:

(1) Transform the program into a sequence of independent loop
nests using loop fusion, distribution, and code sinking.

(2) Build an interference graphand identify theconnected com-
ponents. The interference graph is a bipartite graph(Vn; Va; E)
whereVn is the set of loop nests,Va is the set of arrays, and
E is the set of edges between loop nodes and array nodes.
There is an edgee 2 E betweenva 2 Va andvn 2 Vn if
and only ifvn referencesva:

(3) For each connected component:

(3.a) Order the loop nests according to acostcriterion using
profile information.

(3.b) Optimize the most costly nest using only data transfor-
mations and then tile this nest.

(3.c) For each of the remaining nests in the connected com-
ponent (according to their order):

(3.c.a) Optimize the nest using loop and data transforma-
tions taking the file layouts found so far into ac-
count and then tile the nest.

(3.c.b) Propagate the file layouts found so far to the re-
maining nests.

A few points need to be noted. First, our method of tiling a nest
for out-of-core computations is different from the traditional tiling
used to exploit cache locality. We will discuss this issue in de-
tail later on in this paper. Second, the loop transformations found
should preserve the data dependences in the program. We ensure
this by using Bik and Wijshoff’s completion technique [3]. Third, a
data transformation in its most general form can increase the space
requirements of the original array. This is because of the require-
ment in conventional languages that arrays have a rectilinear shape.
While in in-core programs this extra space may not be an issue, in
out-of-core computations, this may not be the case. Later on in the
paper we also discuss how we alleviate this problem to some extent.

Figure 1 illustrates using an example how Steps (1) and (2) of
the optimization strategy works. The original program on the left
part of the figure consists of a sequence of two imperfectly nested
loop nests. Within the loop nests are the names of the arrays ac-
cessed separated by commas. All arrays are assumed to be out-of-
core and reside in files on disk(s). As a first step, the compiler trans-
forms these loop nests to a sequence of perfectly nested loops using
a combination of loop fusion, loop distribution, and code sinking
[24]. In this example, we assume that this can be achieved using
loop fusion for the first imperfectly nested loop nest and using loop
distribution for the second. In the next step, the compiler builds an
interference graph, and runs a connected component algorithm on
it. The two connected components shown in the figure correspond
to two program fragments which access disjoint sets of arrays. The
first fragment accesses arraysU , V , andW whereas the second one
accesses arraysX andY: Since connected components do not have
a common array, the rest of the approach can operate on a single
connected component at a time.

do i = 1, N
do j = 1, N

enddo
do j = 1, N

enddo
enddo

do i = 1, N
do j = 1, N

U,V
enddo
do j = 1, N

U,V
enddo

enddo

V,W

X,Y

do i = 1, N
do j = 1, N

U,V
enddo

enddo

do i = 1, N
do j = 1, N

V,W
enddo

enddo

do i = 1, N
do j = 1, N

X,Y
enddo

enddo

do i = 1, N
do j = 1, N

U,V
enddo

enddo

do i = 1, N
do j = 1, N

V,W
enddo

enddo

do i = 1, N
do j = 1, N

X,Y
enddo

enddo

U

V

W

X

Y

imperfectly-nested
loop nest

loop
fusion

loop
distrb.

connected-component

connected-component

input to the
global locality algorithm

input to the
global locality algorithmimperfectly-nested

loop nest

Figure 1: Example application of file locality optimization algo-
rithm.

3.1 Motivation

In this subsection we illustrate through an example why a combined
approach to locality is required. Consider the following program
fragment assuming that the arrays are out-of-core and the default
file layout iscolumn-majorfor all arrays. For example, this frag-
ment may correspond to the first connected component in Figure 1.

do i = 1, N
do j = 1, N

U(i,j) = V(j,i) + 1.0
end do

end do

do i = 1, N
do j = 1, N

V(i,j) = W(j,i) + 2.0
end do

end do

An approach based on linear loop transformations alone (e.g.,
[16], [17]) cannot optimize spatial locality for both arrays in the
first nest as there are spatial reuses in orthogonal directions. The
same is true for the second nest also. Therefore, two out of four
references will go unoptimized. An approach based on linear data
transformations alone, on the other hand, (e.g., [12], [18]) can se-
lect row-major layout forU and column-major layout forW: Since
there are conflicting layout requirements for arrayV , one of the
references will be unoptimized. The approach discussed in this pa-
per proceeds as follows. Assuming that the first nest is costlier than
the second, it first focuses on this nest and (using data transforma-
tions) selects row-major layout forU and column-major layout for
V: Then it moves to the second nest. Since the layout forV has al-
ready been determined, it takes this into account and interchanges
the loops so that the locality for arrayV will be good assuming
column-major layout. This new loop order imposes array accesses
along the rows of arrayW ; consequently, our approach selects row-
major layout for this array. To sum up, using a combination of loop
and data transformations we are able to optimize locality for all the
references in this program fragment.

3.2 Technical Details

3.2.1 Hyperplanes and array layouts

Our approach uses a simple linear algebra concept called ahyper-
plane. We focus on programs where array subscript expressions



column-major
(0,1)

row-major

(1,0)

anti-diagonal

(1,1)

anti-diagonal

(1,2)
blockeddiagonal

(1,-1)

Figure 2: Example file layouts and their hyperplane vectors.

and loop bounds are affine functions of the enclosing loop indices
and symbolic (loop-invariant) constants. In such a program, a ref-
erence to anm–dimensional array appearing in ak–dimensional
loop nest can be represented by an access (or reference) matrixL
of sizem � k and an offset vector�o of sizem [23]. For exam-
ple, the referenceV (j; i) in the first nest of the example fragment
shown earlier can be represented byL�I + �o, where

L =

�
0 1
1 0

�
, �I =

�
i
j

�
, and�o =

�
0
0

�
:

In anm-dimensional data space, ahyperplanecan be defined as a
set of tuples

f(a1; a2; :::; am) j g1a1 + g2a2 + :::+ gmam = cg

whereg1, g2,...,gm (at least one which is nonzero) are rational
numbers calledhyperplane coefficientsand c is a rational num-
ber called hyperplane constant [21]. We use a row vectorgT =
(g1; g2; :::; gn) to denote a hyperplane family (for different values
of c).

To keep the discussion simple, we focus on two dimensional
arrays; the results presented in this paper extend to higher dimen-
sional arrays as well. In a two-dimensional data space, the hyper-
planes are denoted by row vectors of the form(g1; g2): In that case,
we can think of a hyperplane family as parallel lines for a fixed co-
efficient set (that is, the(g1; g2) vector) and different values ofc:
An important property of the hyperplanes is that two data points
(array elements)(a; b) and(c; d) lie along the same hyperplane if

(g1; g2)

�
a
b

�
= (g1; g2)

�
c
d

�
: For example, a hyperplane

such as(0; 1) indicates that two elements belong to the same hy-
perplane as long as they have the same value for the column index
(i.e., the second dimension); the value for the row index does not
matter.

It is important to note that a hyperplane family can be used to
partially define the file layout of an out-of-core array. In the case
of a two-dimensional array, the vector(0; 1) is sufficient to indi-
cate that the elements in a column of the array (i.e., the elements
in a hyperplane with a specificc value) will be stored consecu-
tively in file and will havespatial locality. The relative order of
these columns in file is not as important provided that array size is
large enough compared to the memory size which almost always
holds true in out-of-core computations. In other words, the vec-
tor (0; 1) can be used for representing column-major file layout.
A few possible file layouts and their associated hyperplane vectors
for two-dimensional arrays are shown in Figure 2. The last layout
given is an example of blocked layouts where each dashed square
constitutes a block. Our method currently does not handle blocked
layouts, although as it is it can be used for determining optimal
storage of blocks in file with respect to each other. It should be em-
phasized that these file layouts are only a handful of the set of all
possible layouts, and there are many other hyperplanes which can
define file layouts in two-dimensional space. For example,(7; 4)
also defines a hyperplane family and a file layout such that two
array elements(a; b) and(c; d) lie along a same hyperplane (i.e.,
have spatial locality) if7a+ 4b = 7c+ 4d:

3.2.2 Loop transformations

Nest-level optimizations transform a loop nest to increase data lo-
cality. Essentially, the objective is to obtain either temporal locality
or stride-one access of the arrays which is important. To under-
stand the effect of a loop transformation let us represent a loop nest
of depthk which consists of loopsi1; i2; � � � ; ik as a polyhedron
defined by the loop limits. We use ak-dimensional vector�I =
({1; {2; � � � ; {k) called the iteration vector to denote the execution
of the body of this loop nest withi1 = {1; i2 = {2; � � � ; ik = {k.

Recall that we assume that the array subscript expressions and
loop bounds are affine functions of enclosing loop indices and loop-
index-independent variables. The class of iteration space transfor-
mations we are interested in can be represented using linear non-
singular transformation matrices. For a loop nest of depthk; the
iteration space transformation matrixT is of sizek � k: Such a
transformation maps each iteration vector�I of the original loop nest
to an iteration�I 0 = T �I of the transformed loop nest. Therefore, af-
ter the transformation, the new subscript function isLT�1 �I 0 + �o.
The problem investigated in papers such as [23] and [16] is to se-
lect a suitableT such that the locality of the reference is improved
and all the data dependencies in the original nest are preserved. For
example, in a loop nest of depth2; loop interchange is represented
by aunimodulartransformation matrix

T =

�
0 1
1 0

�
:

3.2.3 Combining loop and data layout transformations

The following claim gives us an important relation between a loop
transformation, the file layout, and the access matrix in order for a
given reference to have spatial locality in the innermost loop (see
[13] for the proof).

Claim 1 Consider a referenceL�I + �o to a 2-dimensional array

in a loop nest of depthk whereL =

�
a11 a12 � � � a1k
a21 a22 � � � a2k

�

and letQ =

0
BB@

q11 q12 � � � q1k
q21 q22 � � � q2k

...
...

. ..
...

qk1 qk2 � � � qkk

1
CCA be the inverse of the loop

transformation matrix. In order to have spatial locality in the in-
nermost loop, this array should have a file layout represented by
hyperplane(g1; g2) such that(g1; g2)L(q1k; q2k; � � � ; qkk)T = 0:

ut

Since both(g1; g2) and(q1k; q2k; � � � ; qkk)T are unknown, this for-
mulation is non-linear. However, if either of them is known, the
other can easily be found. If we know the last column ofQ,

(g1; g2) 2 Ker
�
L(q1k; q2k; � � � ; qkk)

T
	
: (1)

Similarly, if we know(g1; g2), then

(q1k; q2k; � � � ; qkk)
T 2 Ker f(g1; g2)Lg : (2)



Usually Ker sets may contain multiple vectors in which case we
choose the one such that the gcd of its elements is minimum. Re-
turning to the example given at the beginning of Section 3.1, we

find the access matrices for nest 1 areLU =

�
1 0
0 1

�
; andLV1 =�

0 1
1 0

�
; and for nest 2 areLV2 =

�
1 0
0 1

�
; andLW =�

0 1
1 0

�
: As mentioned earlier, for the first nest we apply only

data transformations; that is,(q12; q22)T = (0; 1) (Q is identity
matrix). Using Relation (1) given above, for arrayU ,

(g1; g2) 2 Ker

�
LU

�
0
1

��
=) (g1; g2) 2 Ker

��
0
1

��
:

A particular solution is(g1; g2) = (1; 0); i.e., arrayU should be
stored row-major. ForV;

(g1; g2) 2 Ker

�
LV1

�
0
1

��
=) (g1; g2) 2 Ker

��
1
0

��
:

Selecting(g1; g2) = (0; 1) results in column-major layout for array
V:

Having fixed the layouts for these two arrays, we proceed with
the second nest, assuming again thatQ is the inverse of the loop
transformation matrix for this nest. First, using Relation (2), we
find the loop transformation which satisfies the reference to array
V in this nest:

(q12; q22)
T 2 Ker f(0; 1)LV2g =) (q12; q22)

T 2 Ker f(0; 1)g

A particular solution is(q12; q22)T = (1; 0)T , which in turn can be

completed (using the approach in [3]) asQ =

�
0 1
1 0

�
: Notice

that this matrix corresponds to loop interchange [24]. The only
remaining task is to determine the optimal file layout for arrayW:
By taking into account the last column ofQ and using Relation (1)
once more,

(g1; g2) 2 Ker

�
LW

�
1
0

��
=) (g1; g2) 2 Ker

��
0
1

��

which means that arrayW should have a row-major file layout.
The resulting program is as follows.

do u = 1, N
do v = 1, N

U(u,v) = V(v,u) + 1.0
end do

end do

do u = 1, N
do v = 1, N

V(v,u) = W(u,v) + 2.0
end do

end do

3.3 Tiling of Out-of-Core Arrays

As mentioned earlier in the paper, tiling is mandatory for out-of-
core computations. Several transformations [24, 23] may need to
be performed prior to tiling to ensure its legality. In our running
example no such a transformation is necessary. A traditional tiling
approach can derive the following code. HereB is thetile sizeand
all the loops are tiled with this tile size. The loopsUT andV T are
the tile loops whereas the loopsu0 andv0 are the element loops.
Notice that tile loops are placed in the outer positions in each nest.

do UT = 1, N, B
do VT = 1, N, B
< read data tiles for arrays U and V from files>

do u’ = UT, min(UT+B,N)
do v’ = VT, min(VT+B,N)

U(u’,v’) = V(v’,u’) + 1.0
end do

end do
< write data tile for array U to its file>
end do

end do

do UT = 1, N, B
do VT = 1, N, B
< read data tiles for arrays V and W from files>

do u’ = UT, min(UT+B,N)
do v’ = VT, min(VT+B,N)

V(v’,u’) = W(u’,v’) + 2.0
end do

end do
< write data tile for array W to its file>
end do

end do

Although such a tiling strategy allows data reuse for the data
tiles in memory, its I/O performance might be unexpectedly poor.
The reason for this can be seen when we consider the tile access
pattern shown in Figure 3(a). In this figure each circle corresponds
to an array element and the arrows connecting the circles indicates
file layouts (horizontal arrows for row-major and vertical arrows for
column-major). The top two arrays areU andV in the first nest and
the bottom two arrays areV andW in the second nest. Assuming
that we have a main memory size of32 elements (for illustration
purposes), we can allocate this memory evenly across the arrays
in a nest. Traditional tiling causes the tile access pattern shown in
Figure 3(a). Let us focus on arrayV in the first nest. In order to
read a4 � 4 data tile from the file we need to issue4 I/O calls.
Notice that the alternative of reading the entire array and sieving
out the unwanted array elements may not be applicable in out-of-
core computations. For arrayV , we are able to read4 elements per
I/O call. The same situation also occurs with other array accesses.

Now consider the tile access pattern shown in Figure 3(b). Fo-
cusing on arrayV in the first nest, we see that in order to read16
elements from the file we need to issue only2 I/O calls (assuming
that in a single I/O callat most8 elements can be read or written).
Notice that in both cases (Figure 3(a) and Figure 3(b)) we are using
the same amountof in-core memory. This small example shows
that by being a bit more careful about how to read the array ele-
ments from file into memory (i.e., how to tile the loop nests) we
might be able to save a number of I/O calls.

The important point is to see that we can achieve this optimized
tile access pattern bynot tiling the innermost loop. This is in con-
trast with the traditional tiling strategy in which the innermost loop
in the nest is almost always tiled (as long as it is legal to do so). Un-
fortunately, tiling the innermost loop in out-of-core computations
(where disk accesses are very costly) can lead to excessive number
of I/O calls as this loop (after linear transformations) exhibits spa-
tial locality. Therefore, as a rule after applying the loop and data
transformations to improve locality, tiling should be applied to all
but the innermost loop in the nest. The tiled program corresponding
to the access pattern shown in Figure 3(b) is as follows.

do UT = 1, N, B
< read data tiles for arrays U and V from files>

do u’ = UT, min(UT+B,N)
do v’ = 1, N

U(u’,v’) = V(v’,u’) + 1.0
end do



UT

UT

UT

UT

UT

UT

UT

UT

VT VT

VTVT

VT

VT

VT

VT

array U array Uarray V

array V array V

array V

array W array W

(a) (b)

Figure 3: Different tile access patterns.

end do
< write data tile for array U to its file>

end do

do UT = 1, N, B
< read data tiles for arrays V and W from files>

do u’ = UT, min(UT+B,N)
do v’ = 1, N

V(v’,u’) = W(u’,v’) + 2.0
end do

end do
< write data tile for array W to its file>

end do

3.4 Reducing the Extra Storage Requirements

When data transformations other than dimension re-indexing are
applied, there might be an increase in the size of the array in ques-
tion. The reason is that in conventional languages such as Fortran
and C the arrays need be declared as rectilinear.

Consider the access matrix

�
a b
c 0

�
for an arrayU after the

locality has been optimized and the transformed loop indices areu
andv from outermost. Assume thata; b; c > 0 anda � c: Further
assume that1 � u � N 0 and1 � v �M 0: Thus, the transformed
referenceU(au + bv; cu) is good from the locality point of view
assuming column-major layout. However considering the bounds
for u andv the array region accessed by this reference consists of
(N 0 +M 0 � 1)(a + b) � (N 0 � 1)c elements. The transformed
array should be declared asU [a+ b : aN 0 + bM 0; c : (N 0 � 1)c]:

Consider now applying a data transformation represented by the

transformation matrix

�
1 �1
0 1

�
to this access matrix. The new

access matrix is

�
1 �1
0 1

��
a b
c 0

�
=

�
a� c b
c 0

�
:Now

this array needs to be declared asU [a�c+b : (a�c)N 0+bM 0; c :
(N 0�1)c] covering a region of(a�c+b)(N 0+M 0�1)�(N 0�1)c
elements. Depending on the actual values fora and c we may
obtain a huge amount of reduction in the layout requirements. If
a < c then we can use the following data transformation matrix:�

�1 1
0 1

�
:

The data transformation matrix chosen should have two impor-
tant properties. First, it should not distort the good locality obtained
by the previous data transformations. In our example, the0 element
in the access matrix should stay as0: Second, it should result in a
reduction in the size requirements. Although not unique nor the
best, the transformation matrix given above has the desired proper-
ties. The determination of the data transformation which minimizes
the space requirements is an issue that we will re-visit in the future.

4 Experimental Results

In this section we present experimental results obtained on the In-
tel Paragon at Caltech. Paragon uses a parallel file system called
PFS which stripes files across64 I/O nodes with64KB stripe units.
In the experiments we applied the following methodology. We
took ten codes from several benchmarks and math libraries. The
salient features of these codes are shown in Table 1. Then we par-
allelized these codes for execution on the Paragon such that the
inter-processor communication is eliminated. This allowed us to
focus solely on the I/O performance of the codes and the scalability
of the I/O subsystem. After this parallelization and data allocation,
we generated five different out-of-core versions of each code using
the PASSION runtime library [22]:
– col: fixed column-major file layout for every out-of-core array

– row: fixed row-major file layout for every out-of-core array

– l-opt: loop-optimized version: no file layout transformations

– d-opt: file layout-optimized version: no loop transformations

– c-opt: integrated loop and file layout transformations

– h-opt: hand optimized version using blocking and interleav-
ing

Thecol androw are the original (unoptimized) programs. For the
l-opt version, we used the best of the resulting codes generated
by [16], [17], [23]. For thed-opt version, we used the best of the
resulting codes generated by [18], [15], and [12].c-opt (compiler
optimized) version is the one obtained using the approach discussed
in this paper. In obtainingh-opt we used chunking and interleav-
ing in order to further reduce the number of I/O calls. For all the
versions exceptc-opt all the loops carrying some form of reuse are
tiled. For thec-opt version we used the tiling strategy explained
in Section 3.3.

For each code we set the memory size allocated for the compu-
tation to1=128th of the sum of the sizes of the out-of-core arrays



Table 1: Programs used in our experiments. Theiter column for
each code shows the number of iterations of the outermost timing
loop. Thearrays gives the number and the dimensionality of the
arrays accessed by the code.

program source iter arrays

mat - 2 three 2-D

mxm Spec92 3 three 2-D

adi Livermore 5 three 1-D, three 3-D

vpenta Spec92 3 seven 2-D, two 3-D

btrix Spec92 2 twenty-five 1-D, four 4-D

emit Spec92 2 ten 1-D, three 3-D

syr2k BLAS 2 three 2-D

htribk Eispack 3 five 2-D

gfunp Hompack 3 one 1-D, five 2-D

trans Nwchem 3 two 2-D

Table 2: Experimental results on16 nodes.

program col row l-opt d-opt c-opt h-opt

mat 257:20 93:3 65:1 56:8 60:8 54:3

mxm 220:01 181:5 100:0 112:6 79:8 67:0

adi 144:12 134:9 22:8 46:5 22:8 22:8

vpenta 135:00 47:1 100:0 47:1 47:1 29:9

btrix 91:45 66:6 100:0 61:3 61:3 42:3

emit 88:64 176:5 100:0 100:0 100:0 100:0

syr2k 215:34 86:3 52:0 77:4 52:0 47:6

htribk 248:61 110:8 127:2 81:1 81:1 72:6

gfunp 86:05 128:4 73:3 68:0 46:9 34:0

trans 181:90 100:0 100:0 48:2 48:2 48:2

average: 112:5 84:0 69:9 60:0 51:9

accessed in the code. Each dimension of each array used in the
computation is set to4; 096 double precision elements. However,
some array dimensions with very small hard-coded dimension sizes
were not modified as modifying them correctly would necessitate
full understanding of the program in question.

Table 2 shows the results on16 processors. For each data set,
thecol column gives the total execution time inseconds. The other
columns, on the other hand, give the respective execution times as
a fraction of that ofcol. As an example, the execution time of
c-opt version ofgfunp.4 is 46:9 percent of that ofcol. From
these results we infer the following. First, the classical locality op-
timization schemes based on loop transformations alone may not
work well for out-of-core computations. On averagel-opt brings
only a16% improvement overcol. The approaches based on data
transformations perform much better. Our integrated approach ex-
plained in this paper, however, results in a40% reduction in the
execution times with respect tocol. Using a hand optimized ver-
sion (h-opt) brings an additional8% reduction overc-opt, which
encourages us to incorporate array chunking and interleaving into
our technique.

Table 3, on the other hand, shows the speedups obtained by dif-
ferent versions for processor sizes of16, 32, 64, and128 using all
64 I/O nodes. It should be stressed that in obtaining these speedups
we used the single node result of the respective versions. For ex-
ample, the speedup for thec-opt version ofemit.3 was computed
for p 2 16; 32; 64; 128 as

Execution Time of thec-opt version ofemit.3 on1 node
Execution Time of thec-opt version ofemit.3 onp nodes

Since the execution times of the parallelized codes on single nodes
may not be as good as the best sequential version, these results are
higher than we expected. Also, since the codes were parallelized

such that there is no interprocessor communication, the scalability
was limited only by the number of I/O nodes and the I/O subsystem
bandwidth.

5 Conclusions

The increasing disparity between the speeds of disk subsystems and
the speeds of other components (such as processors, memories, and
interconnection networks) has rendered the problem of improving
the performance of out-of-core programs (i.e., programs that access
very large amounts of disk-resident data) very important and diffi-
cult. Programmers usually have to embed code for staging in and
out of data between memory and I/O devices explicitly in the pro-
gram. Often this results in non-portable and error-prone code. This
paper presents a technique that an optimizing compiler can use to
transform the in-core programs to derive I/O-efficient out-of-core
versions. In doing this, the approach uses loop (iteration space)
and file layout (data space) transformations. Specifically, this pa-
per uses linear algebra techniques to derive good file layouts along
with the accompanying loop transformations. Preliminary results
show that our technique substantially reduces the time spent in per-
forming I/O. Currently we are working on extending our approach
across procedure boundaries. We are also working on the problem
of determining optimal file layouts using techniques from integer
linear programming.

Acknowledgments Mahmut Kandemir and Alok Choudhary are
supported in part by NSF Young Investigator Award CCR-9357840
and NSF CCR-9509143. J. Ramanujam is supported in part by an
NSF Young Investigator Award CCR-9457768.

References

[1] W. Abu-Sufah, D. Kuck, and D. Lawrie. On the performance
enhancement of paging systems through program analysis
& transformations,IEEE Trans. Comp., C-30(5):341–355,
1981.

[2] J. Anderson, S. Amarasinghe, and M. Lam. Data and compu-
tation transformations for multiprocessors. InProc. 5th ACM
SIGPLAN Symp. Prin. & Prac. Par. Prog.,July 1995.

[3] A. Bik, and H. Wijshoff. On a completion method for uni-
modular matrices. Technical Report 94–14, Dept. of Com-
puter Science, Leiden University, 1994.

[4] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and
M. Paleczny. A model and compilation strategy for out-of-
core data-parallel programs. InProc. SIGPLAN Symp. Prin.
& Prac. Par. Pro.,July 1995.

[5] R. Bordawekar, A. Choudhary, and J. Ramanujam. Automatic
optimization of communication in out-of-core stencil codes.
In Proc. 10th ACM Int. Conf. Supercomp., pp. 366–373, 1996.

[6] P. Brezany, T. Muck, and E. Schikuta. Language, compiler
and parallel database support for I/O intensive applications,
In Proc. High Performance Computing & Networking, 1995.

[7] M. Cierniak, and W. Li. Unifying data and control transforma-
tions for distributed shared memory machines. Technical Re-
port 542, CS Dept., University of Rochester, November 1994.

[8] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg,
J. Prost, M. Snir, B. Traversat, and P. Wong. Overview of
the MPI-IO parallel I/O interface,Proc. 3rd Workshop I/O in
Par. & Dist. Sys.,Apr. 1995.



Table 3: Results on scalability of different versions.

program version number of processors

16 32 64 128

mat.2 col 10:9 20:6 34:8 64:3

row 11:0 20:9 35:6 66:0

l-opt 13:9 27:6 53:8 100:4

d-opt 14:5 28:1 55:0 104:2

c-opt 14:0 27:7 54:8 102:7

h-opt 15:2 30:9 60:9 115:6

mxm.2 col 11:1 21:2 37:6 70:0

row 8:2 15:4 30:0 52:6

l-opt 11:1 21:2 37:6 70:0

d-opt 9:7 17:0 32:1 56:4

c-opt 13:7 24:8 56:4 106:6

h-opt 13:7 24:8 56:1 107:2

adi.2 col 12:0 22:2 51:2 70:9

row 6:89 10:9 18:6 31:4

l-opt 15:3 28:2 61:4 107:5

d-opt 13:8 24:0 55:5 74:9

c-opt 15:3 28:2 61:4 107:5

h-opt 15:3 28:2 61:4 107:5

vpenta.6 col 10:0 24:2 51:3 78:9

row 14:5 28:0 60:9 109:8

l-opt 10:0 24:2 51:3 78:9

d-opt 14:5 28:0 60:9 109:8

c-opt 14:5 28:0 60:9 109:8

h-opt 14:7 29:0 62:4 108:2

btrix.4 col 10:0 18:1 27:0 42:7

row 12:9 23:9 45:8 87:1

l-opt 10:0 18:1 27:0 42:7

d-opt 13:9 25:1 46:2 98:1

c-opt 13:9 25:1 46:2 98:1

h-opt 13:1 24:6 44:3 93:1

program version number of processors

16 32 64 128

emit.3 col 12:7 23:1 45:0 89:9

row 6:8 11:0 18:5 33:9

l-opt 12:7 23:1 45:0 89:9

d-opt 12:7 23:1 45:0 89:9

c-opt 12:7 23:1 45:0 89:9

h-opt 12:7 32:1 45:0 89:9

syr2k.2 col 10:3 20:0 36:5 71:5

row 11:7 22:0 38:9 78:0

l-opt 13:8 26:8 51:0 95:1

d-opt 12:5 24:1 45:6 87:4

c-opt 13:8 26:8 51:0 95:1

h-opt 14:1 26:0 51:0 95:3

htribk.2 col 11:7 20:3 37:7 76:6

row 9:5 16:9 30:0 55:4

l-opt 8:8 15:0 24:3 44:0

d-opt 11:9 21:5 37:9 76:9

c-opt 11:9 21:5 37:9 76:9

h-opt 12:1 21:6 40:1 76:9

gfunp.4 col 10:9 20:4 38:4 70:8

row 9:5 17:0 32:6 60:6

l-opt 8:1 15:7 28:2 52:2

d-opt 14:0 25:0 56:0 102:3

c-opt 14:0 25:0 56:0 102:3

h-opt 14:5 24:7 57:0 105:7

trans.2 col 13:0 22:7 31:6 67:7

row 13:0 22:7 31:6 67:7

l-opt 13:0 22:7 31:6 67:7

d-opt 15:4 30:9 60:2 113:0

c-opt 15:4 30:9 60:2 113:0

h-opt 15:4 30:9 60:2 113:0

[9] T. H. Cormen, and A. Colvin. ViC*: A preprocessor for
virtual-memory C*. Dartmouth College Computer Science
Technical Report PCS-TR94-243, November 1994.

[10] M. Kandemir, R. Bordawekar, and A. Choudhary. Data ac-
cess reorganizations in compiling out-of-core data parallel
programs on distributed memory machines. InProc. IPPS 97,
pp. 559–564, April 1997.

[11] M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler
algorithm for optimizing locality in loop nests. In Proc.11th
ACM Int. Conf. Supercomp., pp. 269-278, July 1997.

[12] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and
J. Ramanujam. A hyperplane based approach for optimizing
spatial locality in loop nests. InProc. 1998 ACM Int. Conf.
Supercomp., July 1998.

[13] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee.
A matrix-based approach to the global locality optimization
problem. InProc. PACT’98, October 1998.

[14] M. Kandemir, M. Kandaswamy, and A.Choudhary. Global
I/O optimizations for out-of-core computations. InProc.
High-Performance Computing Conference (HiPC), 1997.

[15] S. Leung, and J. Zahorjan. Optimizing data locality by ar-
ray restructuring. Technical Report, CSE Dept., University of
Washington, TR 95-09-01, Sep. 1995.

[16] W. Li. Compiling for NUMA parallel machines. Ph.D. disser-
tation, Cornell University, 1993.

[17] K. McKinley, S. Carr, and C.W. Tseng. Improving data lo-
cality with loop transformations.ACM Transactions on Pro-
gramming Languages and Systems,1996.

[18] M. O’Boyle, and P. Knijnenburg. Non-singular data transfor-
mations: Definition, validity, applications. InProc. 6th Work-
shop on Compilers for Par. Comp., pp. 287–297, 1996.

[19] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler support
for out-of-core arrays on parallel machines. CRPC Technical
Report 94509-S, Rice University, Dec. 1994.

[20] J. Ramanujam. Non-unimodular transformations of nested
loops. InProc. Supercomputing 92, pp. 214–223, 1992.

[21] J. Ramanujam, and P. Sadayappan. Compile-time techniques
for data distribution in distributed memory machines.IEEE
Trans. Par. & Dist. Sys., 2(4):472–482, Oct. 1991.

[22] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S.
Kuditipudi. PASSION: Optimized I/O for parallel applica-
tions,IEEE Computer, (29)6:70–78, June 1996.

[23] M. Wolf, and M. Lam. A data locality optimizing algorithm.
In Proc. ACM SIGPLAN 91 Conf. Prog. Lang. Des. & Impl.,
pp. 30–44, June 1991.

[24] M. Wolfe. High Performance Compilers for Parallel Comput-
ing, Addison-Wesley, 1996.


