
A Hyperplane Based Approach for Optimizing Spatial Locality in Loop Nests
M. Kandemirq A. Choudharytt N. Shenoytt P. Banerjee@ J. Ramanujamq

Abstract

This paper presents a data layout optimization technique based on
the theory of hyperplanes from linear algebra. Given a program,
our framework automatically determines the optimal layouts that
can be expressed by hyperplanes for each array that is referenced.
We discuss the cases where data transformations are preferable to
loop transformations and show that under specific conditions a loop
nest can be optimized for perfect spatial locality by using data
transformations. We divide the problem of optimizing data lay-
out into two independent subproblems: (1) determining optimal
layouts, and (2) determining data transformation matrices to im-
plement optimal layouts. By postponing the determination of the
transformation matrix to the last stage, our method can be adapted
to compilers with different default layouts. Our results on eight
programs on SGI Origin 2000 distributed-shared-memory multi-
processor show that the layout optimizations are effective in opti-
mizing spatial locality.

1 Introduction

On most modern machines, the accesses to a nearby memory loca-
tion are always faster than accesses to a farther location. This en-
courages programmers and compiler writers to modify the access
patterns of a program so that the majority of accesses are made to
the nearby memory. Previous research in compilers generally con-
centrated on iteration space transformations and scheduling tech-
niques to improve locality. Among the techniques used are uni-
modular and non-unimodular [12] iteration space transformations,
tiling [19], and loop fusion [13]. All these techniques focus on im-
proving data locality indirectly as a result of modifying the iteration
space traversal order.

In this paper, we take a more direct approach to the data local-
ity optimization problem. Unlike traditional compiler techniques,
we focus directly on the data space, and attempt to transform data
layouts so that better locality is obtained. There are several ob-
servations that motivated this approach. First, some programs are
not amenable to loop transformations. The data dependences in a

‘EECS Dept., Syracuse University, Syracuse, NY 13244. e-mail:
mtk&ce.nwu.sdu

+ Supported in part by NSF Young Investigator Award CCR-9357840, NSF grant
CCR-9509143, and Air Force Materials Command under contract F30602.97-C-0026.

*ECE Dept., Northwestern University, Evanston, IL 60208. e-mail:
{banerjee,choudhar,nagaraj)(ece.nwu.edu

5 Supported in pan by NSF under grant CCR-9526325 and in part by DARPA under
contract DABT-63-97-C-0035.

(IECE Dept., Louisiana State University, Baton Rouge, LA 70803. e-mail:
jxrOsa .lsu.edu. Supported in part by NSF Young Investigator Award CCR-
9457768 and NSF grant CCR-9210422.

Penn&ion to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 98 Melbourne Australia
Copyright ACM 1998 0-89791-998-x/98/ 7...$5.00

loop nest may not allow a loop transformation to improve locality.
On the other hand, data space transformations are not affected by
and do not place any restrictions on the data dependences; thus,
in principle, they have wider applicability for a given loop nest.
Secondly, for some programs, even though an iteration space trans-
formation is legal, there may be a data space transformation which
results in better locality. In addition, unlike loop transformations,
data transformations do not affect all the arrays accessed in a given
loop nest. Finally, imperfectly nested loops are in genera1 more
difficult to optimize using loop transformations whereas in many
cases data transformations can be successfully applied to the arrays
referenced in them.

Considering these observations, we present a framework that
uses data transformations to optimize locality. Our framework is
fairly general in the sense that it works on a large search space and
considers various memory layouts that can be expressed by hyper-
planes. Specifically, we make the following contributions:
- We show that hyperplane theory is useful for optimizing local-

ity.
- A method that determines the optimal layouts for all arrays ref-

erenced in a given a loop nest is presented.
- It is shown that under certain conditions, data layout transfor-

mations can optimize a single loop nest for perfect locality.
We present experimental results on the SGI Origin 2000 to vali-
date our theoretical findings. In this paper, when we talk about
loop transformations we mean linear transformations of the itera-
tion space that can be expressed by square non-singular transforma-
tion matrices. Similarly, the data transformations we consider can
be expressed as linear non-singular square transformation matrices.

The remainder of this paper is organized as follows. In Sec-
tion 2 we outline the notation used and review concepts such as
reuse and locality. In Section 3, we present an overview of hy-
perplane theory. In Section 4, we show how to use that theory to
optimize memory layouts of arrays referenced in loop nests. In
Section 5, we explain how to obtain a suitable data transformation
matrix to generate optimized code. In Section 6, we present exper-
imental results on the SGI Origin. In Section 7, we briefly discuss
the related work and conclude the paper with a summary in Sec-
tion 8.

2 Technical Preliminaries

We view the iteration space of a loop nest of depth n as an n-
dimensional polyhedron where each point is denoted by an n x 1
column vector 1 = (ir, ia, i,)T; here, each ik denotes a loop
index with ir as the outermost loop and i, the innermost. In this
paper we will use (il, i2, .,., i,) to denote a loop nest as well as a
point in the iteration space. We show the lower and upper limits
for a loop i as li and ui respectively. We assume that the loops
are normalized such that the step size is one. We also assume that
all loop bounds and subscript expressions are affine functions of
enclosing loop indices and symbolic constants. Thus, the poly-
hedron corresponding to the iteration space is bounded by linear
inequalities imposed by the loop bounds. Similarly, every array
declared in the program defines a polyhedron each point of which
represents an array element; the bounds for this polyhedron are

69

Figure 1: Different access patterns on two-dimensional iteration
and data spaces. Two consecutive iterations access (a) two different
columns; (b) the same row; (c) the elements in a diagonal (different
columns); (d) the elements in a diagonal (different rows); (e) two
consecutive elements in the same diagonal. [In each figure, the
rectangular shape on the left denotes iteration space whereas that
on the right denotes data space].

constants and are determined by the array declaration statements.
Using these representations of iteration and data spaces, a refer-
ence to an array in such a loop nest can be represented by the pair
(A, 6) where A is the access (or reference) matrix and d is the offset
v_ec_tor [19,-121. Essentially, such a reference is an affine mapping
f(1) = AI + 8, where I is the iteration vector. For example, for
the reference X(i - 2j, j + 3) appearing in a two-deep loop nest

(i,j),wehaveA= (h -i) anda= (~).Ingeneral,fora

reference to an m-dimensional array inside an n-dimensional loop
nest, the access matrix is m x n and the offset vector is m x 1. An
important class of references is the class of uniformly generated
references (UGR), first defined by Gannon et al. [6].

Definition 1 Two references (AI, 01) and (AZ, 62) to the same ar-
ray are said to be uniformly generated if A1 = AZ.

An important characteristic of uniformly generated references from
the spatial locality point of view is that the memory layout determi-
nation process need to be carried out only once for each set of such
references.

In order to obtain high levels of performance from programs
runnmg on a machine that contains some sort of cache memory
hierarchy, cache locality should be exploited. That is, a datum
brought mto the cache should be reused as much as possible be-
fore tt is replaced. The reuse of the same data while it IS still in the
cache is termed as temporal locality, whereas the use of the nearby
data in a cache line is called spatial Zocnlity [19]. We stress that
a program may reuse the data, but if that data has been replaced
between reuses, we say that it does not exhibit locality. Consider
the example shown below.

do i = li, ui
do j = lj, uj

U(j) = V(i) + W(j,i) + X(i,j) + Y(i+j,j)
enddo

enddo

Assuming a column-major memory layout as the default (as for ex-
ample in Fortran), in this loop nest array U has temporal reuse in
the i loop and spatial reuse in the j loop. Array V has temporal
reuse in the j loop and spatial reuse in the i loop. Array W has
only spatial reuse in the j loop. Similarly arrays X and Y have only
spatial reuses in the i loop. Assuming that the trip count (number

of iterations) for both the loops is large, only the reuses associated
with the j loop will exhibit locality during execution. Therefore,
the exploitable reuses for this nest are the temporal reuse for V,
and the spatial reuses for U and W. A large portion of the previous
compiler research has focused on locality. Some of the previous re-
search along that direction will be discussed in Section 7. For this
example, interchanging two loops will improve the spatial locality
for array X, but destroy the spatial locality for array W. Alterna-
tively, if array X is stored in memory as row-major, without loop
interchange the spatial locality will be exploited for both Wand X.
Figure l(a) shows the original access pattern assuming a column-
major layout for array X. The rectangular shape on the left de-
notes iteration space whereas that on the right denotes data space.
The data accessed by two consecutive iterations fall into different
columns, which causes the spatial locality to be poor for this ref-
erence. Instead, as shown in Figure l(b), converting the memory
layout of this array into row-major causes two consecutive itera-
tions to access the same row. The situation for array Y, however,
is more complicated, as neither a column-major (Figure l(c)) nor a
row-major (Figure l(d)) layout storage improves locality. Instead,
this array should be stored diagonally in memory so that two con-
secutive iterations access elements on the same diagonal as shown
in Figure l(e).

In this paper, we are interested in deriving data transformations
for different arrays accessed in a loop nest such that the innermost
loop exhibits maximum spatial locality.

Definition 2 Two iteration points 7 = (il, iz, .,., in) and J =
(jl, jz, jn) are said to have “proximity in time” if for all k
(1 5 k < 72 - I), ik = jk.

Under this definition, for a two-dimensional iteration space given
by (i, j) and bounded by 1 5 i < 20 and 1 5 j 5 20, iterations
(2,3) and (2,lO) have proximity% time whereas iterations (2,20)
and (3,l) do not. It should be noted that this definition of proximity
in time is coarse-grained and does not hold in the boundaries of the
iteration space. But as will be shown later, it is very suitable for our
purposes.

3 Overview of Hyperplanes

In an m-dimensional space, a hyperplune can be defined as a set of
tuples (al, a2, a,) such that gral + gaaa + . . . + gmam = c,
where 91, ga,...,gm are rational numbers called hyperplane coeffi-
cients and c is a rational number called hyperplane constant [7, 161.
A hyperplane vector (91, ga , gm) defines a hyperplane family
where each member hyperplane has the same hyperplane vector
but a different c value. For convenience, we use a row vector
sT = (91,92 , gm) to denote such a hyperplane family whereas
Q corresponds to the column vector representation of the same hy-
perplane family. When there is no confusion we use gT instead of
-T
9 ’

We say that two data points (array elements) 21 and & (in a
multi-dimensional array) belong to the same data hyperplane 3 if

gT& = gT&.

For example, in a two-dimensional array space, a hyperplane vector
such as (0,l) indicates that two array elements belong to the same
hyperplane as long as they have the same value for the column in-
dex (i.e., the second dimension); the value for the row index does
not matter.

Two data elements may belong to more than one hyperplane as
well. For example, in a three-dimensional array space, two data
elements may belong to a hyperplane (0, 0,l) as well as to another
hyperplane (0, 1,O).

Definition 3 Two data points d; and & are said to have “proxim-
ity in space” or “spatial locality” for a given data hyperplane gT
if equation (1) holds for them.

70

Table 1: A few possible layouts and the associated hyperplanes for
two-dimensional arrays.

row-major column-major diagonal anti-diagonal
(19 0) (091) (1, -1) (Ll)

As an example, let us focus on hyperplane family defined by gT =
(0,l). Such a hyperplane family defines column hyperplanes on
a two-dimensional data space (see Figure l(a)). An array element
(a, b) belongs to a column (hyperplane) with constant c if and only
if b = c. In that case, we can say, for instance, that the array el-
ements (3,4) and (5,4) have spatial locality (because they are on
the same hyperplane) whereas the elements (3,4) and (3,8) do not.
In other words, as long as the two elements have the same value for
the column index they have spatial locality. As with the previous
definition, this spatial locality notion is coarse-grained and does not
hold at the array boundaries. Notice that, if we do not care about
the relative order of hyperplanes, we can use the hyperplane (0,l)
to denote column-major memory layout in a two-dimensional data

space. A few possible memory layouts and their associated hyper-
plane vectors for two-dimensional case are given in Table 1. In
three- or higher-dimensional cases, we may have two take into ac-
count more than one hyperplane families. For example, two data
elements in a three-dimensional array stored as column-major have
spatial locality if they have spatial locality with respect to (0, 0, 1)
and (0, 1,O); that is, if they have the same indices except for the
first dimension. The idea can be generalized to higher dimensions
as well.

With our definitions of “proximity in time” (for iteration space)
and “proximity in space” (for data space) we are now ready to give
our locality definition for a loop nest.

Definition 4 Ignoring the loop and array bounds, a loop nest has
“spatial locality” for a given reference R if whenever two iteration
points that have proximity in time access data points (both using
R) that have proximity in space.

Definition 5 Ignoring the loop and array bounds, a loop nest has
“perfect spatial locality” if it has “spatial locality” for each refer-
ence R that it encloses.

It should be noted that our definition of spatial locality is broader
than the usual meaning of the word as used by previous researchers.
We also note that our spatial locality definition is only with respect
to the innermost loop in the nest. Finally, we only consider self-
spatial reuses (i.e., reuses that originate from a single reference). If
a spatial reuse originates from distinct references, we call it group-
spatial reuse [19]. Since, the cases where group-spatial reuse intro-
duces an added dimension to the self-spatial reuse vector space are
very rare, in this paper, we focus only on self-spatial reuses.

4 Optimizing Spatial Locality Using Data Layout Trans-
formations

4.1 Problem Definition

We divide the problem of optimizing locality into two separate sub-
problems:
- Determination of the optima1 memory layouts that are defined

by hyperplanes; and
- Data space transformations to obtain (or implement) the opti-

mal layouts.
Each sub-problem can be solved independently. Previously, [4],
[8], [9] and [1 l] offered algorithms to handle the first sub-problem
whereas [15] and [ll] offered methods to handle the second prob-
lem. In fact, the second problem arises because there is no way of

specifying the array layouts in conventional languages like Fortran
and C.

Our main objective in this paper is to solve the first subproblem
mentioned above, namely, finding the optimal memory layouts for
each array referenced in a single nest. Once the compiler decides a
suitable layout for each array, it is a mechanical process to find the
corresponding data transformation matrices to implement the cho-
sen layouts. We choose to separate the problem of determining the
optimal layout from the problem of finding a suitable data transfor-
mation to implement it. The reason for this decision is to make our
framework easy to adapt to languages with different default layouts
as well as to have explicit memory layout representations.

The problem we address in this paper is defined as follows:
“Given a program in which a number of arrays are accessed, what
are the suitable memory layouts for each array such that the loop
nests in the program will have spatial locality (as defined earlier)
with respect to each reference that they enclose? If this is not pos-
sible, we want to maximize the number of references for which this
is possible.” As indicated in [3], due to some conditions related to
storage and sequence assumptions about the arrays and to passing
arrays as subroutine arguments, data transformations may not al-
ways be legal. We assume no such situation occurs for the example
programs given in this paper.

4.2 Determining the Optimal Layouts

Let us now concentrate on two consecutive iterations 1 and fmnezt
of a given loop nest of depth n. Such two iterations have identical
values for each loop index except for the innermost loop, i.e., 7 =
(il,. . . rin-l,i,)Tand~~nesl=(il,...,i,-l,l+a’n)T.Inorder
to exploit the locality for a refer_ence 4 denoted by access matrix
AR, two consecutive iterations I and Ineot defined above should
access two data elements that have spatial locality in the data space.
In particular, we want the accessed elements to be neighbors so that
they can reside on the same (or at least neighboring) cache line(s).
We can now give the following result.

Lemma 1 A given loop nest of depth n exhibits spatial locality
with respect to a reference R (denoted by an m x n access matrix
AR) to an m-dimensional array, if; for each vector g defining the
memory layout,

B E Ker{a,}

where a,, is the row vector form of the last column of AR.

(2)

Proof of this and the other lemmas in this paper can be found in
[lo]. Whenever we can find such a hyperplane 3, we use one such
that gcd(gl,g2, gm) is the smallest. Consider the following
loop nest.

do i = li, ui
do j = lj, uj

UCi,j) = V(j,i) + W(i+j,i) + X(i+j,j) + Y(n-j,i+j)
enddo

enddo

Assuming that the default layout is column-major for all arrays,
the only exploitable spatial reuses in this loop nest are due to ar-
rays V and W. Intuitively, for the optimal cache performance from
this loop nest, U should be row-major, arrays V and W should
be column-major, X should have a diagonal layout, and array Y
should have anti-diagonal layout. We now show how to determine
these layouts automatically. In this example, the access matrices

areAv= (; ;).Av-= (y +k? = (: ;),Ar =

11
(> 0 1 ,andAy=(y -:) Using Lemma (1) given above,

9% E Ker{(O,l)} ==+ gvT = (1,O); gV E Ker{(l,O)} *
gpT = C&l); 9W E Ker{(l,O)} * gWT = (0,l); gk E
Ker{(l, 1)) * gk T = (1, -1); and g? E Ker{(-1, 1)) -z

71

SY T = (1 1). From Table 1 we see that these vectors represent the
optimal layouts for this example.
Notice that, our approach as explained so far is superior to those
presented in [S] and [4] as neither of those approaches can detect
skewed (diagonal) layouts. In two-dimensional data spaces, a sin-
gle hyperplane family (denoted by ?j) is sufficient to describe the
memory layout of an array (provided that the relative orders of hy-
perplanes are not important). In higher dimensions however, we
may need to use more than one hyperplane family to describe a
memory layout. In the following subsection, we concentrate on
this issue and take a different look at data layouts.

4.3 Layout Relations

Let us for a moment focus on the layout of array X found in the
previous example. Such a layout implies that the elements X(i, j)
and X(i + 1, j + 1) should be stored consecutively in memory
in order to obtain the best spatial locality. This fact can also be
observed if we consider the spatial positions of two data elements
(dl , ds) and (d;, d)2) under such a layout. In order for these two
data points to have spatial locality, the following equality should
hold

(1,-l) (:;) = (1,-l) (:i)

This means dr - dz = di - dh. We refer to this equality as layout
relation. In fact, each layout relation corresponds to a hyperplane
and imposes a constraint between two data points; if those two data
points satisfy that constraint then they are said to have spatial lo-
cality with respect to the associated h

Y
perplane.

We now consider the following oop nest that accesses three
and two dimensional arrays; we will focus on V.

do i = li, ui
do j = lj, uj

do k = lk, uk
U(j,k,i-2) = V(k,i-l,j+k) + W(k,i+k)
X(i,j,k) = Y(i+j,i+k,j+k) - I

enddo
enddo

enddo

The access matrix for the reference to array V is Av =
(8 P n)

Consider data points (dl , dz, ds) and (di , d’, , d$). From Lemma (l),
gk E Ker{(l, O,l)} * gi* = (O,l,O) or gb* = (l,O, -1).
Consequently, we have two layout relations: d2 = d$ and dl -
da = & -.dL. These two layout relations, together; define the
memory layout for this array. We can view each layout relation
(constraint) as defining a locality group and the intersection of the
constraints defines a smaller locality group. To have a good spa-
tial locality, the elements in this smaller locality group should be
stored in consecutive memory locations. This can be seen from
Table 2 where the elements of the array V accessed for some rep-
resentative iterations are shown. We note that each group in the
table satisfies both ds = d’, and dl - d3 = d: - d$. For example,
from the first group V(l, 1,2) and V(2,1,3) should be stored in
memory together as they satisfy both of the constraints. As long
as the arrays are large enough, it is sufficient to store the elements
that satisfy both of the constraints as a locality group, provided that
these two constraints do not conflict with each other. The relative
order of these locality groups (if desired) are determined by con-
sidering a larger locality group. In this example, da = da denotes
a larger locality group which, for example, contains V(l, 1,2) and
V(l, 1,3). Similarly, the other constraint, dl - ds = d: - d$ also
determines a locality group which, for example, includes V(l, 1,2)
and V(l, 2,2). The choice between those locality groups is made
by considering the second column of the access matrix which cor-
responds to the second innermost loop in the nest. We are now
ready to give the following lemma.

72

Table 2: Three locality groups for reference V(k, i - 1, j + /e)
appearing in (i, j, Ic). Any two data elements in a column have
spatial locality with respect to each other.

Locality group I Locality group II Locality group III
(i,j,k) 1 data al. (i,j, k) 1 data el. (i,j, k) 1 data sl.

Lemma 2 A given loop nest of depth n exhibits spatial locality in
the kth innermost loop with respect to a reference R (defined by an
m x n access matrix An) to an m-dimensional array, ij for each
vector 3 defining the memory layout,

3 E Ker{%-k+l} (3)

where an-k+1 is the row vector form of column n - k + 1 of AR.

In our example, two data points (dl, d2, d3) and (d:, d:, dk) have
spatial locality in the second innermost (middle) loop if

Heregv E Ker{(O, O,l)} e gY* = (O,l, 0) or gvT = (l,O, 0).
Therefore, we have two locality relations: d2 = d’, and dl = d;.
Since, d2 = d: does exist as a constraint for the innermost loop
as well, we consider it as the dominant relation when we order the
locality groups in memory with respect to each other. That is, for
our example; the larger locality group will include, say, V(1,1,2)
and V(l, 1,3). But, for example, V(l, 1,2) and V(l, 2,2) will go
to different locality groups. We can now state the resulting layout
for this array as

da = d;
dl - ds = d; - d$

The two relations here together give the constraints that two data
items should satisfy in order to have spatial locality. The elements
that have spatial locality constitute a locality group. We can think
of such a locality group as intersection of the elements in two hy-
perplanes in the data space. The order of relations on the other
hand define relative ordering among these locality groups in mem-
ory. The set of constraints above, which define the memory layout
of array V, can also be expressed as a matrix

(
01 0
1 0 -1 >

where each row defines a hyperplane and corresponds to a layout
constraint. We refer to this matrix as layout (constraint) matrix and
denote it by LV for an array V.
In general, the approach works as follows:

l First, compute the relations corresponding to innermost loops
and divide the array elements into locality groups such that two
data elements are put in the same locality group if and only if they
satisfy all locality constraints.

l Then, to determine the relative order among locality groups,
look at the second innermost loop. If the locality groups can be
ordered by doing so, use the derived order; otherwise choose an
order arbitrarily.

l If the relations cannot be ordered by considering the second
innermost loop, it is possible to continue with the next outer loop,
and so on; but our experience shows that in practice this hardly
makes a difference.

4.4 Imperfectly Nested Loops

In this subsection we consider imperfectly nested loops that are in
general difficult to optimize using loop transformations. Consider
the following example.

do i s li, ui
do j = lj, uj

. . . U(i+j.j) . .
do k = lk, uk

. . . U(k, j+k) . . .
enddo

enddo
enddo

In this example, the array U is referenced in two different nest-

ing levels. The access matrices are Aa1 =
1 1

(>
o 1 , and Au2 =

(: Y :).
Since, for optimizing spatial locality in the inner-

most loop, we are only interested in the last columns of the access
matrices, and in this case both of the last columns are the same,
there is no conflict between the two references, and the array can
be stored in memory diagonally. Essentially, the observation is that
as far as the data transformations are concerned, the imperfectly
nested loops case is no different from the perfectly nested loops
case as conflicts between references to the same array can occur in
both cases.

An important point to note is that the access matrices for these
two references are completely different from each other. That is,
our approach, under specific conditions, can optimize an array that
has multiple (different-not necessarily uniformly generated) access
matrices in the program. These specific conditions are discussed in
Section 4.7.

4.5 Temporal Locality

A reference that has temporal locality in the innermost loop can be
kept in a register (through scalarization) during the entire execution
of the innermost loop. This can improve the performance substan-
tially in many cases. It should be emphasized that the data layout
transformations do not affect temporal locality of a reference di-
rectly. However, if the trip count of the innermost loop is small,
then the spatial locality in the second innermost loop may be im-
portant. Our approach takes this possibility into account. To see
how this is done, consider again the previous loop nest, assuming
that within the k loop there is an additional reference V(i + j, j).
The access matrix for this reference is

Ao=(; ; ;).
The last column of the matrix is zero, meaning that the reference
exhibits temporal locality in the innermost loop. In this case, our
method omits the zero column and considers the second column
from right. Applying our method to this column, we select diagonal
layout for this array. In general, the zero columns in the access
matrices can be dropped from consideration.

4.6 Multiple Loop Nests

Notice that the ability to handle imperfectly nested loops within a
unified framework also enables comniler to handle multinle loop
nests in a single step. As roposed i6 [ll], we can think of multi-
ple loop nests as a single oop nest enclosed by an outermost loop P
with a trip count of one. That, of course, adds a zero column as a
first column in the access matrices of all the references. But, since
we are interested in the last columns of access matrices, it does
not have any effect during the solution process. As an example,
consider the following program fragment.

do i = li, ui
do j = lj, uj

* . . U(i+j,j) . . .

enddo
enddo

do k = lk, uk
do 1 = 11, Ill

. . . U(l,l) *..
enddo

enddo

In this example, the array U is referenced in both these nests. The

original access matrices are Au1 =
(>

i f ,andALiZ = i :
(>

.

The compiler handles this program as if there is an extra outer-
most loop with trip count zero enclosing both the nests. In that

case, the modified access matrices are Au, = (i A :),and

&=(; ; ;)> where the first zero columns correspond

to that extra loop. As far as our method is concerned, nothing is
changed; and as before, this array can be stored in memory diag-
onally as the last columns of access matrices of the references are
the same.

4.7 Condition for Conflict-Free Layout Optimization

Now, we focus on conditions that should hold for multiple refer-
ences to the same array to be optimized in a conflict-free manner.
In order to optimize spatial locality for the innermost loop, our ap-
proach focuses on the last columns of access matrices; thus, intu-
itively, if the Ker sets of the last columns of two references are
conformant, (defined next) there will be no conflict in optimizing
both.

Definition 6 Let CI?~, . . . , Za be 9 vectors of the same size. The kr-
nel sets of these vectors, namely, Ker { F’l}, ’ ’ ‘, Ker { f3 }, are said
to be conformant iffor some i (1 < i < a), integer linear combina-
tions of the basis vectors of Ker@i} can generate all vectors that
belong to Ker{G}, . . ., KeT{C8}.

Now we state the condition on conflict-free layouts as follows.

Lemma 3 Suppose an array U is accessed by 9 diflerent refer-
ences with access matrices AU,, . , ,, AU.. Let al,, . . ., al, be the
row representations of the last columns of these access matrices
respectively. Then, these references can be optimized in a conflict-
free manner if Ker{arl}, . + ., Ker{al,} are conformant.

The next theorem follows directly from Lemma (3).

Theorem 1 Within a loop nest, if all references to a specific array
are uniformly generated, then all the references can be optimized
for spatial locality without any conflict.

Let us now consider the following loop nest that accesses a two-
dimensional array with four references.

do i = li. ui
do j = lj, uj

U(i+j,j) = U(j,i+j) + U(j,j) + U(i+j,Zj)
enddo

enddo

The access matricesare Au1 = (i :) , A”, = (F i) , Au, =

,andAv4=(A 1) Wenote that Ker{al,}, Ker{al,}
\ ,

and Ker{al,} are confirmant 6ut not Ker{al,}. Therefore, the
first three references can be optimized without conflict whereas
there is a conflict with the fourth reference. In such a case, our
method favors the largest subset of conflict-free references and de-
cides a diagonal layout with the hyperplane (1, -1) instead of (2, -1).
In the general case, however, whenever the conflicting references
occur in different nesting levels, a prioritizing scheme is needed.

73

Investigation into such a scheme however is beyond the scope of
this paper. Ideally, the references should be prioritized according
to their frequency of access. Profile information might be useful
for this purpose.

4.8 Multiprocessor case

Our data layout optimization technique works well in a multipro-
cessor environment as well for the following reasons:

0 Optimizing compilers are in general successful in paralleliz-
ing the outermost loops [181.

l Our data layout optimization framework generates a code
such that (if possible) only the innermost loops carry spatial reuse.

To see why these help in a multiprocessor environment, it is
sufficient to note that parallelizing a loop that carries spatial locality
is one of the main reasons for false sharing, a phenomenon that
occurs when two or more processors access logically separate data
placed on the same cache line [5]. Since our framework causes
spatial locality to be carried by the innermost loops, in most cases,
the compiler can safely parallelize (provided the dependences allow
it) the outermost loops without an apparent danger of false sharing.

In those situations where the compiler is able to parallelize only
the innermost loops, the performance of data layout transforma-
tions in multiprocessors maybe rather poor.

5 Determination of Data Transformation Matrix and Code
Generation

In this section, we show how to determine a suitable transforma-
tion matrix for each target layout. We propose a strategy to find
the necessary data transformation matrix in order to obtain the ‘ef-
fect’ of the desired (optimal) layout taking into account the default
(canonical) layout adopted by the compiler. Notice that the notion
of data transformation matrix is di&~ent from that of layout con-
straint matrix. The previous research [15] investigated the different
types of non-singular data space transformation matrices and their
effects on the behavior of programs.
A data transformation Mu for array U is applied in two steps:

l First, the access matrix (resp. offset vector) is transformed to
MUAU (resp. MUG).

l Second, the array bounds (i.e., array declarations) are changed
accordingly.

Let us first focus on the first step. Our transformation frame-
work uses the concept of layout constraint matrix, introduced ear-
lier. Assume that for an array U, Ludefoult is the default layout
(which we assume for now, without loss of generality, column-
major following the Fortran convention); and Ludcalred be the op-
timized layout. It is easy to see that, a data transformation matrix
Mu can convert the default layout to the optimized layout if

LlJ d+“lt Mu = LUd&ed. (4)

When this equation is solved for the elements of Mu, some of the
elements of Mu (or some relations between them) will be deter-
mined. The unknown elements can be filled in any way provided
that the resulting matrix will be non-singular.

We consider the following program once more, assuming that
the default layout is column-major; that is Ludefaurt = (0,l).

do i = li, ui
do j = lj, uj

U(i,j) = V(j,i) + W(i+j,i) + X(i+j,j) + Y(n-j,i+j)
enddo

enddo

From the previous section, the desired layout matrices can be found
as follows: ~~~~~~~~~ = (LO), hdesircd = (o,l), Lwdesircd = (o,U,
Lx dea,rcd = (1, -1)) and Lydcaircd = (1, 1). Using equation (4),

(0,l)Mu = (LO) * Mu = (; "a)

(O,l)Mv = CO,11 a Mv = ("0 ;)

(0,l)Mw = CO,11 * Mw = ("0 :)

(O,l)Mx =(1,-l) ==+ Mx = (; 3)

(0,l)MY = Cl,11 * MY = (1 ;)

where x stands for an unknown entry. These matrices should be
completed such that they should be nonsingular. Fortunately, the
completion algorithms offered by [12] can be used for this pur-

pose. An example solution is as follows. MU =
()

y A ,Mv =

(i Y),M~ = (A Y),M~ = (: -y),andMy =

10
(> 11 . From these matrices, compiler obtains the transformed

access matrices as follows:

MUAL’ = (; ;)(; ;)=(y ;)

MvAv = (; y)(; ;)=(y A)

MwAw = (A y)(; A)=(; ;)

MxAx = (: -;)(; :)=(: ;)

MYAY = (; y) (7 -;) = (y -;)

The offset vectors are transformed in a similar manner. The trans-
formed loop nest is as follows.

do i = li, ui
do j = lj, uj

U(j,i) = V(j,i) + W(i+j,i) + X(i+j,i) + Y(n-j,i+n)
enddo

enddo

The order of the loops and the loop bounds themselves are un-
changed; but the array declarations should be changed. Notice
that, all of the transformed references exhibit good spatial local-
ity (therefore, the loop nest exhibits perfect spatial locality), for the
column major layouts.

We should emphasize that our method can also transform the
same original loop nest assuming that the default memory layout is
row-major or diagonal (see [lo]).

We now briefly discuss the problem of modifying the array dec-
laration statements. Our approach uses the method of extreme val-
ues of affine functions first used by Banerjee [Z] in dependence test-
ing. Given an affine function of a number of variables and inequal-
ities that represent the bounds for the variables, the extreme values
method finds the maximum and minimum values of the affine func-
tion in the bounded region. The method applies to non-rectilinear
regions as well (see [2]). In this method, the computed extreme
values may not be tight as could have been if the Fourier-Motzkin
elimination [171 had been used. However, for many programs, ap-
plying Fourier-Motzkin elimination to obtain tight bounds may be
too expensive.

6 Experimental Results

We present performance results for eight programs: matmult is
a matrix-multiplication routine with two versions (with and with-
out loop unrolling)‘; syr2k is banded matrix update routine from
BLAS; adi is from Livermore kernels; btrix, vpenta and cholesky

'The unrolled version is calledmatmult/u.

74

are from Spec92/NASA benchmark suite; and transpose is a ma-
trix transpose program from NWChem [14], a software package for
computational chemistry. The matmult, syr2k and transpose
programs consist of a single loop nest whereas the others contain
multiple loop nests.

We conduct experiments with C versions of these programs.
For each program in the suite, we experiment with four different
versions: col- original program with column-major layout for all
arrays; row- original program with row-major layout for all arrays;
lopt- a version optimized by loop transformation techniques; and
dopt- a version optimized by data layout transformations studied
in this paper. The lopt versions are obtained by either applying
Li’s locality optimization approach [12] or allowing the native com-
piler to derive the best order.

In the experiments on multiple nodes, where possible, the coars-
est granularity of parallelism is exploited for all versions. In fact,
for the row, co1 and dopt versions exactly the same set of loops
are parallelized; therefore the degree of parallelism is the same. For
all programs, the degree of parallelism of the lopt version is either
better than or at least as good as the other versions.

We report execution times in seconds for up to 8 processors on
the SGI Origin 2000, distributed-shared-memory machine. This
machine uses 195MHz RlOOOO processors, 32KB Ll data cache
and 4MB L2 unified cache. The programs are compiled by the
native C compiler using -02 option. The timings are taken using
the gettimeofday routine.

The results on the SGI Origin 2000 are given in Figure 2. For
syr2k and transpose, dopt is the winner. The dopt version is
also winner for vpenta up to 4 processors. For matmult, lopt
outperforms dopt, though the performances are very similar. For
the cholesky program, the lopt version is the clear winner, mostly
because of improved parallelism. For adi, the lopt version is bet-
ter than dopt. For btrix, on the other hand, up to 4 processors,
dopt performs better than lopt; beyond 4 processors, however, the
false sharing dominates and dopt performs poorly.

From our experiments, we observe that the data layout transfor-
mations are very effective in optimizing cache locality for unipro-
cessors. Although in general data layout optimizations can be con-
sidered successful for multiprocessor case, in cases where outer-
most loop parallelism cannot be obtained, the performance may be
rather poor. Also, in some cases, the loop transformations may also
improve parallelism; thus, may have additional advantage over data
transformations (as in cholesky and btrix).

7 Related Work

Loop transformations have been used for optimizing cache locality
in several papers [12, 19, 131. Results have shown that on several
architectures the speedups achieved by loop transformations alone
can be quite large.

Only a few papers have considered data transformations to opti-
mize locality. O’Boyle and Knijnenburg [1.5] focus on restructuring
the code given a data transformation matrix; though they show their
method can be used for optimizing spatial locality. In comparison,
we concentrate more on the problem of determining suitable lay-
outs, derive a simple technique that can be applicable to multiple
nests as well. Anderson, Amarasinghe and Lam [l] propose a data
transformation technique for distributed shared memory machines.
By using two types of data transformations (strip-mining and per-
mutation), they try to make the data accessed by the same processor
contiguous in the shared address space. While they restrict them-
selves to strip-mining and permutation only, we consider all types
of layout transformations expressible by hyperplanes. Cierniak and
Li [4] present a unified approach to optimize locality. Their ap-
proach employs both data space and iteration space transforma-
tions; but restricts search space for both types of transformations.
Leung and Zahorjan [1 l] present an array restructuring framework
to optimize locality. As against theirs, our technique is based on ex-

plicit representation of memory layouts. Finally, the previous work
of the authors [8, 91 considers only dimension re-indexing and and
like [4] uses a sort of exhaustive search to detect array layouts.

8 Summary

In this paper, we presented an approach based on hyperplane the-
ory and available linear algebra framework used by parallelizing
compilers for optimizing memory layouts of arrays. Our approach
divides the layout optimization problem into two subproblems: (1)
detecting the optimal layouts for each array and (2) implementing
the optimal layouts within a compiler that has a default layout for
all arrays. We mainly concentrated on the first subproblem. Exper-
imental results on SGI Origin 2000 indicate that our framework can

find opportunities for optimizing spatial locality without changing
the access pattern of the loops. Our technique can be applied to
any architecture with a memory hierarchy including uniprocessor
machines.

References

[I] J. M. Anderson, S. R Amarasinghe, and M. S. Lam. Data and computation
transformations for multiprocessors. In Proc. 5th SIGPLAN Symp. Prin. &
Prac. Par. Pmg.,, July 1995.

[Z] U. Banejee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Norwell, MA, 1988.

[3] R. Chandra, D. Chen, R. Cox, D. Maydan, N. Nedeljkovic, and J. M. Ander-
son. Data-distribution support on distributed-shared memory multiprocessors. In
Pmt. Programming Language Design and Implementation (PLDI), 1997.

[4] M. Ciemiak, and W. Li. Unifying data and control transformations for distributed
shared memory machines. Proc. SIGPLAN ‘95 Conference on Programming
Language Design and Implementation, La Jolla, California, June 1995.

[S] S. J. Eggers, and T. E. Jeremiassen. Eliminating false sharing. In Pmt. the 1991
Internntional Conference on Parallel Processing, Aug 1991.

[6] D. Cannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformations, Journal of Par. & Dist. Camp.,
5:587-616, 1988.

[7] C.-H. Huang, and P. Sadayappan. Communication-free partitioning of nested
loops. In Journal of Parallel and Distributed Computing, 19:YO-102 (1993).

[8] M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algorithm for op-
timizing locality in loop nests, In Proc. 11th ACM International Conference on
Supercomputing, pages 269-276, Vienna, Austria, July 1997.

[Y] M. Kandemir, I. Ramanujam, and A. Choudhary. Compiler algorithms for opti-
mizing locality and parallelism on shared and distributed memory machines. In
Pmt. PACT97, pages 236-247,1997.

[lo] M. Kandemir, A. Choudhary, N. Shenoy, P. Banejee, and J. Ramanujam. A data
layout optimization technique based on hyperplanes. Technical Report, CPDC-
TR-97.04, Northwestern University, December 19Y7.

[ll] S.-T. Lang, and J. Zahojan. Optimizing data locality by army restructuring.
Technical Report, Dept.of Computer Science and Engineering, TR 95-09-01,
Sept 1995.

1121 W. Li. Compiling for NUMA parallel machines. Ph.D. dissertation, Cornell Uni-
versity, Ithaca, NY, 1993.

[I31

1141

1151

1161

v71

1181

[I91

K. McKinley, S. Car, and C.W. Tseng. Improving data locality with loop trans-
formations. ACM Transactions on Programming Languages and Systems, 1996.

NWChem: a computational chemistry package for parallel computers, version
1.1, 1995. High Performance Computational Chemistry Group, Pacific North-
west Laboratory, Richland, WA 99352.

M. O’Boyle, and P. Knijnenburg. Non-singular data transformations: Definition,
validity, applications. In Pmt. 6th Workshop on Compilers for Parallel Contput-
em, pages 287-297, Aachen, Germany, 1996.

J. Ramanujam, and P. Sadayappan. Compile-time techniques for data distribution
in distributed memory machines. In IEEE Trans. Par. & Dist. Sys., 2(4):4721182,
Oct. 1991.

A. Schrijver. Theory of Linear and Integer Pmgramming, Wiley-Interscience
series in Discrete Mathematics and Optimization, John Wiley and Sons, 1986.

E. Ton%, C-W. Tseng, M. Martonosi, and M. Hall. Evaluating the impact of
advanced memory systems on compiler-parallelized codes. In Pmt. PACT95

M. Wolf, and M. Lam. A data locality optimizing algorithm. In Pmt. SIGPLAN
Conf Pq. Lang. Des. & In@., pages 30-44, 1991.

75

(a) matmull (no unrolling) (b) matmult (unrolling factor=4)

I

350

1 2 3 4 5 6 7 6
processors

(c) syr2k

70

1 2 3 4 5 6 7 6

(e) cholesky

1 2 3 4 5 6 7 6 1 2 3 4 5 6 7 6

(9) adi

I 2 3 4 5 6 7 6

(d) vpenta

1 2 3 4 5 6 7 n

(f) btrix

(i-l) transpose
80

70

60

L1 50

P - 40

E
‘G 30

20

10

1 2 3 4 5 6 7 6
PPXWXSOW

Figure 2: Execution times (in seconds) on the SGI Origin 2000. [The problem sizes (in doubles) are as follows: matmult and matmult/u -
1024 x 1024 matrices; syr2k - 1024 x 1024 matrices and b = 300; vpenta - 4 x 720 x 720 3D arrays and 720 x 720 2D arrays; cholaky
- the size parameters are set to 2500; btrix - the size parameters are set to 150; adi - 1000 x 1000 x 3 arrays; and transpose - two
2048 x 2048 matrices. The programs from Spec92 and the adi and transpose codes have an outer timing loop].

76

