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Abstract. This paper describes a tiling technique that can be used by application programmers and
optimizing compilers to obtain I/O-efficient versions of regular scientific loop nests. Due to the par-
ticular characteristics of I/O operations, a straightforward extension of the traditional tiling method
to I/O-intensive programs may result in poor I/O performance. Therefore, the technique presented in
this paper adapts iteration space tiling for I/O-performing loop nests to deliver high I/O performance.
The generated code results in huge savings in the number of I/O calls as well as the volume of data
transferred between the disk subsystem and main memory. Our experimental results on the IBM SP-2
distributed-memory message-passing multiprocessor demonstrate that the reduction in these two param-
eters, namely, the number of I/O calls and the transferred data volume, can lead to a marked decrease
in overall execution times of I/O-intensive loop nests. In a number of loop nests extracted from several
benchmarks and math libraries, we were able to improve the execution times by an average 42.5% for
one data set and by an average 47.4% for another.
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1. Introduction

An important problem that scientific programmers face today is one of writing
programs that perform I/O in an efficient manner. Unfortunately, a number of fac-
tors render this problem very difficult. First, programming I/O is highly architecture-
dependent, i.e., low-level optimizations performed with a specific I/O model in
mind may not work well in systems with different I/O models and/or architectures.
Second, there is very little help from compilers and runtime systems to optimize
I/O operations. While optimizing compiler technology [49] has made impressive
progress in analyzing and improving regular array access patterns and loop struc-
tures in scientific codes, the main focus of almost all the work published so far is
the so called CPU-intensive computations, i.e., computations that make frequent
use of the cache–main memory hierarchy rather than I/O-intensive computations
[8, 9, 50, 51], where the main memory–disk subsystem hierarchy is heavily utilized.
Exploiting locality in I/O-intensive computations that operate on disk-resident data
might be more important since the disk access costs are 3 to 5 orders of magnitude
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higher than memory access costs, whereas memory access times are just an order
of magnitude higher than cache accesses. Third, the large quantity of data involved
in I/O operations makes it difficult for the programmer to derive suitable data
management and transfer strategies. A feasible solution perhaps is to use exist-
ing parallel I/O libraries [42, 46] or parallel file systems [15, 38] that, in general,
are highly architecture-dependent and application-insensitive. Also, the extensibil-
ity of the parallel I/O libraries is severely limited by the design principles and the
programming language used in the implementation.
It is extremely important to perform I/O operations as efficiently as possible,

especially on parallel architectures, which are natural target platforms for grand-
challenge I/O-intensive applications [20]. It is widely acknowledged by now that the
per-byte cost (time) of I/O is orders of magnitude higher than those of communi-
cation and computation [17]. A direct consequence of this phenomenon is that no
matter how well communication and computation are optimized, poor I/O perfor-
mance can lead to unacceptably low overall performance on parallel architectures.
Given the current improvement rate of processor speeds, and memory and disk
access times, we can only expect this problem to become worse in the future if
not addressed correctly. Therefore, we believe that writing I/O-intensive codes is
very crucial. Unfortunately, we cannot let the job of handling very large datasets to
virtual memory (VM), as it is already known that a VM-based approach may not
perform well for scientific codes.
A subproblem within this context is that of writing I/O-efficient versions of loop

nests that are common in regular scientific codes. This subproblem is very important
since the bulk of the execution time in scientific codes is spent in loop nests. Thus, it
is reasonable to assume that in scientific codes that perform frequent I/O, a majority
of the execution time will be spent in I/O-intensive loops, i.e., loop nests that access
disk-resident multidimensional arrays. Having decided to focus on loop structures,
the important issue to be addressed is the extent to which the existing optimiz-
ing compiler techniques developed for nested loops can be used for improving the
behavior of the loops that perform I/O. Although at a first glance, it appears to be
perfectly reasonable to assume that the available compiler technology [31, 48, 49]
developed for optimizing the cache–main memory hierarchy can be used for opti-
mizing main memory—disk subsystem hierarchy as well, as we show in this paper,
this does not necessarily hold. In particular, iteration space (loop) tiling [14, 22, 29,
37, 49], a prominent cache locality enhancing technique, can result in suboptimal
I/O performance if applied to I/O-performing nests without modification.
In this paper, we propose a new tiling approach called I/O-conscious tiling that

is customized for I/O performing loops that access large disk-resident datasets.
Our approach takes as input an unoptimized loop nest (without any I/O calls
inserted) and outputs an optimized version with explicit I/O calls. We believe that
this approach will be useful for at least two reasons. First, we express our solu-
tion in a simple yet powerful framework so that in many cases it can be carried
out by application programmers without much difficulty. Second, we show that it
is also possible to automate the approach so that it can be implemented within
an optimizing compiler framework without increasing the complexity of the com-
piler and compilation time excessively. Experimental results obtained on the IBM
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SP-2 distributed-memory message-passing multiprocessor reveal that our approach
achieves significant improvements in overall execution times in comparison with
traditional tiling. This is largely due to the fact that, while performing tiling, our
approach takes I/O specific factors (e.g., file layouts) into account, which leads to
substantial reductions in the number of I/O calls as well as the number of bytes
transferred between main memory and disk.
The remainder of this paper is organized as follows. Section 2 reviews the basic

principles of tiling, focusing, in particular, on state-of-the-art tiling strategy. Sec-
tion 3 discusses why the traditional tiling approach may not be very efficient in
coding I/O-performing versions of loop nests found in regular scientific codes and
makes a case for our modified (I/O-conscious) tiling approach. Section 4 describes
our technique in detail and also discusses briefly how multiple loop nests and whole
programs with procedures can be handled. Section 5 presents our experimental
results obtained on the IBM SP-2. Section 6 reviews related work on data locality
and I/O optimizations. Section 7 summarizes our experience and briefly comments
on future work.

2. Tiling for data locality

In this section, we briefly discuss traditional tiling and explain how it improves
locality properties of scientific loop nests.
We say that an array element has temporal reuse when it gets accessed more than

once during the execution of a loop nest [21]. Spatial reuse, on the other hand, occurs
when nearby items are accessed [21]. The definition of nearby can take on different
forms depending on the granularity of the computation at hand and the memory
hierarchy in question. For example, with many CPU-intensive computations where
the data sets fit in main memory, the array elements (data items) mapped on the
same cache line can be considered to have spatial locality; whereas in I/O-intensive
computations, the elements mapped on the same memory page are said to have
spatial locality.
Tiling (or blocking) [14, 22, 29, 37, 47, 52] is a well known optimization technique

for enhancing memory performance and parallelism in nested loops. Instead of
operating on entire columns or rows of a given array, tiling enables operations on
multi-dimensional sections of arrays at one time. The aim is to keep the active
sections of the arrays in faster levels of memory hierarchy as long as possible so
that when an array item (data element) is reused, it can be accessed from the faster
(higher level) memory instead of the slower (lower level) memory. In the context of
I/O-performing loop nests, the faster level is the main memory and the slower level
is the disk subsystem (secondary storage). Therefore, we want to use tiling to enable
the reuse of the array sections in memory as much as possible while minimizing
disk activity.
For an illustration of tiling, consider the matrix-multiply code given in Figure 1(a).

Let us assume that the layouts of all the arrays are row-major. It is easy to see that
from the locality perspective, this loop nest may not exhibit a very good perfor-
mance (depending on the actual array sizes and cache capacity). The reason is that,
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Figure 1. (a) Matrix-multiply nest (b) Locality-optimized version (c) Tiled version (d) Tiled version with
I/O calls (e) I/O-conscious tiled version (f) I/O-conscious tiled version with I/O calls.

although array Z has temporal reuse in the innermost loop (the k loop), and suc-
cessive iterations of this loop access consecutive elements from array X (i.e., array X
has spatial reuse in the innermost loop), the successive accesses to array Y touch
different rows of this array; this is not a good style of access for a row-major array.
Fortunately, using state-of-the-art optimizing compiler technology [31, 48], we can
derive the code shown in Figure 1(b), given the code in Figure 1(a). In this so
called optimized code, the array X has temporal reuse in the innermost loop (the j
loop now) and the arrays Z and Y have spatial reuse, meaning that the successive
iterations of the innermost loop touch consecutive elements from both the arrays.
However, unless the faster memory in question is large enough to hold the entire

N×N array Y, many elements of this array will probably be replaced (in the case of
caches and virtual memory systems) from the faster memory before they are reused
in successive iterations of the outermost i loop. Instead of operating on individual
array elements, tiling achieves reuse of array sections by performing the calcula-
tions (in our case matrix-multiply) on array sections (in our case sub-matrices).
Figure 1(c) shows the tiled version of Figure 1(b). This tiled version is from [14]. In
this tiled code, the loops kk and jj are called the tile loops, whereas the loops i, k,
and j are the element loops. Here, it is important to choose the blocking factor B
such that all the B2 + 2NB array items accessed by the element loops i, k, j should
fit in the faster memory. In other words, the tiled version of the matrix-multiply
code operates on N×B sub-matrices of arrays Z and X, and a B×B sub-matrix of
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array Y at one time. Assuming that the matrices in this example are in main mem-
ory to begin with, ensuring that B2 + 2NB array elements can be kept in cache will
be sufficient to obtain high levels of performance. In practice, however, depend-
ing on the cache size, cache associativity, and absolute array addresses in memory,
cache conflicts [21] can occur. Consequently, the blocking factor B is set to a much
smaller value than necessary [14, 29].
One important issue that needs to be clarified is how to select the loops that are

to be tiled. A simple solution would be, as long as it is legal to do so (i.e., data
dependences [49] allow it), to tile all the loops in the nest. However, this straight-
forward approach may result in unnecessary tiling; it also leads to problems with
imperfectly nested loops [26]. More sophisticated techniques attempt to tile only the
loops that carry some form of reuse. For example, the reuse-driven tiling approach
proposed by Xue and Huang [52] attempts to tile a given loop nest such that the
outer untiled loops will not carry any reuse and the inner tiled loops will carry all
the reuse and, will consist of as few loops as possible. Notice that unnecessary tiling
only introduces extra loop control overhead. Although in the matrix-multiply nest,
it might be both legal and beneficial to tile all the loops (as all three loops carry
some kind of reuse), the outermost loop (the i loop) is not tiled in most published
works (e.g., [14]), most probably due to some overhead concerns. We stress that
since, after the linear locality optimizations (a step preceding tiling), most of the
inherent reuse in the nest will be carried by the innermost loop, almost all tiling
approaches tile the innermost loop, provided it is legal to do so.
To sum up, tiling improves locality in scientific loop nests by capturing data reuse

in the inner element loops. Among the important issues in applying tiling are the
choice of the loops to be tiled and the selection of a suitable blocking factor (tile
size). However, a straightforward application of traditional tiling to I/O-performing
loop nests may not be very effective, as shown in the following section.

3. Tiling for disk-resident data

3.1. The problem

At first glance, the traditional tiling method summarized above seems to be readily
applicable to computations on disk-resident arrays as well. Returning to our matrix-
multiply code, assuming that we have a total memory of size H that can be allocated
to this computation and all the arrays are disk-resident, we only need to ensure that
B2 + 2NB ≤ H. This tiling scheme is shown in Figure 1(d). The routine (ioread)
is an I/O routine that reads a section of a disk-resident array from file on disk
into main memory; (iowrite) performs a similar transfer in the reverse direction.
For a two-dimensional disk-resident array U, U[a:b,c:d] denotes a section of (b -
a + 1) × (d - c + 1) elements; the sections for higher-dimensional arrays are
defined similarly. It should also be emphasized that since the sections are brought
into main memory by explicit I/O commands, the conflict problem mentioned above
for cache memories (and for virtual memories as well) does not arise here.
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While such a straightforward adaptation of the state-of-the-art tiling leads to data
reuse for the array sections brought into memory, it can cause poor I/O performance.
The reason for this becomes obvious from Figure 2(a), which illustrates the layout
of the arrays and representative sections from arrays (bounded by thick lines) that
are active in memory at the same time. The lines with arrows within the arrays
indicate the storage order—row-major in our case—and each circle corresponds to
an array element. Let us take a closer look at how a section of array Z is read from
the file into main memory. Since the array is row-major in file, in order to read the
16 elements shown in the section, it requires 8 I/O calls to the file system, each for
only 2 consecutive array elements. Note that even though a state-of-the-art parallel
I/O library (e.g., [12, 42], or [46]) allows us to read this rectangular array section
using only a single high-level library call, since the elements in the section to be
read are not entirely consecutive in file, it will still require 8 internal I/O calls for
the said library to read the section. It should also be noted that the alternative of
reading the whole array and sieving out the unwanted array elements is, in most
cases, unacceptable due to huge array sizes in I/O-intensive codes. Similar situations
also occur with arrays X and Y.

The source of the problem here is that the traditional tiling attempts to optimize ‘what’
to read into the faster memory, not ‘how’ to read it. While this does not cause a major
problem for the cache–main memory interface, the high disk access times render
‘how to read’ a real issue. A simple rule is to always read array sections in a layout
conformant manner. For example, if the file layout is row-major, we should try to
read as many rows of the array as possible in a single I/O call, constrained only by
data dependences and available memory size. This technique has been successfully
used in optimizing I/O-intensive parallel codes in the past [42, 44, 45]. In our matrix-
multiply example, we have failed to achieve this due to the tiling of the innermost

Figure 2. (a) Unoptimized and (b) Optimized tile access patterns for a matrix-multiply nest.
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j loop, which reduces the number of elements that can be consecutively read in a
single I/O call. Since this loop carries spatial reuse for both Z and Y, we should use
this loop to read as many consecutive elements as possible from the said arrays. For
example, instead of reading an N×B section from array Z, we should try to read a
B×N section as shown in Figure 2(b) if it is possible to do so.
Two important points merit further discussion. First, we note from Figures 1(d)

and 2(a), although the traditional tiling approach results in poor I/O performance,
the locality for the array sections that are active in memory at a given time is quite
good. For example, once the highlighted array section of Z (in Figure 2(a)) is read
into memory, the innermost element loop j accesses this section along the (sub-
rows) that are consecutive in memory. This good behavior is not surprising, as this
is why the traditional tiling theory is developed: to optimize array accesses in mem-
ory. Our approach, as presented in the next subsection, retains this good memory
behavior of traditional tiling while improving its poor I/O behavior significantly.
The second point concerns file layouts. One could argue in favor of retaining

the original tiling pattern shown in Figure 1(d) and selecting non-traditional file
layouts for arrays. For example, in Figure 2(a), instead of using row-major file lay-
out for array Z and X, we could have used a so called blocked layout [4] so that
all 16 array elements shown in the highlighted section would be stored in consecu-
tive locations in file. While such an approach would be a definite improvement, we
did not pursue it further in this paper for two reasons. First, as noted by Wolf [47]
among others, although such a layout optimization technique may be implemented
in a sophisticated optimizing compiler, scientific programmers are generally used to
working with traditional layouts. For example, performance-conscious programming
becomes tedious when different arrays have different blocked layouts; in addition,
this severely reduces portability. In particular, complex array access functions that
appear when blocked layouts are used may require non-trivial strength-reduction
techniques [4]. Second, in some I/O-intensive applications the file layouts are inher-
ited from a preceding computation (i.e., they are fixed); it might be prohibitively
expensive to transform the layouts in files. Instead, our approach attempts to get
most of the benefits of the blocked layouts by reconsidering carefully which loops to
tile and by reading as many consecutive elements as possible from files in individ-
ual I/O calls, observing the limitations such as data dependences and limited main
memory. Nevertheless, in our experiments (as presented in Section 5), we compare
our approach to a hand-optimized approach, which uses blocked file layouts.

3.2. Our solution

Our solution to the tiling problem is as follows. As a first step, prior to tiling,
the loops in the nest in question are reordered (or transformed) for maximum
data locality in the innermost loop. While such an order can be obtained using an
optimizing compiler such as SGI MIPSpro [39], experienced scientific programmers
are also good at selecting appropriate loop orders for a given language and its
default memory layout. In the second step, we tile all the loops by a blocking factor B
except the innermost loop, which goes untiled. Since, after ordering the loops for
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locality, the innermost loop will (hopefully) carry the highest amount of spatial
reuse in the nest, by not tiling it, our approach ensures that the number of array
elements read by individual I/O calls will be maximized.
As an application of this approach, we consider once more the matrix-multiply

code given in Figure 1(a). After the first step, we obtain the code shown in
Figure 1(b). After that, tiling the i and k loops and leaving the innermost loop
(j) untiled, we reach the code shown in Figure 1(e). Finally, by inserting the
ioread and the iowrite calls in appropriate places between tile loops, we have
the final code given in Figure 1(f). The tile access pattern for this code is shown in
Figure 2(b). We note that the section-reads for arrays Z and Y, and the section-writes
for array Z are very efficient (given the fact that the file layouts are row-major).
For example, as compared to the 8 calls required to read an N×B section of array
Z in Figure 2(a), in Figure 2(b), a B×N section of the same array can be read by
issuing only �16/w� I/O calls where w is the maximum number of elements that can
be read in a single I/O call. Of course, the figures given in this example (e.g., 8, 16)
are for illustration purposes only. In some I/O-intensive applications, it is possible
to reduce the number of I/O calls to as low as 1 per array section [23]. It should
be stressed that the amount of memory used by the sections shown in Figures 2(a)
and (b) is exactly the same.
It should also be noted that the I/O access pattern of array X is not as efficient

as compared to arrays Z and Y. This is due to the nature of the matrix-multiply
nest and may not be as important. Since the sections of array X are read much less
frequently as compared to those of the other two arrays (because it has temporal
reuse in the innermost loop), the impact of the I/O behavior of array X on the
overall I/O performance of this loop nest will be less than that of the other two
arrays. Of course, it is always possible to store array X in file such that the elements
that reside in the same array section are stored in consecutive locations in file. As
mentioned earlier, however, such a blocked storage scheme has its own problems.
Another important issue that we have not discussed so far is the placement of

I/O calls in a given tiled nest. In fact, there are two subproblems here: (1) where
are the I/O calls placed?; and (2) what are the parameters to the I/O calls? (i.e.,
what sections are to be read and written?) Determining the placement of I/O calls
is relatively simple. For one, the I/O calls should definitely be outside the element
loops, as these loops work on the array sections that are active in memory. Then,
all we need to do is to look at the indices used in the subscripts of the reference
in question, and insert the I/O call associated with the reference in between appro-
priate tile loops. For example, in Figure 1(e), the subscript functions of array Z use
only loop indices i and j. Since there are only two tile loops, namely ii and kk,
and only ii controls the loop index i, we insert the I/O read routine for this refer-
ence just after the ii loop, as shown in Figure 1(f). But, the other two references
use the element loop index k, which varies with the tile loop index kk; therefore, we
need to put the read routines for these references inside the kk loop (just before
the element loops). The write routines are placed using similar reasoning.
For handling the second subproblem, namely, determining the sections to read

and write, we can use the method of extreme values of affine functions first used
by Banerjee [5, 49] for data dependence testing. Given an affine function of a
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number of variables and inequalities that represent the bounds for the variables, the
extreme values method determines the maximum and minimum values of the affine
function in the bounded region. This method applies to non-rectilinear regions as
well. We can describe this method using a simple example. Consider the affine
function f �i� j� = 6i− 2j+ 1 with the bounding region 
�i� j��1 ≤ i ≤ 10 and i+ 1 ≤
j ≤ 30− i�. Then,

For the upper bound For the lower bound

f �i� j� ≤ 6i− 2j + 1 f �i� j� ≥ 6i− 2j + 1

f �i� j� ≤ 6i− 2�i+ 1� + 1 f �i� j� ≥ 6i− 2�30− i� + 1

f �i� j� ≤ 4i− 1 f �i� j� ≥ 8i− 59

f �i� j� ≤ 39 f �i� j� ≥ −51

Therefore, the upper bound of f �i� j� is 39 and the lower bound is −51; that is, the
values that the function f take on fall in the interval −51 � 39. We use a similar
analysis to compute the range of array elements accessed by a complete execution of
the element loops. Let us concentrate now on the reference Z (i,j) in Figure 1(e).
We want to find the range of elements for each subscript function of this reference.
Since ii ≤ i ≤ min(N, ii + B - 1), the range of elements accessed by the first
subscript is ii: min(N, ii + B - 1). Similarly, the range of elements accessed
by the second subscript is 1:N as 1≤ j≤ N. Consequently, the array section that
needs to be read from a file for the reference Z(i, j) is [ii: min(N, ii + B -
1), 1 : N]. The array sections for the other references are found using the same
approach. For a more complex example, consider a reference such as Z(i + j, k)
in a loop nest enclosed by the tile loops ii and kk, and by the element loops
i, k and j (in that order) from the outermost to innermost. Assuming that ii ≤
i ≤ min(N, ii + B - 1), kk ≤ k ≤ min(N, kk + B - 1), and 1 ≤ j ≤ N, we
need to read the array section [ii + 1 : min(N, ii + B - 1 + N, kk : min
(N, kk + B - 1)] for this reference.
In order to demonstrate the inefficiency of the traditional tiling approach using

another example, we consider the successive-over-relaxation (SOR) kernel shown in
Figure 3(a) assuming that the default file layout is column-major. The tiled version
shown in Figure 3(b) is from Coleman and McKinley [14]. Assuming an available
memory of size H, reading a B×N (≤H) array section requires N I/O calls. On the
other hand, using the I/O-conscious tiling approach, we can obtain the code shown
in Figure 3(c). Now, reading an N×B section requires only B I/O calls, assuming that
in a single I/O call, at most N items can be read from file into memory. Of course, in
this nest, due to multiple (uniformly generated [19]) references to the same array,
we can only process (N - 1)B of the total NB elements transferred from a file. The
issue of optimizing I/O accesses in the presence of stencil-like computations (taking
boundary data into account) is orthogonal to the problem addressed in this paper
and can be found elsewhere [7, 8].
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Figure 3. The SOR kernel. (a) Original nest (b) Tiled nest (c) I/O-conscious tiled nest.

4. Automating the approach

4.1. Desired forms for array references

In the examples given so far, it was always straightforward to tile the loop nest. The
reason for this is the presence of the innermost loop index in at most one subscript
position of each reference. In those cases where the innermost loop index appears
in more than one subscript position, we have the problem of determining the section
shape. Consider a reference such as Y(j + k, k) to a disk-resident array Y, where
k is the innermost loop index. Since, in our approach, we do not tile the innermost
loop, when we try to read the entire bounding box that contains all the elements
accessed by the innermost loop, we may end up having to read almost the whole
array. Of course, this is not acceptable in general as in I/O-intensive routines, we
may not have the luxury of reading the whole army into memory at one move. This
situation occurs in the example shown in Figure 4(a). Assuming row-major layouts,
if we tile this nest as is using the I/O-conscious approach, there will be no problem
with array Z, as we can read a B × N section of it using the fewest number of I/O
calls. However, for array Y, it is not trivial to identify the section to be read because
the innermost loop index accesses the array in a diagonal fashion. The source of
the problem is that this array reference does not fit our criterion, which assumes,
at most, a single occurrence of the innermost loop index. In our example reference,
the innermost loop index k appears in both the subscript positions.

Figure 4. (a) An example loop nest; (b–e) Transformed versions of (a).
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In general, we want each reference to an m-dimensional row-major array Z to be
in either of the following two forms:

Z�f1� f2� � � � � fm�: In this form, fm is an affine function of all loop indices with a
coefficient of 1 for the innermost loop index whereas f1 through
f�m−1� are affine functions of all loop indices except the inner-
most one.

Z�g1� g2� � � � � gm�: In this form, all g1 through gm are affine functions of all loop
indices except the innermost one.

In the first case, we have spatial reuse for the reference in the innermost loop, and
in the second case, we have temporal reuse in the innermost loop. Since, according
to our I/O-conscious tiling, all loops except the innermost one will be tiled using a
blocking factor B, for the arrays that fit in the first form, we can access B × · · ·×
B× N sections (assuming N is the number of iterations of the innermost loop), which
minimizes the number of I/O calls per array section. As for the arrays that fit into
the second form, we can access sections of B × · · · × B × B, as all the loops that
determine the section are tiled. Our task, then, is to bring each array (reference)
to one of the forms given above. The good news is that, especially in linear-algebra
kernels, the array references are generally in one of these forms to begin with.
However, in banded-matrix codes, we have references with coupled-indices such as
Z(k, j + k), where k is the innermost loop index [31].

4.2. The algorithm

In the following, we propose a compiler algorithm to transform a loop nest such
that the resultant nest will have references in one of the forms mentioned above.
We assume that the compiler will determine the most appropriate file layouts for
each array as well as a suitable loop (iteration space) transformation; that is, we
assume that the layouts are not fixed as a result of a previous computation phase.
Our algorithm, however, can be extended to accommodate those cases where file
layouts are fixed at specific forms.
The file layout for an m-dimensional disk-resident array can be in one of m!

forms, each corresponding to the linear layout of data in file(s) by a nested traver-
sal of the axes in some predetermined order. The innermost axis is called the
fastest-changing dimension [25]. As an example, for row-major file layout of a two-
dimensional array, the second dimension is the fastest changing dimension. Thinking
of each element as a sub-matrix, the method that will be presented can also han-
dle the blocked file layouts. In other words, the methods presented in this paper
are applicable, with appropriate modifications, to blocked layout cases as well. In
the following, we assume that the transformed arrays will be stored in file(s) as
row-major.
In our framework, each execution of an n-deep loop nest is represented using

an iteration vector Ī = (i1, i2,� � � , in), where ij corresponds to jth loop from
the outermost position. We assume that the army subscript expressions and loop
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bounds are affine functions of enclosing loop indices and loop-index-independent
variables. With this assumption, each reference to an m-dimensional array Z is rep-
resented by an access (reference) matrix Lz and an offset vector ōz such that LzĪ +
ōz is the element accessed by a specific iteration Ī [49]. As an example, consider
a reference Z(i + j, j - 1) to a two-dimensional array in a two-deep loop nest
with i is the outer loop and j is the inner loop. We have,

Lz =

[
1 1
0 1

]
and ōz =

[
0

−1
]
.

In general, if the loop nest is of depth n and the array in question is m-dimensional,
the access matrix is of size m× n and the offset vector is m-dimensional.
The class of loop transformations we are interested in can be represented using

non-singular square transformation matrices. For a loop nest of depth n, the iter-
ation space transformation matrix T is of size n × n. Such a transformation maps
each iteration vector Ī of the original loop nest to an iteration Ī′ = TĪ of the trans-
formed loop nest. Therefore, after the transformation, the new subscript function
is LT-1Ī′ + ō, meaning that the new access matrix is LT-1 [31, 49]. The problem
investigated in works such as [48] and [31] is selection of a suitable T such that the
locality of the reference is improved and all the data dependences in the original
nest are preserved.
A data transformation is applied by transforming the dimensions (subscript

expressions) of the reference. A square non-singular data transformation matrix
M transforms the reference LĪ + ō to MLĪ + Mō. Thus, the access matrix gets
transformed to ML [24, 30, 35]. In this paper, we are interested in only permuta-
tion matrices for data transformations, i.e., we are only interested in dimension
permutations.
Given an L matrix, our aim is to find matrices T and M such that the transformed

access matrix will fit in one of our two desired forms as discussed above. Notice also
that while T is unique to a loop nest, we need to find an M for each disk-resident
array. A reference LĪ + ō, becomes MLT-1Ī′ + Mō on the application of the loop
transformation T and the data transformation M. Since, for a given L, determining
both T and M simultaneously such that MLT-1 will be in a desired form involves
solving a system of non-linear equations (not a trivial task), we solve it using a two-
step heuristic approach. In the first step, we find a matrix T such that L′ = LT-1 will
have a zero last column except for the element in an rth row, which is 1 (for spatial
locality in the innermost loop) or we find a T such that the last column of L′ = LT-1

will be zero column (for temporal locality in the innermost loop). If the reference
is optimized for spatial locality in the first step, in the second step, we find a matrix
M such that this rth row in L′ (mentioned above) will be the last row in L′′ = ML′1.
The overall algorithm is given in Figure 5. In Step 1, we select a representative

reference for each array accessed in the nest. Using profile information might be
helpful in determining run-time access frequencies of individual references. For
each array, we select a reference that will be accessed a maximum number of times
in a typical execution. This step is important as the layout of each array will largely
be dictated by its representative reference.
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Figure 5. I/O-conscious tiling algorithm.

Since (for each array) we have two desired candidate forms (one corresponding
to temporal locality in the innermost loop and one corresponding to spatial locality
in the innermost loop) and we have s arrays, in Step 2, we exhaustively try all
2s possible alternatives, each corresponding to a specific combinations of localities
(spatial or temporal) for the arrays.
Note that each possible locality combination implies a target (desired, optimal)

access matrix for each array. In Step 2.1, we set the desired access matrix L′i for
each array i and in the next step, we determine a loop transformation matrix T that
obtains as many desired forms as possible. This will allow us to optimize as many
arrays as possible considering the current alternative. Note that Step 2.2 involves
solving multiple equations for the entries of matrix T. A typical optimization sce-
nario follows. Suppose that, in an alternative v where 1 ≤ v ≤ 2s, we want to opti-
mize references 1 through b for temporal locality and references b+ 1 through s for
spatial locality. After Step 2.2, we typically have c references that can be optimized
for temporal locality and d references that can be optimized for spatial locality,
where 0 ≤ c ≤ b and 0 ≤ d ≤ �s − b�. This means that a total of s − �c + d� refer-
ences (arrays) will have no locality in the innermost loop. It should be emphasized
that we do not apply any data transformations for the c arrays that have tempo-
ral locality in the innermost loop (as they are accessed infrequently and temporal
locality is the best type of locality that we could obtain). For each array j (of maxi-
mum d arrays) that can be optimized for spatial locality, within the loop starting at
Step 2.3, we find a data transformation matrix such that the resulting access matrix
will be in our desired form. In Step 2.5 we record c� d, and s− �c+ d� for this alter-
native and move to the next alternative2. After all the alternatives are processed,
we select the most suitable one. Although different techniques can be employed to
select the most suitable alternative, we adopt the following strategy. First, for each
alternative, we calculate c + d (that is, the number of references with some form of
locality in the innermost loop). If there is a unique alternative with the largest c + d
value, we select this alternative as the most suitable. Otherwise, if there are mul-
tiple alternatives with the largest c + d value, we compare the respective c values
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and select the one with the largest c value. If there are still multiple alternatives,
we select the one that optimizes the LHS reference for the temporal locality. If
there are still multiple alternatives, the choice is arbitrary. Although this selection
mechanism slightly favors temporal locality over spatial locality and cannot guar-
antee the best solution for every loop nests, in practice, we have found it quite
effective for the I/O-intensive loop nests encountered. It should be emphasized that
by considering all types of localities for all arrays, our approach tries to catch the
best (locality) combination.
There are three important points to note here. First, in completing the partially-

filled loop transformation matrix T, we use the approach proposed by Bik and
Wijshoff [6] to ensure that the resulting matrix preserves all data dependences [49]
in the original nest. Second, we also need a mechanism (where necessary) to favor
some arrays over others. The reason is that it may not always be possible to find
a T such that all L′i arrays targeted in a specific alternative are realized. In those
cases, we need to omit some references from consideration, and attempt to satisfy
(optimize) the remaining. Again, profile information can be used for this purpose.
Third, even if an alternative does not specifically target the optimization of a refer-
ence for a specific locality, it may happen that the resultant T matrix generates such
a locality for the said reference. In deciding the most suitable alternative, we need
also take such (unintentionally optimized) references into account.
For an example application of the algorithm of Figure 5, consider the loop nest

shown in Figure 4(a) and assume that optimizing array Z is more important than
optimizing array Y. It is easy to see that there are no data dependences in this nest;
thus, any arbitrary ordering of loop iterations is legal from the loop transformation
point of view. The original access matrices are

Lz=

[
1 0 0
0 1 1

]
and Ly=

[
0 0 1
1 1 1

]
�

We have four possible optimization alternatives here: (i) temporal locality for
both arrays; (ii) temporal locality for Z and spatial locality for Y; (iii) temporal
locality for Y and spatial locality for Z; and (iv) spatial locality for both arrays.
These four alternatives result in the following loop/data transformation matrices
and transformed access matrices.

• Alternative (i): Both LzT
-1 and LyT

-1 should have zero last columns. Since such
a T is not possible, we try to have a zero last column for LzT-1 only. Then, a data
transformation matrix (My) is applied to array Y to bring it to our desired form:

T-1 =


 1 0 0
0 0 1
0 1 -1


� My =

[
0 1
1 0

]
⇒ L′′z =

[
1 0 0
0 1 0

]

and L′′y =

[
1 1 0
0 1 -1

]
�
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• Alternative (ii): This alternative is very similar to Alternative (i). A data trans-
formation is applied only for array Y:

T-1 =


 1 0 0
0 0 -1
0 1 1


� My =

[
0 1
1 0

]
⇒ L′′z =

[
1 0 0
0 1 0

]

and L′′y =

[
1 1 0
0 1 1

]
�

• Alternative (iii): LyT-1 should have zero last column. Then a data transformation
matrix (Mz) is applied to array Z to bring it to our desired form. However, the
form of this data transformation matrix here would necessitate extra disk space
(i.e., it is not a permutation matrix) [30], therefore it is not applied. Consequently,

T-1 =


1 0 0
0 0 -1
0 1 1


 ⇒ L′′z =

[
1 0 1
0 1 -1

]
and L′′y =

[
0 1 0
1 1 0

]
�

• Alternative (iv): We need a loop transformation matrix such that both the refer-
ences will be in our desired form for spatial locality. Therefore,

T-1 =


0 0 1
0 1 0
1 0 0


� Mx =

[
0 1
1 0

]
⇒ L′′z =

[
1 0 0
0 0 1

]
and L′′y =

[
1 0 0
1 1 1

]
�

The resulting programs are shown in Figures 4(b)–(e) for alternatives (i), (ii), (iii),
and (iv), respectively (the transformed loop bounds are omitted for clarity). It is
easy to see that the alternatives (i) and (ii) are superior to the other two. Alterna-
tive (iii) cannot optimize array Z whereas alternative (iv) optimizes both arrays for
spatial locality. Our algorithm chooses alternative (i) or (ii), as both ensure tempo-
ral locality for the LHS array and spatial locality for the RHS array in the innermost
loop.

4.3. Multiple nests and inter-procedural problem

The technique proposed in the previous subsection to bring an array reference
into the desired form to enable I/O-conscious tiling involves a data (file layout)
transformation. Unlike loop transformations, the impact of a data transformation is
global in the sense that it affects locality properties of all references to the same disk
resident array in every loop nest and in every procedure. Therefore, the program-
wide impact of a data transformation needs to be taken into account.
To handle this issue, when a data transformation matrix is applied to an array

reference, it should also be applied to all other references to the same array whether
they appear in the same nest or not. In the following, we briefly discuss how to
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control this global effect. We can address this global file layout optimization problem
at two levels: intra-procedural and inter-procedural.
First, we focus on the intra-procedural locality optimization problem and present

an approach to optimize a series of loop nests collectively. Given a series of loop
nests that access (possibly different) subsets of disk resident arrays declared in the
procedure, our optimization strategy is as follows.

1. Transform the program into a sequence of independent loop nests using loop
fusion [49], distribution [49], and code sinking [49].

2. Build an interference graph [3] and identify the connected components. The inter-
ference graph is a bipartite graph �Vn� Vα� E� where Vn, is the set of loop nests,
Va is the set of arrays, and E is the set of edges between loop nodes and array
nodes. There is an edge e ∈ E between va ∈ Va and vn ∈ Vn if and only if vn
references va.

3. For each connected component:

3.1. Order the loop nests according to a cost criterion using profile information.
3.2. Optimize the most costly (i.e., the most important) nest using the technique

discussed in the previous subsection and then (I/O-conscious) tile this nest.
3.3. For each of the remaining nests in the connected component (according to

their cost orders):
3.3.1. Optimize the nest being analyzed using the mentioned technique.

However, in determining the loop transformation, first apply the data
transformations found so far to respective references. Then, (I/O-
conscious) tile the nest.

3.3.2. Propagate the data transformations found so far to the remaining
nests in the procedure.

In this algorithm, we first apply loop-level transformations to isolate as many
nested loops as possible. The objective of this step is to make the subsequent anal-
ysis easier (by converting as many imperfect-nest as possible to perfectly-nested
loops). We then build an interference graph to divide program into disjoint seg-
ments. Each segment consists of a group of nests and the arrays they operate on; no
array is shared between two different segments. In the interference graph represen-
tation, each segment corresponds to a connected component. Since these segments
do not share arrays, each of them can be optimized independently. Consequently,
the rest of our approach works on a single segment at a time.
Our optimization strategy for each segment is based on the concept of the most

costly nest (or most important nest). Intuitively, this is the nest that takes the most
I/O time and, thus, it is the one that should definitely be optimized as much as
possible. Different methods can be adopted to choose this nest. For example, pro-
filing the sequential execution of the code might be useful in determining the most
costly nest. Apart from this information, profiling can also help in determining some
important parameters such as array size, loop bounds, and probabilities of condi-
tional statements. Alternatively, the programmer can use compiler directives to give
hints about this nest. We can also use different metrics (e.g., the number of loops
in the nest or the number of arrays) to determine the most expensive nest.
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After determining the most costly nest, the algorithm proceeds as follows. First,
the most cost nest is optimized using the strategy given earlier for a single nest
case. Note that, after this step, file layouts for some of the arrays will be determined.
Then, each of the remaining nests can be optimized using the same approach except
that we first need to apply a data transformation for each array whose file layout
has been determined during the optimizition of the most costly nest. After each nest
is optimized, new file layouts are obtained, and the associated data transformation
matrices are propagated for the optimization of the next nest. Note that the order
of processing for the remaining nests may also be important. If the number of nests
is small, a more aggressive approach can apply this heuristic by considering each
nest in turn as the most costly nest.
We now briefly discuss the inter-procedural locality optimization problem. It is

easy to see that a naive approach that re-maps all disk-resident arrays across pro-
cedure boundaries can be prohibitively expensive and can easily out-weigh all gains
obtained from I/O-conscious tiling.
Our current approach, instead, propagates data transformation matrices across

procedures. It is similar in spirit to the global data distribution algorithm proposed
by Anderson in her thesis [3] and can be summarized briefly as follows.
Our approach performs two traversals on the call graph representation of the

program. A call graph Gc = �Vc� Ec� is a multi-graph where each node pi ∈ Vc
represents a procedure and there is an edge e ∈ Ec between pi and pj if the former
calls the latter [2]. In such a graph, the leaves represent the procedures that do not
contain any calls. If desired, the edges can be annotated by some useful information
related to call sites such as the actual parameters passed to the procedure, the line
number where the call occurs, and so on. Currently, we do not handle programs
that contain recursive procedure calls and we do not handle the arrays that are
re-shaped across procedure boundaries.
Before the first traversal, we run an intra-procedural locality optimization algo-

rithm (summarized above) on each leaf node. In the first traversal, called bottom-up,
we start with the leaves and process each node in the call graph if and only if all
the nodes it calls have been processed. After all the callee nodes for a given caller
have been processed, we propagate a system of equalities (called file layout or local-
ity constraints) to the caller. These equalities are such that, when solved, they give
us loop and data transformations that collectively bring the references in the pro-
cedure being analyzed to our desired forms.
The caller adds this system to its own local set of equalities (obtained using

the intra-procedural locality optimization algorithm) and propagates the resulting
system to its callers, and so forth. When we reach the root (the main program),
we have all the locality constraints of the program. We solve these constraints at
the root and determine the data transformation matrices for the (global and local)
arrays accessed by the root and the loop transformation matrices.
Afterwards, the top-down traversal starts; in this traversal, each caller propagates

down the data transformation matrices determined so far to its callees. Using the
equalities solved so far, the callees, in turn, determine the data transformation
matrices for their local arrays as well as the loop transformations for the nests that
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they contain. Then, they apply I/O-conscious tiling to these nests. When all the leaf
nodes have been processed, the algorithm terminates.

5. Experimental results

In this section, we present experimental results obtained on an IBM SP-2 message-
passing parallel architecture. Each node of SP-2 has an I/O subsystem containing
two SCSI buses and six Starfire 7200 SCSI disks. Each node has 66.7 MHz clock
speed and each SCSI disk has a minimum bandwidth of 8 MB/s.
We built our compiler optimizations upon a storage subsystem model called the

local placement model (LPM) [7]. The main function of this model is to isolate
the peculiarities of the underlying I/O architecture and present a unified platform
on which experiment. Under this data storage subsystem, each global disk-resident
array is divided into local disk-resident arrays. The local arrays of each processor are
stored in separate files called local array files that in turn reside on a logical local
disk. During the execution of an I/O-intensive program under the LPM, portions of
local disk-resident arrays, called data tiles, are fetched and stored in local memory.
The data sharing between processors is performed through explicit message passing;
therefore, this system is a natural extension of the distributed-memory paradigm.
We used an implementation of the LPM using the PASSION parallel I/O library on
the IBM SP-2. Additional details of this implementation can be found in [7].
Our experimental methodology follows. We extracted a set of loops from sev-

eral benchmarks and math libraries, as shown in Table 1. We used the PASSION
library [42] to code I/O-intensive versions of these loop nests that do explicit file
I/O for disk-resident datasets. The library performs several optimizations such as
data sieving [42] and collective I/O [43, 42] to minimize the number of I/O calls to
the underlying parallel file system (in our case, PIOFS). We conducted experiments
with two different input sizes. In the first input size, called small, we set the sizes
of all dimensions of all arrays to 2,048 double-precision elements (except for some
small hard-coded dimensions). In the second input size, called large, a dimension
was set to 4,096 double-precision elements. We also reduced the size of available
memory of each processor to 1/128th of the size of its local disk-resident arrays to
make the datasets appear really large. The loop nests were parallelized such that the
entire interprocessor communication was eliminated (when necessary, array repli-
cation is also used to eliminate all communication). This allows us to concentrate
solely on the I/O performance of the nests. Then, we generated three versions of
each code. The first version, orig, is the I/O-intensive version of the original pro-
gram that manipulates disk-resident arrays. In this version, only the loops that carry
some form of reuse are tiled (following the tiling method proposed in [52]). The
second version, c-opt, is the version obtained using the approach explained in this
paper, and the third version, h-opt is an hand-optimized version using blocked file
layouts. In obtaining the c-opt version, the tiled loop nests are generated auto-
matically; however, the PASSION calls are inserted by hand. Our initial evaluation
indicates that the amount of time required to generate the tiled nest is at most 8%
of the original compilation time. Given the fact that optimizing large, I/O-intensive
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Table 1. Programs used in the experiments

Disk-resident
Program Source iter arrays I/O times (small) I/O times (large)

mxm.2 specfp 4 three 2-D 114.35 (137.21) 234.01 (257.44)
adi.2 livermore 4 three 1-D, 66.21 (85.36) 131.28 (150.90)

three 3-D
vpenta.6 specfp 2 seven 2-D, 59.20 (301.92) 126.05 (642.85)

two 3-D
btrix.4 specfp 1 twenty-five 1-D, 29.45 (176.82) 77.54 (441.00)

four 4-D
syr2k.2 blas 1 three 2-D 88.94 (97.86) 199.35 (239.25)
htribk.2 eispack 2 five 2-D 76.50 (84.15) 218.90 (240.71)
gfunp.4 hompack 2 one 1-D, 41.20 (46.11) 79.50 (95.47)

five 2-D
trans.2 nwchem (PNL) 2 two 2-D 78.96 (101.20) 167.87 (210.66)
eflux.3 perfect club 1 four 3-D 69.03 (338.84) 155.61 (737.08)
bmcm.3 perfect club 2 five 1-D, 44.70 (312.23) 93.32 (669.67)

one 2-D

∗Note that the ‘iter’ column shows the number of times the outermost timing loop has been iterated for
each code. The number at the end of the program name denotes the nest used. The last two columns
show the execution times in seconds of the original codes with disk-resident arrays using two different
input sizes. The numbers outside parantheses give the execution time of the nest (indicated in the first
column) whereas the numbers inside parantheses give the execution time of the entire code (that encloses
the corresponding nest).

computations may bring huge performance savings at runtime, this small overhead
in compilation time is reasonable.
The resulting codes are then compiled using the native compiler with the highest

optimization level on the IBM SP-2. Performance numbers on 16 processors are
shown in Figure 6 for both data sets. For each nest, the c-opt and h-opt bars give
the respective execution times as a fraction of that of orig (see Table 1 for the
original execution times). As an example, the execution time of the c-opt version
of trans. 2 with small data set is 61.3% of that of orig. We see that the c-opt
version achieves on average a 42.5% reduction and a 47.4% reduction for the small
and large input sizes, respectively. Using the hand-optimized version brings about
a 6.9% (6.8%) additional reduction over c-opt for small (large) input sizes. In
order to further understand the impact of the file layout optimizations, in Figure 7,
we present the total number of I/O calls issued from within the application as a
fraction of those of orig. Note that the numbers given in this figure are in thousands.
We observe significant reductions in the number of I/O calls, which explains the
gains in I/O times. Our approach is, in some cases, up to 81.1 percent better than
the unoptimized code and the h-opt version brings up to an 18.2% additional
improvement.
In addition to reducing the total number of messages and execution times, our

optimizations improve scalability as well. Table 2 shows the speedup of each version
of the nests for the large data sets. Speedup here is calculated with respect to the
single processor time of the same version. For example, the execution time of c-opt
for adi.2 on a single processor is 29.4 times the execution time of the same version
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Figure 6. Normalized execution times for small input sizes (a) and large input sizes (b).
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Figure 7. Normalized number of calls for small input sizes (a) and large input sizes (b).
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Table 2. Speedup for different versions on the large input sizes

Number of processors

Program Version 16 32 64

mxm.2 orig 10.9 20.2 38.7
c-opt 13.3 25.1 56.0
h-opt 13.7 24.8 55.9

adi.2 orig 12.4 22.0 53.4
c-opt 15.0 29.4 60.4
h-opt 15.0 29.4 60.4

vpenta.6 orig 10.0 24.2 51.3
c-opt 14.7 28.6 62.0
h-opt 14.9 29.9 62.4

btrix.4 orig 8.8 18.0 27.1
c-opt 13.9 25.0 48.1
h-opt 13.1 24.7 46.0

syr2k.2 orig 10.0 19.7 36.9
c-opt 13.8 26.2 50.3
h-opt 14.0 26.0 50.3

htribk.2 orig 12.7 21.9 38.7
c-opt 12.9 22.5 38.9
h-opt 13.5 22.7 40.0

gfunp.4 orig 10.6 20.4 38.4
c-opt 13.2 24.9 56.1
h-opt 13.4 24.6 57.0

trans.2 orig 12.0 20.5 35.8
c-opt 15.6 31.0 62.2
h-opt 15.6 31.0 62.2

eflux.3 orig 9.9 15.9 27.4
c-opt 12.5 23.9 60.0
h-opt 13.8 24.1 63.1

bmcm.3 orig 7.8 15.0 28.4
c-opt 15.4 31.2 60.6
h-opt 15.6 31.0 60.0

(c-opt) on 32 processors. We see from this table that the scalability of c-opt is
much better than that of the original version, and in some cases, is even better than
the hand-optimized code. It should be noted that since there is no interprocessor
communication, the main factor limiting the scalability is the number of I/O nodes
and the contention on the I/O network.
Finally, we investigated the effectiveness of our global approach (as explained in

Section 4.3) on complete programs. This is important, as our approach involves data
transformations (when we move beyond a single nest) and the impact of data trans-
formations is global. Consequently, the effects of data transformations are spread
throughout the program and evaluating their effects for single nests only may exag-
gerate their impact. Figure 8 gives the performance numbers on 16 processors for
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Figure 8. Normalized execution times for small input sizes (a) and large input sizes (b) for the whole
programs.



280 kandemir et al.

complete codes in our experimental suite for both data sets. As before, for each
nest, the c-opt and h-opt columns give the respective execution times as a frac-
tion of that of orig. We observe from these results that c-opt version achieves on
average a 37.7% reduction and a 43.7% reduction for the small and large input
sizes (over the original execution times given in Table 1), respectively. The hand-
optimized version, on the other hand, reduces the execution times (on average) by
45.5% and 50.4% for the small and large input sizes, respectively. These results
show that our approach is also successful for the multiple nest case and that it is
able reduce the overall execution times significantly. In other words, we were suc-
cessful in propagating the file layouts between the nests in a given program without
much conflict between the optimal layout requirements of different loop nests.

6. Related work

Compiler researchers have attacked the locality problem from different perspec-
tives. Wolf and Lam [47, 48], Li [31], McKinley et al. [33], Coleman and K. McKinley
[14], Kodukula et al. [26], Lam et al. [29], and Xue and Huang [52], among oth-
ers, have suggested tiling as a means of improving cache locality. In [48], [31], and
[33], the importance of linear locality optimizations before tiling is emphasized. In
this paper, we show that traditional tiling may not be very effective in optimizing
I/O-intensive nests and propose an I/O-conscious tiling strategy.
The data layout transformation techniques proposed by O’Boyle and Knijnenburg

[35], Cierniak and Li [13], Anderson et al. [4], Kandemir et al. �24� 25�, and Leung
and Zahorjan [30] involve the transformation of array layouts to improve spatial
locality. O’Boyle and Knijnenburg [35] focus on restructuring the code given a data
transformation matrix, although they show their method can be used for optimizing
spatial locality. In comparison, we concentrate more on the problem of determining
suitable data and loop transformation in a unified framework. Cierniak and Li [13]
also propose a unified approach to optimize locality. Their approach employs both
data space and iteration space transformations. The notion of the ‘stride vector’ is
introduced and an optimization strategy is developed for obtaining the desired map-
ping vectors and loop transformation matrix. The M matrix that we use in this paper
to obtain our desired subscript forms is an example of data layout transformation.
In contrast to complex memory layouts, the transformations that are considered for
file layouts should be rather simple. Previous work done by Kandemir et al. [23] on
out-of-core compilation inspired the tiling strategy proposed in this paper.
In the I/O arena, there are many proposed software techniques for optimizing

disk accesses. These techniques can be divided into three main groups: the parallel
file system and run-time system optimizations [12, 15, 18, 27, 28, 42, 45], compiler
optimizations [8, 9, 34, 36], and application analysis and optimization [32, 41, 44, 50,
51]. Brezany et al. [10] developed a run-time system called VIPIOS that can be used
by an out-of-core compiler. Bordawekar et al. [7, 8, 9] focused on stencil computa-
tions that can be reordered freely due to lack of flow dependences. They present
several algorithms to optimize communication and to improve the I/O performance
of the parallel out-of-core applications. Paleczny et al. [36] incorporated out-of-core
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compilation techniques into the Fortran D compiler. The main philosophy behind
their approach is to choreograph I/O from disks along with the corresponding
computation.
Cormen and Colvin [16] introduce ViC* (Virtual C*), a preprocessor that trans-

forms a C* program that uses out-of-core data structures into a program with appro-
priate library calls from the ViC* library that read/write data from/to disks.
These techniques are all based on reordering the computation rather than on the

re-organization of data in files. In contrast, we show that locality can be significantly
improved using a combined approach that includes both loop and data transforma-
tions and then by employing an I/O-conscious tiling strategy. The work on prefetch-
ing for I/O [18, 34, 40], on the other hand, is complementary to the idea presented
in this paper.
The early work on out-of-core computations was done by Abu-sufah, Kuck, and

Lawrie [1] from the University of Illinois at Urbana-Champaign. They proposed
optimizations to enhance the locality properties of programs in a virtual memory
environment. In particular, they evaluated the gains obtained from tiling (page-
indexing) and loop fusion. Our approach is different from theirs, as we rely on
explicit I/O rather than leaving the job to the virtual memory management system;
however, we believe that the I/O-conscious tiling strategy will be very useful in
virtual memory based environments as well.

7. Conclusions and future work

In this paper, we present an I/O-conscious tiling strategy that can be used by pro-
grammers or can be automated in an optimizing compiler for I/O-intensive pro-
grams. We show that a straightforward extension of the traditional tiling strategy
to I/O-performing loop nests may lead to poor performance and demonstrate the
necessary modifications to obtain an I/O-conscious tiling strategy. Our experimen-
tal results (obtained on a set of scientific loop nests drawn from benchmarks and
math libraries) reveal that our approach can improve the overall execution times,
as well as the scalability of the I/O-performing loop nests.
Our current interest is in implementing this approach fully in a compilation

framework and in testing it using larger programs such as the BTIO benchmark [11].
We plan to work on integrating this tiling strategy with the out-of-core optimiza-
tions suggested in [7, 9] and to evaluate the overall system in realistic I/O-intensive
workloads on different distributed-memory architectures.
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Notes

1. This is assuming row-major layout. For column-major layouts, this row should be the first row.
2. A more aggressive approach can attempt to optimize the remaining s − �c + d� arrays for spatial

locality in the outer loops. Our current approach, instead, performs a naive I/O (i.e. accessing each
sub-row of the region to be read/written using a separate I/O call) for the unoptimized arrays. Our
experience and experiments show that, given the fact that our algorithm is able to optimize a great
majority of references, this is a reasonable compromise.
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