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Abstract—This paper presents a unified framework that optimizes out-of-core programs by exploiting locality and parallelism, and
reducing communication overhead. For out-of-core problems where the data set sizes far exceed the size of the available in-core
memory, it is particularly important to exploit the memory hierarchy by optimizing the 1/0O accesses. We present algorithms that
consider both iteration space (loop) and data space (file layout) transformations in a unified framework. We show that the performance
of an out-of-core loop nest containing references to out-of-core arrays can be improved by using a suitable combination of file layout
choices and loop restructuring transformations. Our approach considers array references one-by-one and attempts to optimize each
reference for parallelism and locality. When there are references for which parallelism optimizations do not work, communication is
vectorized so that data transfer can be performed before the innermost loop. Results from hand-compiles on IBM SP-2 and Intel
Paragon distributed-memory message-passing architectures show that this approach reduces the execution times and improves the
overall speedups. In addition, we extend the base algorithm to work with file layout constraints and show how it is useful for optimizing

programs that consist of multiple loop nests.

Index Terms—I/O-intensive codes, optimizing compilers, loop and data transformations, out-of-core computations, file layouts.

1 INTRODUCTION

T has been known for quite some time that the improve-

ments in disk and memory speeds have not kept pace
with improvements in processor speeds [16]. As a result, the
issue of exploiting the memory hierarchy has emerged as
one of the most important problems in efficiently using the
available processing power. One way of handling this
problem is to design algorithms that decompose the data
sets into blocks and operate on blocks, maximizing their
reuse before discarding them [13]. A computation that
operates on disk-resident data sets is called out-of-core and
an optimizing compiler for out-of-core computations is
called an out-of-core compiler [7]. In contrast, a computation
that operates on data sets in memory is called in-core. For
out-of-core problems where the data set sizes far exceed the
size of the available memory, it is particularly important to
exploit the memory hierarchy as much as possible.
Unfortunately, the task of optimizing out-of-core codes for
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I/0is very difficult and has not seen as much success as the
efforts aimed primarily at optimizing parallelism and
locality, such as [13]. We believe that an optimizing
compiler for out-of-core programs faces several challenges:

e Since I/O accesses are generally at least an order of
magnitude slower than interprocessor communica-
tion, I/O should be optimized as much as possible.
The optimization of I/O may involve reducing both
the number of I/O calls and the total number of
elements (data items) transferred between the disks
and main memory.

e As communication overhead is an important factor
in performance, it should be performed only where
necessary and through block transfers in order to
amortize its high startup cost.

e The granularity of parallelism should be maximized
as much as possible, as it is well-known that, having
as many parallel outermost loop as possible reduces
the synchronization and communication overhead
and, as a result, the execution time on MIMD
computers.

The difficulty here is that the issues of optimizing I/0,
optimizing parallelism, and minimizing communication are
interrelated. For example, for a given loop nest in which a
number of out-of-core arrays are accessed, the I/O
optimizations may imply a certain order for the loops,
whereas the parallelism optimizations may suggest another.
Bordawekar [7] shows that unoptimized I/O can also
induce extra communication. Therefore, we believe that it
is very important to develop compiler-based optimization
strategies for I/ O-intensive scientific codes that handle I/O,
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communication and parallelism in a unified setting. In this
paper, we offer such a unified strategy to optimize out-of-
core programs for locality, parallelism, and communication.
Specifically, our optimizations do the following: 1) reorga-
nize data layouts in files and memory—matching the loop
order with individual array layouts in files, which is key to
obtaining high performance in out-of-core computations;
2) vectorize communication, i.e., perform the communica-
tion in large chunks of data; and 3) improve parallelism by
transforming the loop nest such that the outermost loop(s)
can run in parallel on a number of processors (this is not
only good for reducing the communication requirements of
parallel programs, but it also correlates with good
memory/disk system behavior [40]).

While one may be tempted to view disks and files as
another level in the memory hierarchy, there are two
important issues that arise.

e  Exploiting locality in out-of-core data is much more
important than optimizing for cache locality since
the disk access costs are 3 to 5 orders of magnitude
higher than memory access costs, whereas memory
access times are just an order of magnitude higher
than cache accesses [16]; that is, in out-of-core codes,
optimizing data transfer across the disk-main
memory hierarchy is crucial.

e Cache optimizations are speculative since there is
little software or programmer control. Virtual
memory optimizations are similar. Unlike caches
and virtual memory, explicit file I/O provides
programmers/compilers with full control and,
therefore, much greater potential for optimization,
especially in regular scientific codes. For example, a
compiler can generate code that uses explicit library
calls to perform I/O at selected points of a given
code.

In this paper, we present a compiler algorithm which,
given an input program, generates an “optimized” out-of-
core version of it with explicit I/O calls to a run-time library
[38]. The resulting code is optimized in the sense that,
compared to a naive (straightforward) out-of-core transla-
tion, it involves much less I/O, much less communication,
and higher-granularity parallelism. In our approach, the
compiler is in full control of the placement of I/O calls.

It is important to stress that our optimization domain is
regular scientific codes. Currently, our approach works for
only perfectly nested loops. If imperfect loops can be
converted to perfect nests using loop fusion, fission, and
code sinking [45], our approach can also handle them. Also,
if a solution determined by our approach does not involve
any loop transformations, we can also apply it to the
imperfect nest being analyzed directly.

It is also important to note that we use the terms
“optimizing” and “optimized” throughout this paper in the
sense of “enhancing” or “improving.” These are by no
means a guarantee that the result of using our framework is
an optimal solution (in the single or the multiple nest case)
since many of these problems are NP-complete [29].

The remainder of this paper is organized as follows: In
Section 2, we review the basic concepts in file layouts, tiling
as well as general loop transformation theory. Sections 3

and 4 present automatic methods using the file locality, and
the interprocessor communication which can be optimized,
respectively. Section 5 presents a unified algorithm that
1) optimizes I/0O, 2) minimizes communication, and
3) maximizes parallelism. Section 6 presents experimental
results collected on an IBM SP-2 and an Intel Paragon
multicomputer, which demonstrate the efficacy of the
algorithm. In Section 7, we extend the base algorithm to
handle the multiple-loop-nest case. Section 8 presents
related work and, in Section 9, summary and conclusions
are presented.

2 PRELIMINARIES

2.1 Data Storage Model

We build our compiler optimizations upon a storage
subsystem model, called the Local Placement Model (LPM)
[38], [39], [7], which in principle can be implemented on any
multicomputer. The main function of this subsystem is to
isolate the peculiarities of the underlying I/O architecture
and present a unified I/O interface to work with. Under this
data storage subsystem, each global out-of-core array is
divided into local out-of-core arrays. The local arrays of each
processor are stored in separate files, called local array files,
which in turn reside on a logical local disk. During the
execution of an out-of-core program under the LPM,
portions (blocks) of local out-of-core arrays, called data
tiles, are fetched and stored in local memory. At any given
time, computation is performed only on the data tiles in
memory. The data sharing is performed through explicit
message passing, so this system is a natural extension of the
distributed-memory paradigm. So far, the LPM has been
implemented on the IBM SP-2 and the Intel Paragon as a
run-time library. Fig. 1 shows the local placement model;
more details can be found in Bordawekar’s thesis [7]. The
run time library also allows users/compilers to define
global and local out-of-core arrays, data tiles, and storage
orders (e.g., row-major column-major) of data in files.

2.2 Reuse and Locality

We say a temporal reuse exists when two references access
the same data element. Spatial reuse, on the other hand,
occurs when two references access the same transfer unit
such as a cache line, page, or data tile [45], [16]. When a loop
nest exploits temporal (spatial) reuse, we say that the
associated references exhibit temporal (spatial) locality. It
should be noted that reuse does not necessarily mean
locality [27]. To illustrate the concepts of reuse and locality,
let us consider the following example.

DOi=1,n
DOj=1n
A(i) = B(j) + C(i, ) + D)
END DO
END DO.

Assuming a column-major layout as the default, in this loop
nest, array A has temporal reuse in the j loop and spatial
reuse in the i loop. Array B has temporal reuse in the 7 loop
and spatial reuse in the j loop. Arrays C and D, on the other
hand, have only spatial reuses in the i and j loops,
respectively; they do not exhibit any temporal reuse as
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Data tile T~. T~

Local out-of-core array
Fig. 1. The local placement model (LPM).

each element of C and D is accessed only once. Assuming
that n is very large, only the reuses associated with the j
loop exhibit locality. As a result, the exploitable reuses (that is,
the reuses that can be converted into locality) for this nest
are the temporal reuse for A, and the spatial reuses for B
and D.

Note that if array C is stored in row-major order instead
of the default column-major order, then spatial reuse for it
can also be exploited in the innermost loop. In this paper,
we mainly address the problem of selecting appropriate file
layouts for out-of-core arrays, as well as suitable iteration
space transformation for a given loop nest.

2.3 File Layouts

The file layout for an h-dimensional out-of-core array can be
in one of h! forms, each corresponding to the linear layout
of data in file(s) by a nested traversal of the axes in some
predetermined order. The innermost axis is called the
fastest-changing dimension. As an example, for row-major file
layout of a two-dimensional array, the second dimension is
the fastest changing dimension. If we think of each element
as a submatrix, our approach can also handle blocked file
layouts. In other words, the method presented in this paper
is applicable, with appropriate modifications, to the blocked
layout case as well. That is, it can decide the storage order of
blocks (tiles) for a given blocked out-of-core array. The
order of elements within a block, on the other hand, can be
determined using a cache locality optimization scheme (e.g.,
[27] and [44]). Since in out-of-core computations the arrays
are very large, it might be difficult to exploit the locality
beyond the fastest changing dimension. Consequently, our
techniques try to determine the fastest changing dimension
for a given array accurately. Even though the order of the
other dimensions may impact the performance of an out-of-
core program, their effect is of secondary importance. In this
paper, we assume that the remaining dimensions can be
ordered arbitrarily. However, our approach can be ex-
tended to determine a complete dimension order.

2.4 Loop Transformation Theory

The algorithms presented in this paper rely on results from
the general loop transformation theory [27], [45], [44]. We
focus on loops where both array subscripts and loop
bounds are affine functions of enclosing loop indices and
loop-invariant constants. A reference to an array X is
represented by X (LI + b), where L is a linear transforma-
tion matrix called the array reference (access) matrix, b is offset

N

Global out-of-core array

(constant) vector [44]; T'is a column vector, called the iteration
vector, whose elements written left to right represent the
loop indices iy, iy, - - -, iy, starting from the outermost loop
to the innermost in the loop nest. For the rest of the paper,
the reference matrix for array X will be denoted by £*
whereas the ith row of £¥ will be denoted by /:X To clarify
these concepts, we consider the following loop nest.
DOi=1,n
DO j=2,n/2
DO k=1,n/2
A(i,j) = B(j + k3,5 — 1)
END DO
END DO
END DO

The reference matrices and offset vectors are as follows:

4 (100
L*(010>’

and
01 1
cf=11 0 o],
01 0
" 0
b =1 0
-1

Linear mappings between iteration spaces of loop nests
can be modeled by nonsingular matrices [27], [45]. If Tis the
original iteration vector, after applying linear transforma-
tion T, the new iteration vector is J=TI Similarly, if d is
the distance (resp. direction) vector, on applying T, Td is
the new distance (resp. direction) vector [45]. Since
LI = LT1J, after the transformation 7, £T~! is the new
array reference matrix [45]. In this paper, we denote 7! by
@ for convenience. An important characteristic of our
approach is that using the array reference matrices, the
entries of ) are derived systematically. For instance, if we
transform the program shown above by using
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Fig. 2. (a) Unoptimized file access, (b) and (c) optimized file access.

as the transformation matrix, we obtain the following
program.

DO k=1,n/2

DO j=2,n/2
DOi=1,n
A(i,j) = B(j + ki, j— 1)
END DO

END DO

END DO

2.5 Optimized I/O Accesses

We refer to an access to an array in a file as optimized if it can
be performed such that all the required data along the
fastest changing dimension will be read from the file
incurring the least I/O cost. This concept can be best
explained using an example. Consider the situation
depicted in Fig. 2 for three different cases using a two-
dimensional out-of-core array. The shaded portions denote
data tiles (blocks). The case in Fig. 2a corresponds to the
unoptimized case where the entire available memory is
utilized for accessing a square tile from the corresponding
file. In order to read an S, x S, data tile, S, I/O calls should
be issued no matter what the file layout is." The cases
shown in Fig. 2b and Fig. 2¢, on the other hand, correspond
to the optimized accesses for row-major and column-major
file layouts, respectively. In Fig. 2b, it is possible to read
Sp x n elements from the file using S, 1/O calls and, in
Fig. 2c, n x S, elements are read by issuing only S, I/O calls
(assuming for both these cases that “at most” n elements
can be read by a single I/0O call).

The following points should be noted: First, an opti-
mized array access is only meaningful with a given
corresponding file layout. For example, reading S, x n
elements from the array shown in Fig. 2b would cost n
separate I/O calls if the array were stored in file as column-
major. This observation indicates that the array layouts and
I/0 accesses should be compatible. Second, in order to have
a fair comparison between programs, we fix the available
memory size (M) no matter how the array layouts (and the
I/0 accesses) are optimized. As an example, for the cases
shown in Figs. 2a, 2b, and 2c, assuming this is the only array
referenced in the nest, the relation 5,2 = Syn =nS, = M

1. We should note that, for blocked layouts, this type of access can be
considered as optimized if all the elements inside the tile (block) are stored
in the file consecutively.

(b) (©)

should hold. And, finally, we should make a distinction
between file and disk layouts. Depending on the storage
style used by the underlying file system, a file can be striped
across several disks [37]. Accordingly, an I/O call in the
program can correspond to several system-level calls to
disk(s). The technique described in the rest of the paper
attempts to decide optimal file layouts, that is, the layouts
that with accompanying loop transformation will incur
reduced volume of I/O and reduced number of I/O calls. In
general, the reduction in I/O calls to files leads to reduction
in calls to disk; this relation, though, is system dependent
and is not discussed in this paper.

2.6 Tiling for Out-of-Core Computations

Tiling, which is a combination of strip-mining and loop
permutation, is a technique to improve locality and reduce
synchronization overhead in in-core computations [31],
[45], [23], [10], [18], [8]. When tiling is applied, it replaces an
original loop with two new loops [45]: a tiling loop and an
element loop. For example, the program shown first is
transformed to the one shown second after the tiling. In the
tiled program, o refers to tile size or blocking factor. The tiling
loops, IT and T, iterate over the tiles, whereas the element
loops, i and j, iterate over the elements of individual tiles.
The compilers can use tiling to automatically create a
blocked version of a given loop nest.

DOi=1,n
DOj=1,n
A(i,5) = C(j. i)
END DO
END DO

DO IT =1,n,0
DO JT =1,n,0
DO i = IT,min(IT + o,n)
DO j=JT,min(JT + o,n)
A(i, j) = C(j,19)
END DO
END DO
END DO
END DO

For in-core computations, tiling is usually an optional
locality optimization technique applied to iteration spaces
[44], [45], whereas, in an out-of-core compilation strategy
based on explicit file 1/O, tiling of out-of-core data into
memory is mandatory; the compiler uses the results of
dependence analysis [45] to determine whether or not tiling
is legal (i.e., semantic-preserving). All necessary loop
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transformations should be performed in order to ensure the
legality of tiling.

A naive approach can extend the compilation methodol-
ogy for in-core programs to out-of-core computations by
assuming user-specified data decomposition (distribution)
as follows: First, the out-of-core compiler applies the
techniques used by in-core compilers [17] for message-
passing machines to obtain the node program, that is, the
program that will run on each node of the machine. After
the node program is determined, the loops are tiled and
appropriate 1/O calls to the run-time library are inserted
between the tiling loops. The available memory is then
divided as evenly as possible among the arrays involved.
There are several drawbacks to this straightforward
approach [19]:

1. The program obtained by this method may not be
able to exploit the available parallelism;

2. Assuming a fixed file layout such as row-major or
column-major for all the arrays may adversely affect
the performance of out-of-core codes [19], [20], [22];
and

3. When more than one array is involved in a
computation, during memory allocation it might be
more appropriate to favor (by giving more memory)
the frequently accessed out-of-core arrays over the
others.

Our optimizations address these problems within a
unified framework. We give several examples and illustrate
the following: To achieve good performance in out-of-core
computations, both data (file layout) and control (loop) transfor-
mations are necessary, and parallelism and locality should be
handled in a unified way. One point should also be discussed
before we explain our approach in detail. The approach
presented in this paper is based on explicit file I/O and is
different from those presented in [1], [30], [32], [41] which
target virtual memory (VM) based systems. While optimal
file layouts and cache-friendly loop permutations are very
useful for a VM-based frameworks as well, explicit file I/O
through run-time calls gives the compiler full-control over
the data transfers between disk and memory, as well as
over the granularity of data tiles. In other words, the
compiler can explicitly schedule I/O accesses and custo-
mize the tile sizes depending on the application being
analyzed. In VM-based systems, on the other hand, these
activities are controlled by the operating system in general
using predefined page sizes.

3 ALGORITHM FOR OPTIMIZING LOCALITY IN FILES

In this section, we present an algorithm based on explicit
I/O to reduce the time spent in I/O. Our algorithm
automatically transforms a given loop nest to exploit spatial
locality in files, assigns appropriate file layouts to out-of-
core arrays, and partitions the available in-core memory
among the data tiles of out-of-core arrays, all in a single
unified framework.

3.1 Explanation of the Algorithm

The algorithm for optimizing file locality is shown in Fig. 3.
Let ji,j2,- -, jn be the loop indices of the transformed nest

NO. 7, JULY 2000

(listed starting from the outermost position proceeding to
the innermost). In the algorithm, C is the array reference on
the left-hand-side (LHS), whereas A represents an array
reference from the right-hand-side (RHS). The symbol ¢
stands for a don’t care value. The algorithm works as
follows.

3.1.1 Handling the LHS

The resultant loop transformation matrix should be such
that the LHS array of the transformed loop nest should have
the innermost index as the only element in one of the array
dimensions and that index should not appear in any other
dimension for this array.2 In other words, after the
transformation, the LHS array reference should be of the
form C(x,---, %, jn, %, -,%), where j, (the new innermost
loop index) is in the rth dimension and * indicates a term
independent of j,. This means that the rth row of the
transformed reference matrix for C' is (0,0,---,0,1) and all
the entries of the last column except the one in rth row are
zero, that is, the transformed reference matrix is of the form

0

Dol
=

0

where the rth row is (0, - - -, 0, 1). After that process, the LHS
array can be stored in the file such that the rth dimension is
the fastest changing dimension in order to exploit spatial
locality in the file. However, after this step, the out-of-core
array is not stored in the file immediately according to the
determined layout. Instead, the final layout for the LHS
array is decided after considering all the alternatives.

3.1.2 Handling the RHSs

The algorithm then works on one reference from the RHS at
a time. If a row s in the data reference matrix is identical to
row r of the original reference matrix of the LHS array, it
attempts to store this array on the file such that the sth
dimension will be the fastest changing dimension. Note that
the presence of such a row s does not guarantee that the
array will be stored on the file with the sth dimension as the
fastest changing dimension.

If the condition above does not hold for an RHS array A,
then the algorithm tries to transform the reference to the
form A(x, -+, %, F(jn_1),%, - -, %), where F(j,_1) is an affine
function of j,_; and other indices, except j,, and * indicates
a term independent of both j,,_; and j,,. This helps to exploit
the spatial locality in the second innermost loop. If no such
transformation is possible, j,» is tried and so on. If there is
no such transformation for any of the loop indices, then the
remaining entries of @) are decided by taking into account
the legality condition on the transformed data dependences
and the nonsingularity requirement on the transformation
matrix. Modified versions of the dependence-sensitive

2. This requirement is stricter than necessary, but suitable for the
purposes of this paper.
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Step 1 Initialize ¢ = 1.

~C S
Step 2 Set¢; .QQ =(0,0,---,0,1)and Z;, .Q = (9,6, --
Step 3 Set the file layout for C such that 5** index position will be the fastest changing position.

.4 =C
Step 4 For each array reference A on the RHS that has ¢ = #;  for some /, try to set the file layout for A
such that the I*" dimension will be the fastest changing dimension.

Step 5 Choose an array reference A for which the equality in Step 4 does not hold. Initialize j = 1.

A S A
Step 6 Sct /; .Q = (0,0,---,0,1,0) and ¢, .Q = (0,0,---,0,0,0) for cach k& # j. If this step is
consistent with the previous steps go to Step 7, otherwise increment j and go to the beginning of
A
this step. If there exist inconsistencies for all j values, then initialize 7 = 1, and set £; .QQ =
A
(0,0,---,1,0,0) and £, .Q = (4,4,---,4,0,0,0) for each k # 3, and repeat Step 6 and so on. If
no T~ is found then fill the remaining entries arbitrarily observing the data dependences and non-

singularity.

Step 7 Repeat Step 6 for all the reference matrices of a particular array A except those handled in Step 4.
(Of course, all references for a particular A should have the same file layout; this algorithm is greedy

and chooses the first possible layout)

Step 8 Repeat Step 6 for all distinct array references.

Step 9 Record the obtained transformation matrix. Also record, for each array, the loop index position
which appears in the fastest changing position for that array.

Step 10 Increment ¢ and go to Step 2 (try a different layout for the LHS array C).

Step 11 Compare all the recorded transformation matrices and their associated file layouts, and choose the
best alternative (see the explanation in Section 3).

Step 12 Dcterminc the memory allocations for the all out-of-core arrays in the nest and obtain the memory

constraint.

Step 13 Solve the memory constraint.

Fig. 3. Algorithm for optimizing file locality in out-of-core-computations.

completion algorithms found in [4] and [28] are used for
filling the remaining entries such that all the data
dependences in the original nest are maintained. Note that
our approach determines only the fastest changing dimen-
sion of the layout.

3.1.83 Choosing the Best Alternative

After a transformation and corresponding file layouts are
found, the next alternative for the LHS is tried and so on.
Among the solutions recorded by Step 9 of the algorithm,
the best one (i.e., the one that results in the most locality) is
chosen. Although several approaches can be used to select
the best alternative, we chose the following scheme. Each
loop in the nest is numbered with its level (depth), the
outermost loop numbered 1. Then, for each reference in the
nest, the level number of the loop whose index resides in
the fastest changing dimension for this reference is checked.
The number for all references in the nest are added and the
alternative with the maximum sum is chosen. For example,
if, for a two-deep nest with three references, a particular
alternative exploits the locality for the first reference in the

,0,0) for each k # ¢ where § denotes don’t-care.

outer loop and for the other two references in the inner
loop, the sum for this alternative is 1+ 2+ 2 =5. Intui-
tively, the alternative with the highest number will exploit
the most spatial locality in the innermost loops. It is also
possible to adopt a compile-time miss estimation technique
(e.g., [14], (omitting conflict-miss estimation part) to obtain
more accurate locality measurements.

3.1.4 Memory Allocation

The array references are divided into groups according to
the layouts of the associated files (i.e., arrays with the same
file layout are placed in the same group). The heuristic then
handles the groups one by one. For each group, the
algorithm considers all the fastest changing positions in
turn. If a (tiling) loop index appears in the fastest changing
position of a reference and does not appear in any other
position (except the fastest changing) of any reference in
that group, then the tile size for the fastest changing
position is set to n (the array size and loop upper bound);
otherwise, the tile size is set to S, a parameter whose value
will be determined in the final step (we assume that S < n).
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The tile sizes for the remaining dimensions are all set to S.
After the tile sizes for all the dimensions of all array
references are determined, the algorithm takes the size of
the available node memory (M) into consideration and
computes the actual value for S. For example, suppose that,
in a four-deep nest in which four two-dimensional arrays
are referenced, the previous steps have assigned row-major
file layout for the arrays A, B, and C, and column-major file
layout for the array D. Also, assume that KT is the
innermost loop after the transformation and the references
to the said arrays are A[IT,KT], B[JT, KT, C[IT,T], and
D[KT,LT]. Our memory allocation scheme divides those
references into two groups: A[IT,KT], B[JT KT], C[IT,JT] in
the row-major group and D[KT,LT] in the column-major
group. Since KT appears in the fastest-changing positions of
A[IT,KT] and B[JT,KT] and does not appear in any other
position of any reference in this group, the tile sizes for A
and B are determined as S x n. Notice that JT also appears
in the fastest-changing position. But, since it also appears in
other positions of some other references (i.e., in the first
dimension of B[JT,KT]) in this group, the algorithm
determines the tile size for C[IT,JT] as S x S. Then, it
proceeds with the other group which contains the reference
DIKT,LT] alone and allocates a data tile of size n x S for
D[KT,LT]. After these allocations, the final memory constraint
is determined as 3nS + S? < M. Given a value for M, the
value of S that utilizes all of the available memory can
easily be determined by solving the second order equation
S? +3nS — M = 0 for positive values of S.

3.1.5 Important Observations

First, Steps 2 and 6 of the algorithm given in Fig. 3 involve
solving integer matrix equations. Second, the algorithm
considers all possible fastest changing dimensions. For
instance, for a three-dimensional out-of-core array, the
algorithm may decide that the middle (second) dimension
should be the fastest changing dimension; that is, it goes
beyond the classical row-major and column-major array
layouts found in conventional programming languages
such as C and Fortran. Third, the algorithm first optimizes
the LHS array. This is important from the I/O point of view
because of the fact that the data tiles for this array might be
both read and written, whereas the RHS arrays are only
read. Finally, when the file layout of an out-of-core array is
set to a specific form, the memory layouts of its data tiles in
memory should also be set to the same form in order to
reduce the transfer time between the disk and memory.
Later on, cache locality optimization techniques [44], [27]
can enhance the cache behavior taking the new memory
layout into account.

3.2 Example

In this section, we give an example to illustrate the working
of the algorithm shown in Fig. 3; this example will be used
in the following two sections as well. Fig. 4a shows a matrix
multiplication routine and Fig. 4b presents a straightfor-
ward out-of-core translation of it. In Fig. 4b, only the tiling
loops—loops that iterate over the data tiles—are shown.
Each reference corresponds to a data tile, the size and
coordinates of which are determined by the relevant tiling
loops. For example, in Fig. 4b, C[u, v] denotes a data tile of
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size S xS from (u,v) to (u+S—1,v+S5—1) in file
coordinates, whereas Clw,u] in Fig. 4c corresponds to a
data tile of size n x S (note the loop bounds and steps).
Unless otherwise stated, the word loop refers to a tiling loop.
In order to reduce clutter, all the element loops as well as
the I/0 calls between the tiling loops are omitted. The tile
allocations for this naive translation are illustrated in Fig. 4e.

We now optimize the program shown in Fig. 4a using
the locality algorithm shown in Fig. 3. Due to space
limitations, we only show the successful trials. The
reference matrices for the arrays are as follows:

c (100
L "(0 10

and

5_ (0 0 1
L "(0 10

The algorithm works as follows:
First, it considers column-major file layout for C. Since

¢ (001
L'Q"<5 5 o)’

q11 = q12 = @23 = 0 and q13 = 1. Since

an (0 0 1
L'Q"<5 5 o)’
@23 = 0, which means there is no inconsis’cency3 so far.

However, the most optimized layouts create inconsistency
for array B. Instead, since

s (610
L'Q"(é 0 o)’

we have ¢ = 0 and g3 = 1. At this point,

0 0 1
T7'=Q=(g1 0 0
g1 1 0
By setting go1 = 1 and ¢31 = 0,
0 0 1
T71 = Q = 1 0 O
01 0

The resulting code is shown in Fig. 4c. The arrays A, B, and
C have column-major file layouts. Tiles of size n x S are
allocated for C and A and a tile of size S x S is allocated for
B as shown in Fig. 4f. Since all the arrays have the same
layout, during memory allocation there is only one group.
The final memory constraint is 2nS + S2 < M.

Now, the algorithm tries the other file layout (row-major)
for C. Since

3. “Inconsistency” here means a situation where we happen to derive
(from different equations) conflicting values for a given g¢;; entry of Q.
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DOi=1n DOu=1,nS DOu=1,nS DOu=1,nS
DOj=1n DOv=1nS DOv=1nS DOv=1nS
DOk=1n DOw=1n S DOw=1nn DOw=1nn
C(i,j)+=A(i,k)* B(kj) Cluv]+=Aluw]*Blwv] Ciwuj+=Alwv]*Blvu] Cluw]+=Aluv]*Blvw]
END DO END DO END DO END DO
END DO END DO END DO END DO
END DO END DO END DO END DO
(a) (b) (c) (d)
2 R p2 o 1 2 - v v
u D u D w l:‘ i WFD w D v I:‘ i ; r u FD Y r|>
Ay © A A Ay 8 i Amay € Aray A Amay B E Array C Array A Array B
(e) ! ® i (9)
DOu= 1, wp DOu=1, wp DOu=1wp, S DOu=1np S
DOv=1n DOv=1n DOv=1nS DOv=1nS
receive B(*,v) receive A(*,v) receive A[*,v] receive Bfv,*]
DOw=1n DOw=1n DOw=1nn DOw=1nn
Cluv)+=Alu,w)*Bwv) Cwu)+=A(wv)*B(v,u) Clwuj+=Awyv]*Bfvu/ Clu,w]+=Aluv[*Bfvw]
END DO END DO END DO END DO
END DO END DO END DO END DO
END DO END DO END DO END DO
(h) @ 0) (k)
Y SR S
w w v ! W, v w
I s B R B
E Array C Array A Array B
Array C Array A Array B E

()

(m)

Fig. 4. (a) Out-of-core matrix multiplication nest, (b) straightforward translation of (a) using square tiles, (c) I/O optimized translation of (a) with
column-major file layouts, (d) I/O optimized translation of (a) with row-major file layouts, (e) tile allocations for (b), (f) tile allocations for (c), (@) tile
allocations for (d), (h) parallelism optimized translation of (a) with communication calls for array B, (i) parallelism optimized translation of (a) with
communication calls for array A, (j) parallelism and 1/O optimized translation of (a) with column-major file layouts, (k) parallelism and I/O optimized
translation of (a) with row-major file layouts, (l) tile allocations for (j), and (m) tile allocations for (k).

e (660
L'Q*(001>

q13 = Q21 = Q22 = 0 and Qo3 = 1. Since

5 (6 60
L'Q_<001)’

q33 = 0. Since

an (8500
o3 1 0)

¢i2 = 0 and ¢3» = 1. At this point,

By setting ¢;; =1 and ¢3; =0,

0 0
0 1
1 0

100
T7Hl'=Q=10 0 1
010

The resulting code is shown in Fig. 4d. All the arrays have a
row-major layout. Tiles of size S x n are allocated for C and
B, and a tile of size S x S is allocated for A as shown in
Fig. 4g. The final memory constraint is 2n.S + S2 < M; it
should be stressed that the parameter S in each optimized
case is different and that, in general, its value depends on
the memory constraint.

4 ALGORITHM FOR MAXIMIZING PARALLELISM AND
MiNIMIZING COMMUNICATION

This section presents an algorithm that considers loop
transformations to optimize parallelism and communica-
tion in message-passing machines. Specifically, the algo-
rithm presented here transforms a loop nest such that 1)
the transformed outermost loops are distributed over the
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Step 1 Initialize ¢ = 1.

Step 2 Set KZC.Q = (1,0,---,0,0), i.e., distribute LHS out-of-core array across processors along dimension

T.

Step 3 For all array references A on the RHS that have E_;“ = 13_;-0 for some {, distribute array A along the
dimension [.

Step 4 Choose an array reference A for which the equality in Step 3 does not hold. Initialize j = 1.

Step 5 Set £4.Q = (0,0,---,0,1) and £.Q = (6,4, - ,4,0) for cach k # j. If a valid Q is found, check
the determinant of it. If non-zero block transfers are possible for that RHS array, go to Step 6. If there
are no valid () or the determinant of () is zero for all j, block transfers are not possible on that array
with the given distribution of the LHS array; increment j and go to Step 5.

Step 6 Rcpcat Step 5 for all reference matrices of a particular A.
Step 7 Repeat Step 5 for all distinct array references.

Step 8 Record the obtained transformation matrix. Also record the number of arrays for which there is no

communication and the number of arrays for which block transfers are possible.
Step 9 Increment ¢ and go to Step 2 (try a different distribution for the LHS array).

Step 10 Compare all alternatives and choose the best one.

Fig. 5. Algorithm for data decomposition and parallelism.

processors, 2) data decomposition across processors is
determined for each out-of-core array, and 3) commu-
nication is performed in large chunks and is optimized
such that all nonlocal data are transferred to respective
local disks before the execution of the innermost loop.

4.1 Explanation of the Algorithm

As before, let ji, j2, - - -, jn, be the loop indices of transformed
loop. The algorithm works as follows:

4.1.1 Handling the LHS

The resultant loop transformation matrix should be such
that the LHS array of the transformed loop should have the
outermost index as the only element in one of array
dimensions. In other words, the LHS array C should be of
the form C(x,---,%,j1,%,--+,%), where j; (the new outer-
most loop index) is in the rth dimension. This means that
the rth row of the transformed reference matrix for C is
(1,0,---,0,0). Then, the LHS out-of-core array can be
distributed along the dimension r across processors without
any communication. Note that distributing an out-of-core
array means creating a corresponding local array file on
each (logical) local disk (see Fig. 1).

4.1.2 Handling the RHSs

The algorithm works on one reference from the RHS at a
time. If a row s of data reference matrix for an RHS array A
is identical to a row in the reference matrix for the LHS
array, then it is always possible to distribute that array
along sth dimension across processors without any com-
munication.

If the condition above does not hold for an RHS reference
for an array A, then the entries for @ should be chosen such

that some dimension of that reference consists only of the
innermost loop index and the other dimensions are
independent of the innermost loop index. That is, the RHS
transformed reference should be of the form
A(%, -+ %, jn, %, -+, %), where * indicates a term indepen-
dent of j,. If this condition is satisfied, the communication
arising from that RHS reference can be moved out of the
innermost loop, that is, it is vectorized [17].

4.1.3 Refining Communication

An aggressive approach may repeat the previous step
several times to take the communication to the outermost
loop possible, constrained only by the data dependences.

Of course, the transformation matrix should be
nonsingular and must satisfy data dependences. This
algorithm is presented in Fig. 5 and the details of a version
of this algorithm for in-core computations can be found
elsewhere [12], [35], [36]. As before, this algorithm may
result in more than one choice of layouts. Currently, we
favor the choice that contains the most number of
communication-free references.

4.2 Example

We consider the matrix multiplication nest shown in Fig. 4a
again. The algorithm works as follows:

. (100
EC'Q_(é 5 5)'

A =C
Therefore, ¢g11 =1, 120 =0, and ¢;13 =0. Since ¢; =/; , A
can be distributed along the first dimension as well.

00 1
'CB'Q:((S ) 0)'
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Therefore, ¢31 = g32 = g23 =0 and ¢33 = 1. The remaining
entries should be selected such that the rank of @ is 3 and
no dependences are violated. In this case, the algorithm can
set go = 0 and g2 = 1. This results in the identity matrix
meaning that no transformation is needed. A and C are
distributed by rows and B by columns. The resulting node
program is shown in Fig. 4h. Note that the communication
is performed outside the innermost loop.

Next, the algorithm tries to distribute C in the second

dimension.
c 6 6 6
LoQ= ( 1 00 )

~B  ~C
Therefore, go1 =1, q2o =0, and ¢o3 = 0. Since ¢ =/¢3 , B
can be distributed along the second dimension as well.

A 0 0 1
ce=(3 5 o)
Therefore, ¢11 = ¢12 = ¢33 =0 and ¢3 = 1. The remaining
entries should be selected such that the rank of @ is 3 and

no dependences are violated. The algorithm sets ¢3; = 0 and
g32 = 1. This results in

00 1
Q=(1 0 0
010

All arrays are distributed by columns. The resulting node
program is shown in Fig. 4i.

5 UNIFIED ALGORITHM

This section presents a unified algorithm that combines the
characteristics of the algorithms presented in the previous
two sections. It attempts to optimize for parallelism,
communication, and locality in a given loop nest that
accesses a number of out-of-core arrays. In general, it is
hard to find an optimal solution in this case and, therefore,
the approach presented here is a greedy heuristic. It is
greedy in the sense that it handles array references one at a
time and the decisions made for a reference may affect the
optimization of the others as well.

5.1 Explanation of the Algorithm

We first define the following terms where p represents the
number of loops in the nest:

e An array is said to be optimized for parallelism if it
can be distributed along an array dimension where
only j; (the transformed outermost loop index)
appears; thus, there is no communication.

e An array is said to be degree o optimized for
communication if it cannot be optimized for
parallelism, but communication for it can be
performed before the ath loop, where 1 < a < pu.
An array optimized for parallelism is said to be
degree 0 optimized for communication; that is, it
needs no communication.

e An array is said to be degree (§ optimized for
locality if it contains the loop index j,_p41 in an
array dimension and it can be stored in a file such

that this array dimension will be the fastest changing
array dimension (1 < 3 < p).

Using these definitions, we can associate a tuple (o, §)
with each array where o and (3 denote the degree of
communication and the degree of locality, respectively. The
tuple (0,1) is the best possible tuple for an array. Our
algorithm tries to achieve this best possible tuple for all the
references. For those arrays where this is not possible, the
selection of the next tuple to be considered depends on
whether parallelism is favored over locality or vice-versa.
For example, for a three-deep nest in which two-dimen-
sional out-of-core arrays are accessed, we follow the
sequence (0,1), (0,2), (3,1); that is, if an array reference
cannot be optimized for parallelism, we check only for the
case where the communication can be taken out of the
innermost transformed loop. If (3,1) is unsuccessful, we
choose to apply communication or locality optimization
alone.

Theoretically, if there are enough loop indices and array
dimensions, an array reference C can be transformed to the
form C(k,- -+, %, J1,%, -+, %, Jn, %, -, %), where * denotes a
subscript independent of j,. If such a transformation is
possible, then C can be distributed among the processors
along the dimension where j; occurs alone and, at the same
time, the local portions of it can be stored in local files such
that the dimension where j, occurs will be the fastest
changing dimension. The problem here is that, in most of
the nests found in scientific programs, the number of loops
and the number of array dimensions are small values; thus,
the number of entries in 7! is small (e.g., 4,9, etc.). Once
the above form is obtained for one reference, since most of
the entries of T! are already determined, the chance of
optimizing the other references would be low. This is why
our algorithm considers other degrees of communication
and locality as well.

Optimizing an array for a tuple («, 3) can be formulated
as the problem of finding a transformed reference matrix
that is suitable for both o degree communication and
degree locality. For example, the reference matrices corre-
sponding to some commonly used (o, ) tuples for a three-
deep nest and a four-deep nest in which two-dimensional
arrays are accessed are given in Table 1.

The combined algorithm is given in Fig. 6. £' denotes the
original reference matrix for the ith array in the nest with
it =1 corresponding to the LHS array. The jth possible
transformed reference matrix for an (a, ) tuple is denoted
by R . In fact, this algorithm is a generic form of the
prev1ous algorlthms in the sense that by setting the R
matrices to appropriate values, both the previous algo—
rithms can be implemented.

5.2 Example

Consider the matrix multiplication nest once again. Since
cHh_(0 0 1
£Q= <1 0 0)

with (a,3) =(0,1), 11 =0, 12 =0, qi3 =1, g1 =1, g2 = 0,

and ¢o3 = 0. Since
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TABLE 1
Array Reference Matrices for Commonly Used («, 3) Tuples for
a Two-Dimensional Array Enclosed in a Three-Deep Loop Nest
(Top) and in a Four-Deep Loop Nest (Bottom)

| (@, 5) |
©op T ©0»n [ 3h ]
(001)(100)(001)
10 0 § 10 § & 0
(100) <510) (550)
0 0 1 10 0 0 0 1
| (o, |
| (0,1 | 0,2) | (3.2) |
0 0 0 1 5§ & 1 0 § & 0 0
1 000 10 0 0 00 1 0
1 000 10 0 0 00 1 0
00 0 1 § 6§ 1 0 5§ 5§ 0 0

A (001
ﬁQ*(&&o)

with (Oé,ﬂ) = (3, 1), q33 = 0. Since
s (610
£ ‘Q*<1 0 0)

with (o, 8) = (0,2), g2 = 1. By setting ¢3; =0,

00 1
Tl '=Q=1[1 0 0].
010

The resulting node program is shown in Fig. 4j. The three
arrays are distributed column-wise among the processors.
The arrays C and B are optimized for parallelism (a = 0),
whereas the array A is optimized for communication with
a = 3. The arrays C and A are optimized for locality in the
innermost loop, whereas for array B the locality is exploited
in the second loop. The tile allocations for local arrays are
shown in Fig. 41. All the local arrays are column-major.

Next, the algorithm considers the other alternative for
the array C. Since
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100
‘CC‘Q:<0 0 1)

with (o, ) = (0,1), qu =1, ¢12=0, qi3 =0, ¢21 =0, 22 =0

and ¢»3 = 1. Since
a4~ _ (1 00
cho-(5 1)

with (a, 8) = (0,2), gs2 = 1 and ¢33 = 0. Since

§ 60
‘:B'Q:(o 0 1)

with (a, 8) = (3,1), gs2 = 1. By setting ¢31 =0,
1 0 0
T7'=Q=10 0 1
010

The resulting node program is shown in Fig. 4k. All the
arrays are row-wise decomposed across processors. The
arrays C and A are optimized for parallelism (a =0),
whereas the array B is optimized for communication with
a = 3. The arrays C and B are optimized for locality in the
innermost loop, whereas for array A the locality is exploited
in the second loop. The tile allocations for local arrays are
shown in Fig. 4m.

6 EXPERIMENTAL RESULTS

The experiments were performed on an IBM SP-2 and an
Intel Paragon, for different values of Slab Ratio (SR), the
ratio of available node memory to the total size of all the
out-of-core local arrays. SR is an appropriate parameter as it
gives us the opportunity to investigate the behavior of an
out-of-core program under tight memory constraints. The
practical values for the SR parameter is between § and 5
[7]. The transformations to the original programs were
applied manually following the algorithms by using the
PASSION run-time library [7], which can associate different
file layouts with different out-of-core arrays in a given nest.
All the reported times are in seconds and obtained by
instrumenting the code being analyzed.

pure locality optimization for this reference.

the memory allocation scheme.

Step 1 Initialize ¢ = 1. Initialize («, 3) < (0, 1) (try the best possible optimization).
Step 2 Initialize § = 1. (try the first transformed reference matrix for this (o, 3) tuple).

Step 3 Set £1.Q = Rj(w;). If there is no inconsistency, then go to Step 4; else increment j (try the next
possible transformed reference matrix for this («, 3) tuple) and repeat this step. If there arc inconsis-
tencies for every value of j, then increment («, ) tuple (try the next tuple on the trial sequence) and
repeat this step. If there are inconsistencies for all («, 3) tuples, then apply pure communication or

Step 4 Increment ¢ and go to Step 2 (optimize the next array reference).
Step 5 When a @ is found, record it. Also record the associated («, 3) tuples for each array reference.

Step 6 When all solutions are obtained, choose the best alternative by comparing («, 5) values, and apply

Fig. 6. Unified algorithm for optimizing parallelism, communication, and locality.
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DOi=1,n DOu=1np, S DOu=1,np, S
DOj=1,n DOv=1nS DOv=1nS
DOk=1,n receive C[v,*] receive Bfv,*]
DOl=1n DOw=1mnn receive C[*,v]
Ali,j)+=B(ki)+C( k) DOy=1,nn DOw=1,nn
END DO Alu,y]+=Bfwu]+Clvw] DOy=1,nn
IND DO IIND DO Ay ul+=Bvy]+Cfwyv]
END DO END DO END DO
END DO END DO END DO
END DO END DO
END DO
(a) (b) ()

Fig. 7. (a) An example out-of-core loop nest, (b-c) optimized versions of (a).

TABLE 2
I/O Times (in Seconds) for the Example Shown in Fig. 7a on the SP-2 and the Paragon

IBM SP-2
2K x 2K double arrays 4K x 4K double arrays
SR ori Col Row Opt ori Col Row Opt
1/4 152 138 131 77 363 311 281 199
1/16 623 577 524 105 1,441 1,108 1,074 441
1/64 4,224 3,111 2,462 563 8,384 6,449 5,912 | 1,422
1/256 || 25,087 | 21,627 | 19,298 | 1,566 | 48,880 | 35,759 | 30,055 | 4,584
Intel Paragon
2K x 2K double arrays 4K x4K double arrays
SR ori Col Row Opt ori Col Row Opt
1/4 1,159 1,050 988 208 5,172 4,431 4,001 1,273
1/16 2,320 2,141 1,951 252 7,360 5,668 5,412 1,344
1/64 19,201 | 14,141 | 11,760 576 28, 864 22,002 20,257 | 2,304
1/256 || 99,583 | 83,848 | 76,245 | 3,028 | 192,512 | 141,370 | 117,270 | 8,193

6.1 Experimental Platforms and Run-time Library

We use a 512-node Intel Paragon with i860 processors for
the experiments discussed in this section. The Parallel File
System (PFS) is part of the OSF.R1.4.3 release of the
operating system. There are two different parallel file
system configurations that can be used, namely a 12 I/O
node X 2 GB partition on original Maxtor RAID 3 level disks
and a 16 I/O node X 4 GB partition on individual Seagate
disks. In the experiments, we used the former configura-
tion. In both the partitions, the stripe factor is equal to the
number of I/O nodes. The default striping unit size of both
the I/0O partitions is 64 KB.

The IBM SP-2 is a distributed-memory machine that uses
Ethernet and switches to connect the nodes. It uses RS/6000
processors. The nodes are divided into two groups: thin
nodes and wide nodes. In the experiments, we use thin
nodes, each of which runs at 1220MHz, has 256 MBytes of
memory, and 4.5 GBytes of local disk space. The PIOFS,
IBM’s parallel file system running under AIX operating
system, supports shared file accesses.

The PASSION run-time library [38], [39] uses PFS and
PIOFS on Paragon and SP-2, respectively. It provides a
high-level interface that makes it easy for the compiler to
specify which portion of the out-of-core data structure
needs to be read from or written to the file and the internal
routines perform all the necessary 1/0 efficiently using the
interface to the underlying parallel file system.

6.2 Performance Numbers for an Out-of-Core Loop
Nest

Our experimental suite consists of several loop nest from

benchmarks and math libraries. But, we first present

detailed performance numbers on a small loop nest that

can benefit from unified (loop+data) locality improvements.

6.2.1 Optimization

Fig. 7a shows a four-deep loop nest that can benefit from
file layout optimizations. The application of our algorithm
results in two optimized node programs, as shown in Fig.
7b and Fig. 7c, respectively. In Fig. 7b, the reference A is
optimized with (0,1), the reference B is optimized with
(0,2), and the reference C is optimized with (3,2). Before
the w-loop, communication is performed for C. On the other
hand, in Fig. 7c, the reference A is optimized with (0,1) and
the reference C is optimized with (3, 2), incurring commu-
nication before the w-loop. The reference B could only be
optimized for locality and communication is needed for it
before the w-loop. In our experiments, the code in Fig. 7b
outperformed the one in Fig. 7c, so, in the following, we
consider only the former.

6.2.2 I/O Times
Table 2 shows the I/O times on a single processor and in
Fig. 8 and Fig. 9, we present the normalized I/O times on
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number of processors=1
T T

Original
Col-Opt
Row-Opt
Opt

Normalized I/0 Times

1/4 116 1/64
Slab Ratio

1/256

number of processors=8
T T

Original
Col-Opt
Row-Opt
Opt

Normalized I/0 Times

1/4 116 1/64
Slab Ratio

1/256
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number of processors=4
T T

Original
Col-Opt
0.8 Row-Opt
g Opt
£
o 0.6
T
[+
N
E 0.4
5]
4
0.2
0.0
1/4 116 1/64 1/256
Slab Ratio
number of processors=16
1.0 T T
Original
Col-Opt
08 Row-Opt
» Opt
[+
E
=
o 0.6
-
[
N
E 0.4
S
4
0.2

0.0

1/4 116 1/64
Slab Ratio

1/256

Fig. 8. Normalized I/O times with 4K x 4K (128 MByte) double arrays on the SP-2 (example shown in Fig. 7a).

the SP-2 and the Paragon, respectively, for four different

versions of this example using 4K x 4K out-of-core arrays:

1. Original or Ori: The original program in Fig. 7a is
modified manually for parallelism and the data
distributions are applied to files holding the out-of-
core arrays. A fixed column-major file layout is used
for all out-of-core arrays and square tiles are read/
written.

2. Col-Opt: The optimized program using our ap-
proach under fixed column-major layouts for all arrays.
This is similar to the loop-level locality optimization
techniques used by commercial compilers. In that
case, our algorithm allocates data tiles of size S x S,
S xS, and n x S for the A, B, and C, respectively,
resulting in the memory constraint nS + 252 < M,
where M is the size of the node memory.

3. Row-Opt: The optimized program under fixed row-
major layouts for all arrays. The algorithm allocates
data tiles of size S x n, S x S, and S x S for the A, B,
and C, respectively, resulting in the memory
constraint n.S + 252 < M.

4. Opt: The program optimized by our approach assum-
ing no fixed file layouts (Fig. 7b). A and C are row-
major, while B is column-major.

The algorithm allocates data tiles of sizes S xn, n xS,
and S x n for the A, B, and C, respectively, resulting in the
memory constraint 3n.S5 < M. Notice that, in this case, all
the three array accesses are optimized. Notice that, for all
the versions, the final code is tiled because tiling is
mandatory for out-of-core computations based on explicit

file I/O as mentioned earlier.

Table 3 shows the number of bytes read and number of
I/0 calls issued for each of the four versions. It is easy to see
that the Opt version minimizes both the number of I/O
calls in the program and the number of bytes transferred
from the files resulting in a corresponding reduction in the
overall I/O time.

6.2.3 Speedups

Fig. 10 shows the speedups for the Original and Opt
versions on the SP-2 using 4K x 4K array. Note that each
speedup is relative to the sequential version of the same
program (Original or Opt). Speedup curves for the Paragon
exhibit a similar trend and, therefore, they are omitted.

6.2.4 1I/O Bandwidth

The I/O bandwidth (also called the aggregate read bandwidth)
of an out-of-core program is computed as the total number
of bytes read by all processors divided by the total time to
read. The optimized programs have better bandwidth
speedups than their unoptimized counterparts. Fig. 11
shows two different cases for the example given in Fig. 7a:
1) 4K x 4K double arrays with a slab ratio of & and 2)

61
2K x 2K double arrays with a slab ratio of 5i-. Note that

256 *
each bandwidth speedup is relative to the I/O bandwidth
of the same version on a single processor. Therefore, the
bandwidth speedups for the original and optimized cases
start from the same point when p =1, even though the
actual values are different for each version. The I/0O
bandwidth of the optimized program when p =1 is 6.23
MB/sec, whereas, when p = 16, the bandwidth is 55.3 MB/

sec. Recall that the Opt version is the one shown in Fig. 7b.
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Fig. 9. Normalized I/O times with 4K x 4K (128 Mbyte) double arrays on the Paragon (example shown in Fig. 7a).

TABLE 3
Number of Mbytes Read and Number of I/O Calls Issued (Example Shown in Fig. 7a)

SR=1/4 2K x 2K double arrays 4K x 4K double arrays
Ori Col Row Opt Oori Col Row Opt
Number of Mbytes read 235 235 134 134 940 940 537 537
Number of VO calls issued || 28,672 | 20,480 | 14,336 | 8,192 | 57,344 | 40,960 | 28,672 | 16,384

6.2.5 Observations

From these results we observe the following;:

The Opt version performs better than the other
versions for this out-of-core nest.

For a fixed slab ratio (SR), when the number of
processors is increased, the effectiveness of our
approach (Opt) increases (see Fig. 8 and Fig. 9).
This is because of the fact that more processors are
now working on the out-of-core local array(s) I/O-
optimally.

For a fixed number of processors, when the slab ratio
(SR) is decreased, the effectiveness of our approach
increases (see Fig. 8 and Fig. 9). As the amount of
node memory is reduced, the Original version
performs many number of small I/O requests, and
this degrades the performance dramatically.

As shown in Fig. 10, the Opt version also scales
better than Original for all slab ratios.

As shown in Fig. 11, the Opt version also has a better
I/0 bandwidth speedup than Original.
Demonstrations on two different platforms with
varying compile-time and run-time parameters, such
as the number of processors, available in-core node
memory, array sizes, etc., prove that the algorithm is
robust.

e The results presented here are conservative in the
sense that the unoptimized code is also modified
such that the outermost loops are parallelized. Since
this may not always be the case, the performance
improvement obtained by our approach will be
higher in general.

6.3 Performance Numbers for Several Programs

In this subsection, we present experimental results obtained
on the Intel Paragon. In the experiments, we applied the
following methodology: We took 10 loop nests from several
benchmarks and math libraries. The salient features of these
nests are shown in Table 4. Then, we parallelized these
nests for execution on the Paragon such that interprocessor
communication is eliminated. This allowed us to focus
solely on the I/O performance of the nests and the
scalability of the I/O subsystem.

After this parallelization and data allocation, we hand-
coded five different out-of-core versions of each nest using
the PASSION runtime library [38]. The Col and Row are the
original (unoptimized) codes. The L-Opt version is the
optimized code obtained using loop transformations alone.
For this version, we used the best of the resulting nests
generated by [27] and [44] (it corresponds to the Col-Opt
version discussed earlier and does not use any file layout
transformation). The D-Opt version is the layout-optimized
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Fig. 10. Speedups for unoptimized and optimized versions of the example shown in Fig. 7 with 4K x 4K double arrays on the SP-2.
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Fig. 11. Bandwidth speedups for the example shown in Fig. 7 on the SP-2.

version without any loop transformation. For this, we used
the best of the resulting nests generated by [33] and [26].
The Opt (compiler optimized) version is the one obtained
using the approach discussed in this paper. H-Opt is a
hand-optimized version. In obtaining H-Opt, we used
chunking and interleaving in order to further reduce the
number of I/O calls. For all the versions except Opt, all the
loops carrying some form of reuse are tiled. As usual, we
use all versions to employ tiling to bring the right amount of
data into memory.

For each nest, we set the slab ratio (SR) to ﬁg Each
dimension of each array used in the computation is set to
4,096 double precision elements. However, some array
dimensions with very small hard-coded dimension sizes
were not modified, as modifying them correctly would
necessitate full understanding of the program in question.

Table 5 shows the results on 16 processors of the
Paragon. For each data set, the Col column gives the total
execution time of the out-of-core nest in seconds. The other

columns, on the other hand, give the respective execution
times for the other versions as a fraction of that of Col. As
an example, the execution time of the Opt version of
gfunp.4 is 46.9 percent of that of Col. From these results,
we infer the following: First, the classical locality optimiza-
tion schemes based on loop transformations alone may not
work well for out-of-core computations. On the average,
L-Opt brings only a 16 percent improvement over Col. The
approach based on pure data transformations performs
much better. Our integrated approach explained in this
paper, however, results in a 40 percent reduction in the
execution times with respect to Col. Using a hand
optimized version (H-Opt) brings an additional 8 percent
reduction over Opt, which encourages us to incorporate
array chunking and interleaving into our technique.

Table 6, on the other hand, shows the speedups obtained
by different versions for processor sizes of 16, 32, 64, and
128 using all 64 I/O nodes on the Paragon. It should be
stressed that, in obtaining these speedups, we used the
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TABLE 4
Programs Used in Our Experiment
|| Nest || Source || iter H Arrays ||
mat.?2 2 three 2-D
mxm. 2 spec9?2 3 three 2-D
adi.2 livermore 5 three 1-D, three 3-D
vpenta.6 || spec92 3 seven 2-D, two 3-D
btrix.4 spec9?2 2 twenty-five 1-D, four 4-D
emit.3 spec92 2 ten 1-D, three 3-D
syr2k.2 blas 2 three 2-D
htribk.2 eispack 3 five 2-D
gfunp.4 hompack 3 one 1-D, five 2-D
trans.?2 nwchem 3 two 2-D

The iter column for each code shows the number of iterations of the outermost timing loop. The number at the end of the program name denotes
the loop nest used. The arrays gives the number and the dimensionality of the arrays accessed by the program from which the nest is extracted.

mat. 2 is the main loop nest in the classical matrix-multiply nest.

TABLE 5
Experimental Results on 16 Nodes of an Intel Paragon

| Row | L-opt [ D-Opt | Oopt [ H-Opt ||

|| Nest || Col
mat.?2 257.20 93.3
mxm. 2 220.01 | 181.5
adi.2 144.12 | 134.9
vpenta.6 || 135.00 47.1
btrix.4 91.45 66.6
emit.3 88.64 | 176.5
syr2k.2 215.34 86.3
htribk.2 | 248.61 | 110.8
gfunp.4 86.05 | 128.4
trans.?2 181.90 | 100.0

|| average: || | 112.5 |

65.1 | 568 | 608 543
1000 | 1126 | 798 | 67.0
228 | 465 | 228 | 228
1000 | 471 | 471 299
1000 | 613 | 613 | 423
100.0 | 100.0 | 100.0 | 100.0
520 | 774 | 520 | 476
1272 | 8L1| 81| 726
733 | 680 | 469 | 340
1000 | 482 | 482 | 482
840 | 69.9 | 60.0 [ 519

single node result of the respective versions. For example,
the speedup for the Opt version of emit .3 was computed
for p € 16,32,64,128 as

Execution Time of the Opt version of emit.3 on 1 node

Execution Time of the Opt version of emit.3 on p nodes

Since the execution times of the parallelized codes on
single nodes may not be as good as that of the best
sequential version, these results are higher than we
expected. Also, since the codes were parallelized such that
there is no interprocessor communication, the scalability
was limited only by the number of I/O nodes and the I/O
subsystem bandwidth. Nevertheless, these results demon-
strate that our approach performs very well in practice.

7 GLoBAL I/O OPTIMIZATION

We have shown that data transformations are very effective
for out-of-core computations, especially when they are
accompanied by iteration space transformations. However,
unlike the impact of iteration space transformations whose
scope is a single loop nest, the effect of a data transforma-
tion is global; that is, when an array layout is determined, it
should be used for all the references to the same array in all
the loop nests. Since dynamic redistribution of out-of-core
data at run-time can be very costly, it should be considered

only in exceptional cases. In this section, we show how our
algorithm can be extended to work for multiple nests. Since
a number of out-of-core arrays can be accessed by a number
of nests and each of these nests may, in principle, require a
different file layout for a specific array, the algorithm
should determine a single static file layout for that array
that satisfies the majority of the nests, taking their
respective costs into account. Essentially, our global layout
determination algorithm attempts to resolve the global
impact of data transformations locally by using iteration
space transformations. For a different and more compre-
hensive treatment of the global layout determination
problem, we refer the reader to [21].

7.1 Optimization with Constrained Layouts

We first focus on the problem of optimizing locality when
some or all the file layouts are fixed. We note that each fixed
file layout requires the innermost loop index to be in the
appropriate array index position (dimension), depending
on the file layout of the array. For example, suppose that the
file layout for an h-dimensional array is such that the
dimension k; is the fastest changing dimension, the
dimension k; is the second fastest changing dimension, k;3
is the third, etc. The algorithm should first try to place the
new innermost loop index j, only to the k;th dimension of
this array. If this is not possible, then it should try to place
Jn only to the keth dimension and so on. If all the
dimensions up to and including k;, are tried unsuccessfully,
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TABLE 6
Results on Scalabilty of Optimized Versions on the 1arge Data Set

Nest || Version || No. of processors | ‘ Nest || Version || No. of processors ‘
16 32 64 128 16 32 64 128
mat.2 Col 10.9 | 20.6 | 34.8 64.3 emit.3 Col 12.7 | 23.1 | 45.0 89.9
Row 11.0 | 20.9 | 35.6 66.0 Row 6.8 | 11.0 | 18.5 33.9
L-Opt 139 | 27.6 | 53.8 | 100.4 L-Opt 12.7 | 23.1 | 45.0 89.9
D-Opt 14.5 | 28.1 | 55.0 | 104.2 D-Opt 12,7 | 23.1 | 45.0 89.9
Opt 14.0 | 27.7 | 54.8 | 102.7 Opt 12.7 | 23.1 | 45.0 89.9
H-Opt 15.2 | 309 | 60.9 | 115.6 H-Opt 12.7 | 32.1 | 45.0 89.9
mxm. 2 col 11.1 | 21.2 | 37.6 70.0 syr2k.2 Ccol 10.3 | 20.0 | 36.5 71.5
Row 8.2 | 154 | 30.0 52.6 Row 11.7 | 22.0 | 38.9 78.0
L-Opt || 11.1 | 21.2 | 37.6 70.0 L-Opt || 13.8 | 26.8 | 51.0 95.1
D-Opt 9.7 | 17.0 | 32.1 56.4 D-Opt 12.5 | 24.1 | 45.6 87.4
Opt 13.7 | 24.8 | 56.4 | 106.6 Opt 13.8 | 26.8 | 51.0 95.1
H-Opt 13.7 | 24.8 | 56.1 | 107.2 H-Opt 14.1 | 26.0 | 51.0 95.3
adi.2 Col 12.0 | 22.2 | 51.2 70.9 htribk.2 || Col 11.7 | 20.3 | 37.7 76.6
Row 6.89 | 10.9 | 18.6 314 Row 9.5 | 16.9 | 30.0 55.4
L-Opt 15.3 | 28.2 | 61.4 | 107.5 L-Opt 88 | 15.0 | 24.3 44.0
D-Opt || 13.8 | 24.0 | 55.5 74.9 D-Opt || 11.9 | 21.5 | 37.9 76.9
Opt 15.3 | 28.2 | 61.4 | 107.5 Opt 11.9 | 21.5 | 37.9 76.9
H-Opt 15.3 | 28.2 | 61.4 | 107.5 H-Opt 12.1 | 21.6 | 40.1 76.9
vpenta.6 || Col 10.0 | 24.2 | 51.3 78.9 gfunp.4 col 109 | 204 | 384 70.8
Row 14.5 | 28.0 | 60.9 | 109.8 Row 9.5 | 17.0 | 32.6 60.6
L-opt 10.0 | 24.2 | 51.3 78.9 L-Opt 81 | 15.7 | 28.2 52.2
D-opt || 14.5 | 28.0 | 60.9 | 109.8 D-Opt || 14.0 | 25.0 | 56.0 | 102.3
Opt 14.5 | 28.0 | 60.9 | 109.8 Opt 14.0 | 25.0 | 56.0 | 102.3
H-Opt 14.7 | 29.0 | 62.4 | 108.2 H-Opt 14.5 | 24.7 | 57.0 | 105.7
btrix.4 Col 10.0 | 18.1 | 27.0 42.7 trans.?2 Col 13.0 | 22.7 | 31.6 67.7
Row 12.9 | 23.9 | 45.8 87.1 Row 13.0 | 22.7 | 31.6 67.7
L-opt 10.0 | 18.1 | 27.0 42.7 L-Opt 13.0 | 22.7 | 31.6 67.7
D-opt || 13.9 | 25.1 | 46.2 98.1 D-Opt || 154 | 30.9 | 60.2 | 113.0
Opt 13.9 | 25.1 | 46.2 98.1 Opt 154 | 30.9 | 60.2 | 113.0
H-opt 13.1 | 246 | 44.3 93.1 H-Opt 154 | 30.9 | 60.2 | 113.0
then j, 1 should be tried for the k;th dimension and so on. DOi=1,n
As we will show shortly, this constrained layout algorithm is DOj=1,n
very important for global optimization. A(i,7) = B(3,1) + C(4,J)
. . END DO
7.2 A Heuristic for Global Optimization Problem END DO
Our approach to the global optimization problem is based DOi=1,n
on the concept of the most costly nest. Intuitively, this is the DOj=1,n
nest that would take the most I/O time and should be C(j,1) = D(j,1) + A(4,14)
optimized. A programmer can use compiler directives to give END DO
hints about this nest. We can also use a metric such as the END DO
product of the number of loops and the number of arrays DOi=1,n
referenced in the nest. The nest that has the largest resulting DOj=1,n
value can be marked as the most costly nest. Currently, we D(4,4) = E(i,j) + F(i,5)
use profile information to order the nests according to a cost END DO
END DO

criterion. The rest of the algorithm is independent of how
the most costly nest is determined. The algorithm proceeds
as follows: First, the most costly nest is optimized by using
the algorithm presented in Fig. 6. After this step, the file
layouts for some of the out-of-core arrays will be deter-
mined. Then, each of the remaining nests can be optimized
using the approach presented for the constrained layout case
in Section 7.1. After each nest is optimized, new file layout
constraints will be obtained and these will be propagated
for the optimization of the remaining nests.

As an example that illustrates the working of the
algorithm, we consider the program shown below.

This code accesses six out-of-core arrays using different
access patterns. An informal description of how our
approach works follows: Without loss of generality, we
assume that the first nest is the most costly nest and the last
nest the least costly. We also assume that we optimize this
code for the single processor case.* For the first nest, we use

4. In the multiple processor case, we need to propagate the distribution
information (in addition to the layout information) across the nests. In fact,
the automatic file layout determination problem is very similar to the
automatic data decomposition problem [24], [15] and we believe that it can
be attacked using similar techniques.
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TABLE 7
Experimental Results on 16 Nodes of an Intel Paragon

|| Program H Col | Row ‘ L-Opt | D-Opt | Opt | H-Opt ||
vpenta 683.12 | 54.4 100.0 54.4 | 544 33.6
btrix 495.05 | 69.0 100.0 66.2 | 66.2 47.0
TABLE 8

Experimental Results on 16 Nodes of an IBM SP-2

[ Program | col [ Row [ L-Opt | D-Opt | Opt | H-Opt |
vpenta 128.31 | 57.0 100.0 63.7 | 55.0 40.5
btrix 99.15 | 82.4 100.0 78.2 | 61.0 48.1

our approach (without any constraints) and decide that no
loop transformation is necessary and that the file layouts of
arrays A, B, and C should be row-major, column-major, and
row-major, respectively. Having optimized the first nest,
we move to the second one and, in optimizing this nest, we
take the layouts determined so far into account. Since
layouts of A and C are already set to row-major, in order to
satisfy these constraints, our approach applies loop inter-
change to the nest. This new loop order, in turn, leads to a
row-major file layout for array D. Finally, we come to the
third nest and apply loop interchange again to satisfy the
layout requirements of D. Finally, this new loop order
causes our algorithm to assign column-major file layouts
for arrays E and F.

The results of this global optimization algorithm on a 2-D
out-of-core FFT code (that uses out-of-core transpose loops)
demonstrates a 17-26 percent reduction in I/O times using
our heuristic [20]. In general, the global layout optimization
improves the scalability of the program as well as the
execution time.

In order to perform an evaluation of this global
optimization technique on the whole programs, we hand-
applied it using two representative codes from our
experimental suite. Table 7 presents the results on 16
processors of the Paragon and Table 8 presents the results
on 16 processors of the SP-2. As before, for each data set, the
Col column gives the total execution time of the out-of-core
program in seconds, whereas the other columns show the
respective execution times for the other versions as a
fraction of that of Col. These results are encouraging and
indicate that our global optimization scheme has good
potential.

8 RELATED WORK

In this section, we briefly discuss the related work on out-
of-core compilation and locality optimization techniques.

8.1 Related Work on Out-of-Core Compilation
Several compiler methods for out-of-core HPF programs are
presented in [6] and [5]. In Bordawekar et al. [6], a
technique for optimizing communication for out-of-core
stencil problems is discussed. They show that the extra file
I/O originating from communication requirements can
completely be removed for some special cases.

The group at Rice University [34] incorporates out-of-
core compilation techniques with Fortran D. The main
philosophy behind their approach is to choreograph the
I/0 from disks along with the corresponding computation.
They group computations into “deferred routines” which
are computations to data that fall into elements that are
close physically and, hence, can be computed upon when
the I/O for that contiguous chunk is performed. Their
compilation phases are: program analysis, I/O insertion
and optimization, and parallelization and communication
optimization. Our file locality optimization algorithms
discussed in this paper are general in the sense that they
can be embedded in any out-of-core compilation framework
such as [6], [5], or [34].

Abu-Sufah et al. [1] dealt with optimizations to enhance
the locality properties of programs in a virtual memory
environment. They especially evaluated the gains obtained
from tiling and loop fusion. In contrast, we consider
dimension-wise layout transformations and use explicit file
I/0.

ViC* (Virtual C*) [11] is a preprocessor which transforms
a C* program that uses out-of-core data structures into a
program with in-core data structures with appropriate
library calls from ViC* library that read /write data from/to
disks into the in-core data structures. It uses virtual memory
to implement the accesses to out-of-core structures. In
principle, our file layout determination scheme can be
applied for optimizing the performance of the VM as well
(by changing tile sizes to take the page size into account and
by omitting the memory allocation part). None of the
previous work on out-of-core compilation, to our knowl-
edge, considered the compiler-directed file layout
transformations.

Another compiler-directed optimization, prefetching, is
used by Mowry et al. [32] for optimizing out-of-core
programs. We believe that the compiler-directed prefetch
is complementary to our work in the sense that once the I/O
time is reduced by our optimization, the remaining I/O
time can be hidden by prefetching.

8.2 Related Work on Locality Optimizations
Iteration space tiling has been used for optimizing cache
locality in several papers [27], [44]. McKinley et al. [31]
propose an optimization technique consisting of loop
permutation, loop fusion, and loop distribution. The
assumption of a fixed layout strategy prevents some array
references from getting optimized, as shown earlier in this
paper, and that in turn may cause a substantial performance
loss. This is the main reason that we believe that, in
optimizing out-of-core computations, the compiler must
consider both data space and iteration space transforma-
tions. After the I/O is optimized by our techniques,
however, we strongly recommend the use of an in-core
locality optimization technique for data tiles in memory.

In Cierniak and Li [9], a unified approach to locality
optimization that employs both control and data transfor-
mations is presented for in-core problems in distributed
shared-memory machines. This model can be adapted to
out-of-core computations as well. But, we believe our
approach is better than that of [9] because of the following
reasons:
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e The approach given in [9] depends on a stride vector
whose value should be guessed by the compiler
beforehand. Our approach does not have such a
requirement.

e Our approach does not restrict the search space of
possible loop transformations, whereas the approach
in [9] does.

e  Our extension to multiple nests (global I/O optimi-
zation—Section 7) is simpler than the one offered by
[9] for global optimization.

Also, their paper does not present any heuristic for
choosing the stride vector (which determines the layout).

Anderson et al. [3] propose a data transformation
technique for distributed shared memory machines. By
using two types of data transformations (strip-mining and
permutation), they try to make the data accessed by the
same processor contiguous in the shared address space.
Their algorithm inherits parallelism decisions made by a
previous phase of the SUIF compiler [42]; so, in a sense, is
not directly comparable to our approach which attempts to
derive a transformation matrix suitable for both locality and
parallelism.

O’Boyle and Knijnenburg [33] consider a unifying
framework for nonsingular data transformations in order
to optimize in-core computations. They present validity
conditions and describe constructive algorithms to generate
desired transformations. Unlike our approach, their techni-
que is based on the transformation of the data space alone.
Since, in out-of-core computations, the main data structures
reside on files stored on disks, their approach, which
involves skewing of data, is too costly for an out-of-core
compilation framework.

Finally, previous work on parallelism has concentrated,
among other topics, on compilation techniques for
multicomputers [17], automatic discovery of parallelism
[43], [15], [24], and data layout reorganizations [9], [3], [2].

9 SuMMARY AND CONCLUSIONS

In this paper, we proposed algorithms for 1) optimizing
locality, 2) optimizing parallelism and communication, and
3) optimizing locality, parallelism, and communication
together. Our techniques can reduce the execution times
by as much as an order of magnitude on the IBM SP-2 and
the Intel Paragon. The results, however, should not be
interpreted as a general comparison of the two machines as
they are dependent on the parallel file systems, our parallel
I/0 library that we used, and the I/O access pattern of the
loop nests in our experiment suite. We believe that our
work is unique in the sense that it combines data
transformations (file layout optimizations) and control
transformations (loop permutations) in a unified frame-
work for optimizing out-of-core programs on distributed-
memory message-passing machines. We have shown in this
paper that the combination of these two transformations
leads to optimized communication and optimized file
layouts and that, in turn, minimizes the overall execution
time.
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