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Abstract

This paper describes optimization techniques for trans-
lating out-of-core programs written in a data parallel lan-
guage to message passing node programs with explicit par-
allel I/O. We demonstrate that straightforward extension of
in-core compilation techniques does not work well for out-
of-core programs. We then describe how the compiler can
optimize the code by (1) determining appropriate file lay-
outs for out-of-core arrays, (2) permuting the loops in the
nest(s) to allow efficient file access, and (3) partitioning the
available node memory among references based on I/O cost
estimation. Our experimental results indicate that these op-
timizations can reduce the amount of time spent in I/O by as
much as an order of magnitude.

1. Introduction
The use of massively parallel machines to solve large

scale computational problems in physics, chemistry, and
other sciences has increased considerably in recent times.
Many of these problems have computational requirements
which stretch the capabilities of even the fastest supercom-
puter available today. In addition to requiring a great deal
of computational power, these problems usually deal with
large quantities of data up to a few terabytes. Main memo-
ries are not large enough to hold this much amount of data;
so data needs to be stored on disks and fetched during the
execution of the program. Unfortunately, the performance
of the I/O subsystems of massively parallel computers has
not kept pace with their processing and communication ca-
pabilities. Hence, the performance bottleneck is the time
taken to perform disk I/O.

In this paper we describe data access reorganization
strategies for efficient compilation of out-of-core data par-
allel programs on distributed memory machines. In particu-
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Figure 1. Flow-Chart for Out-of-Core Compi-
lation.

lar, we address the following issues, 1) how to estimate the
I/O costs associated with different access patterns in out-of-
core computations, 2) how to reorganize data on disks to
reduce I/O costs, and 3) when multiple out-of-core arrays
are involved in the computation, how to allocate memory to
individual arrays to minimize I/O accesses.

The rest of the paper is organized as follows. Section
2 introduces our model and section 3 explains out-of-core
compilation strategy. Section 4 discusses how I/O opti-
mizations can reduce the I/O cost of loop nests. Section
5 presents experimental results. Section 6 discusses related
work and concludes.

2. Model for Out-of-Core Compilation
In SPMD model, parallelism is achieved by partitioning

data among processors. To achieve load balance, express
locality of accesses and reduce communication, several dis-
tribution and alignment strategies are often used. Many par-
allel languages or language extensions provide directives
that enable the expression of mappings from the problem
domain to the processing domain. The compiler uses the
information provided by these directives to compile global
name space programs for distributed memory computers.
Examples of parallel languages which support data distri-
butions include Vienna Fortran [9] and HPF [4].

Explicit or implicit distribution of data to each processor
results in each processor having alocal array associated
with it. For large data sets, local arrays cannot entirely fit in
local memory and parts of them have to be stored on disk.
We refer such local arraysout-of-core local arrays. The out-
of-core local arrays of each processor are stored in separate
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files calledlocal array files. We assume that each processor
has its own logical disk with the local array files stored on
that disk. If a processor needs data from any of the local
array files of another processor, the required data will be
first read by the owner processor and then communicated to
the requesting processor.

3. Compilation Strategy
In order to translate out-of-core programs, the compiler

has to take into account the data distribution on disks, the
number of disks used for storing data etc. The portions of
local arrays currently required for computation are fetched
from disk into memory. These portions are called (data)
tiles. Each processor performs computation on its tiles.

Figure 1 shows various steps involved in translating an
out-of-core program consisting a single nest. The compila-
tion consists of two phases. In the first phase, calledin-core
phase, the arrays in the source program are partitioned ac-
cording to the distribution information and bounds for local
arrays are computed. The second phase, calledout-of-core
phase, involves adding appropriate statements to perform
I/O and communication. The local arrays are first tiled ac-
cording to the node memory available in each processor.
The resulting tiles are analyzed for communication. The
loops are then modified to insert necessary I/O calls.

Consider the loop nest shown in Figure 2:(A) wherelbk,
ubk andsk are the lower bound, upper bound and step size
respectively for loopk. This nest will be translated by com-
piler into the node program shown in Figure 2:(B). In this
translated code loopsIT andJT are calledtiling loops,
and loopsIE andJE are calledelement loops. Note that
communication is allowed only at tile boundaries (outside
the element loops). For sake of clarity, we will write this
translated version as shown in Figure 2:(C). All communi-
cation statements and element loops will be omitted, and
in computation part each reference will be replaced by its
sub-matrix version.

4. I/O Optimizations
We first consider the example shown in Figure 3:(A),

assuming thatA, B andC are column-major out-of-core
arrays.1

The compilation is performed in two phases as described
before. In the in-core phase, using the array distribution in-
formation, the compiler computes the local array bounds
and partitions the computation. In the second phase, tiling
of the data is carried out using the information about avail-
able node memory size. The I/O calls to fetch necessary
data tiles forA, B andC are inserted and finally the node
program is generated. Figure 3:(B) shows thestraightfor-

1In this example, using HPF-like directives, the arrayA is distributed
in row-block, the arrayB is distributed in column-block across the proces-
sors, and the arrayC is replicated. Notice that in out-of-core computations,
compiler directives apply to data on disks.

DO i = lbi,ubi,si DO IT = lbIT ,ubIT ,sIT
DO j = lbj ,ubj ,sj DO JT =lbJT ,ubJT ,sJT
computation read tile from local file

ENDDO j handle communication
ENDDO i DO IE = lbIE ,ubIE ,sIE

DO JE =lbJE ,ubJE ,sJE
(A) performcomputation on tile

ENDDO JE
DO IT = lbIT ,ubIT ,sIT ENDDO IE
DO JT =lbJT ,ubJT ,sJT handle communication
read tile from local file write tile into local file
computation ENDDO JT
write tile into local file ENDDO IT

ENDDO JT
ENDDO IT (B)

(C)

Figure 2. (A) Example Loop Nest. (B) Result-
ing Node Program. (C) Simplified Node Pro-
gram.

ward node program. Suppose that every processor has a
memory of sizeM and that the compiler works on square
tiles of sizeS � S. The overall I/O cost of the nest shown
in Figure 3:(B) considering file reads alone is

Toverall =
n
2
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2
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+
n
3
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3
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+
n
4
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under the memory constraint3S2 � M . HereCI=O is the
startup cost for a file access,tI=O is the cost of accessing
an element from file andp is the number of processors. We
have assumed that cost of accessingl consecutive elements
from file can be approximated asCI=O+ ltI=O. TA, TB and
TC denote the I/O costs for the arraysA, B andC respec-
tively.

The proposed techniques transform the loop nest shown
in Figure 3:(B) to the nest shown in Figure 3:(C), and asso-
ciates row-major file layout for arraysA andC and column-
major file layout for arrayB, and then allocates tiles of size
Sn for A andC and a tile of sizenS for B. The overall I/O
cost of this new loop order and allocation scheme is

Toverall =
nCI=O + n

2
tI=O

p| {z }
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+
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DO i = lbi,ubi,si DO IT = lbIT ,ubIT ,sIT DO IT = lbIT ,ubIT ,sIT
DO j = lbj ,ubj ,sj DO JT=lbJT ,ubJT ,sJT read data tile for A
DO k = lbk,ubk,sk read data tile for A read data tile for B
DO l = lbl,ubl,sl DO KT =lbKT ,ubKT ,sKT DO LT =lbLT ,ubLT ,sLT
A(i,j)=A(i,j)+B(k,i)+C(l,k) read data tile for B read data tile for C

ENDDO l DO LT =lbLT ,ubLT ,sLT A[IT,1:n]=A[IT,1:n]+B[1:n,IT]+C[LT,1:n]
ENDDO k read data tile for C ENDDO LT

ENDDO j A[IT,JT]=A[IT,JT]+B[KT,IT]+C[LT,KT] write data tile for A
ENDDO i ENDDO LT ENDDO IT

ENDDO KT
write data tile for A

ENDDO JT
ENDDO IT

(A) (B) (C)

Figure 3. (A) An out-of-core loop nest. (B) Straightforward translation. (C) I/O optimized translation.

provided that3nS �M . Notice that this cost is much better
than that of the original. Also note that in order to keep cal-
culations simple we have assumed that at mostn elements
can be requested in a single I/O call.

The rest of the paper explains how to obtain I/O opti-
mized node programs. Our approach consists of three steps:
(1) Determination of the most appropriate file layouts for all
arrays referenced in the nest, (2) Permutation of the loops in
the nest in order to maximize locality, and (3) Partitioning
the available memory across references based on I/O cost.

We assume that the filelayout for any out-of-core array
may be eitherrow-majoror column-majorand there is only
one distinct reference per array.

Definition: Assume a loop indexIT , an array reference
R with associated filelayout and an array index position
r. Also assume a data tile with sizeS in each dimension
exceptrth dimension where its size isn provided thatn =
�(N) � S whereN is size of the array inrth dimension.
ThenIndex I/O Costof IT with respect toR, layoutandr
is the number of I/O calls required to read such a tile from
the associated file into memory, ifIT appears in therth

position ofR; elseIndex I/O Costis zero. Index I/O Cost is
denoted byICost(IT;R; r; layout) [3].

Definition: TheBasic I/O Costof a loop indexIT with
respect to a referenceR is the sum of index I/O costs ofIT
with respect to all index positions of referenceR. Mathe-
matically speaking,

BCost(IT;R; layout) =
X

r

ICost(IT;R; r; layout)

Definition: The Array Costof an array referenceR is
the sum ofBCost values for all loop indices with respect
to referenceR. In other words,

ACost(R; layout) =
X

IT

BCost(IT;R; layout)

4.1. Determining File Lay outs

Our heuristic for determining file layouts for out-of-core
local arrays first computes theACost values for all arrays
under possible layouts. It then chooses the combination that
will allow the compiler to perform efficient file access. Con-
sider the assignment statement in Figure 3:(B). The term by
term additions ofACost values for different combinations
are shown in Table 1.

Definition: TheOrder of a term is the greatest symbolic
value it contains. For example the order of(S + n) is n

whereas the order ofS is S. A term that contains neithern
norS is calledconstant-orderterm.

After listing all possible layout combinations term by
term, our layout determination algorithm chooses the com-
bination with greatest number ofconstant-orderand/orS-
order terms. For our example, combination 6 is an optimum
combination, since it contains2 S-orderterms (S and2S).
Notice that there may be more than one optimum combina-
tion.

4.2. Deciding Loop Order

Our technique next determines an optimal loop order for
efficient file access.

Definition: TheTotal I/O Costof a loop indexIT is the
sum of the Basic I/O costs (BCost) of IT with respect to
each distinct array reference it surrounds. Mathematically,

TCost(IT ) =
X

R;layoutR

BCost(IT;R; layoutR)

whereR is the array reference andlayoutR is the layout of
the associated file as determined in the previous step.

Our algorithm for desired loop permutation (1) calcu-
latesTCost(IT ) for each tiling loopIT , (2) permutes the
tiling loops from outermost to innermost according to non-
increasing values ofTCost, and (3) applies necessary loop
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Table 1. Possible file layout combinations for
our example.

Combination Array A Array B Array C Cost

1 colmajor colmajor colmajor (S+n/p)+n+(S+n)+S
2 colmajor colmajor rowmajor (S+n/p)+n+2S+n
3 colmajor rowmajor colmajor 2S+n+2n+S
4 colmajor rowmajor rowmajor 2S+n+(S+n)+n
5 rowmajor colmajor colmajor 2n/p+S+(S+n)+S
6 rowmajor colmajor rowmajor 2n/p+S+2S+n
7 rowmajor rowmajor colmajor (n/p+S)+S+2n+S
8 rowmajor rowmajor rowmajor (n/p+S)+S+(n+S)+n

interchange(s) to improve the temporal locality for the tile
being updated.

Returning to our example, for combination 6,
TCost(IT ) = 2n=p, TCost(JT ) = S, TCost(KT ) =
2S, andTCost(LT ) = n. The desired loop permutation
from outermost to innermost isLT ,IT ,KT ,JT , assuming
p � 2.2 Considering the temporal locality for the array be-
ing written to, the compiler interchangesLT andIT , and
obtains the orderIT ,LT ,KT ,JT .

4.3. Memory Allocation Scheme

Since each node has a limited memory capacity and in
general a loop nest may contain a number of arrays, the
memory should be partitioned optimally.

Definition: The column-conformant(row-conformant)
position of an array reference is thefirst (last) index po-
sition of it.

Our scheme starts with tiles of sizeS for each dimen-
sion in each reference. For example, if a loop nest contains
a one-dimensional array, and a three-dimensional array, it
first allocates a tile of sizeS for the one-dimensional array,
and a tile of sizeS � S � S for the three-dimensional ar-
ray. This allotment scheme implies the memory constraint
S3 + S � M whereM is the size of the node mem-
ory. It then divides array references in the nest into two
disjoint groups depending on the file layouts. For row-
major (column-major) group, the compiler considers all
loop indices in turn. For each loop whose index appears
in at least one row-conformant (column-conformant) posi-
tion and does not appear in any other position of any ref-
erence in this group, it increases the tile size, in the row-
conformant (column-conformant) position(s) to full array
size. Of course, the memory constraint should be adjusted
accordingly.3

For our running example, the compiler first allocates a
tile of sizeS�S for each reference. It then divides the array

2Notice that, in some cases, the actual value ofp can change the pre-
ferred loop order.

3It should be noted that, after these adjustments, any inconsistency be-
tween those two groups (due to a common loop index) should be resolved
by not changing the original tile sizes in the dimensions in question.

references into two groups:A[IT; JT ] andC[LT;KT ] in
the first group, andB[KT; IT ] in the second group. Since
JT andKT appear in the row-conformant positions of the
first group and do not appear elsewhere in this group, our
algorithm allocates data tiles of sizeSn for A[IT; JT ] and
C[LT;KT ]. Similarly, sinceKT appears in the column-
conformant position of the second group and does not ap-
pear elsewhere in this group, the algorithm allocates a data
tile of sizenS for B[KT; IT ]. After these tile allocations
tiling loopsKT andJT disappear and the node program
shown in Figure 3:(C) is obtained.

If we assume fixed column-major file layout for all ar-
rays, thenTCost(IT ) = S + n=p, TCost(JT ) = n,
TCost(KT ) = S + n, and TCost(LT ) = S (from
the first row of Table 1). So, from outermost to inner-
most positionKT ,JT ,IT ,LT is the desirable loop per-
mutation. Considering the temporal locality for the ar-
ray being written to, the compiler interchangesKT and
IT , and the orderIT ,JT ,KT ,LT is obtained. If, on the
other hand, we assume a fixed row-major layout for all ar-
rays, thenTCost(IT ) = n=p + S, TCost(JT ) = S,
TCost(KT ) = n+ S, andTCost(LT ) = n. From outer-
most to innermost positionKT ,LT ,IT ,JT is the desirable
loop permutation. Considering the temporal locality, our
compiler takesIT to the outermost position. So, the final
loop order isIT ,KT ,LT ,JT . It should be emphasized that
although for reasonable values ofM the costs obtained un-
der the assumption of fixed disk layouts are better than that
of the unoptimized version, they are much worse than the
one obtained by our approach.

The complexity of our heuristics is�(lmd+2m+llog(l))
wherel is the number of loops,m is the number of distinct
array references, andd is the maximum number of array
dimensions considering all references. Thelog term comes
from sorting once theTCost value for each loop index has
been computed. Since in practicel,m andd are very small
(e.g. 2,3,etc.), all the steps are inexpensive and the approach
is efficient.

It should also be noted that if the desired loop permu-
tation is not legal (semantic-preserving), then the compiler
keeps the original loop order and applies only the memory
allocation algorithm4.

5. Experimental Results
The technique introduced in this paper was applied on

IBM SP-2 by hand using PASSION [7], a run-time library
for parallel I/O. PASSION routines can be called from C
and Fortran, and an out-of-core array can be associated with
different layouts. All the reported times are in seconds. The
experiments were performed for different values ofslab ra-
tio (SR), the ratio of available node memory to the size of

4Another option is to try the next most desirable loop permutation. Our
choice is simpler and guarantees that the optimized program will be at least
as good as the original one.
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Figure 4. Normalized I/O times for our exam-
ple with 4K � 4K (128 MByte) double arrays.

out-of-core local arrays combined.
Figure 4 presents the normalized I/O times of four differ-

ent versions of our first example (Figure 3) with4K � 4K
(128 MByte) double arrays : unoptimized version (Orig-
inal), optimized version using column-major layout for all
arrays (Col-Opt), optimized version using row-major layout
for all arrays (Row-Opt), and the version that is optimized
by our approach (Opt).
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Figure 5. Speedups for unoptimized and opti-
mized versions of our example with 4K � 4K
double arrays.

Figure 5 illustrates the speedups for Original and Opt
versions. We define two kinds of speedups: speedup that is
obtained for each version by increasing the number of pro-
cessors, which we callSp, and speedup that is obtained by

using Opt version instead of the Original when the number
of processors is fixed. We call this second speeduplocal
speedup(Sl), and productSp � Sl is termed ascombined
speedup(see Figure 6:(A)). We conclude the following:

(1) The Opt version performs much better than all other
versions.

(2) When the slab ratio is decreased, the effectiveness of
our approach increases (see Figure 4).

(3) As shown in Figure 5, the Opt version also scales
better than the Original for all slab ratios.

(4) It is clear to see from Figure 6:(A) that combined
speedup is much higher for small slab ratios. Note that the
combined speedups are super-linear as the algorithm (loop
order) is changed in the Opt version.

(5) When the slab ratio is very small, the optimized ver-
sions with fixed layouts for all files also perform much bet-
ter than the Original.

5.1. Processors Coe�cient and Memory
Coe�cient

The I/O optimizations introduced in this paper can be
evaluated in two different ways:

(1) First, a problem that is solved by the Original version
using a fixed slab ratio onp processors can, in principle,
be solved in the same or less time onp0 processors with
the same slab ratio using the Opt version. The ratiop=p0 is
termed asprocessor coefficient(PC).

(2) Second, a problem that is solved on a fixed number
processors with a slab ratiosr by the Original version can,
in principle, be solved in the same or less time on the same
number of processors with a smaller slab ratio (less mem-
ory)sr0 by the Opt version. We call the ratiosr=sr0 memory
coefficient(MC).

The larger these coefficients are, the better as they indi-
cate reduction in processor and memory requirements of the
application program respectively.

Figures 6:(B) and (C) show the PC and MC curves re-
spectively for our example with4K � 4K (128 MByte)
double arrays. It can be observed that there is a slab ra-
tio, calledcritical slab ratio, beyond which the shape of
the PC curve does not change. In Figure 6:(B) the critical
slab ratio is1=64. Below this ratio, independent of the node
memory capacities, for a givenp it is possible to find the
correspondingp0 wherep andp0 are as defined above. Sim-
ilarly it can be observed that there is a number of processors
beyond which the shape of the MC curve does not change.
In Figure 6:(C) that number is8. This result means that be-
yond that number of processors, given ansr it is possible to
find the correspondingsr0 wheresr andsr0 are as defined
above.

We believe that the final PC and MC curves give enough
information about the performance of I/O optimizations.
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Figure 6. (A) Combined Speedups for our example with 4K � 4K double arrays. (B) PC curves. (C)
MC curves.

6. Related Work and Conclusions
Previous works on compiler optimizations to improve lo-

cality have concentrated on iteration space tiling. In [8] and
[5], iteration space tiling is used for optimizing cache per-
formance.

There is some work on compilation of out-of-core pro-
grams. In [2], the functionality of ViC*, a compiler-like
preprocessor for out-of-core C* is described. In [6], the
compiler support for handling out-of-core arrays on parallel
architectures is discussed. In [1], a strategy to compile out-
of-core programs on distributed-memory message-passing
systems is offered. It should be noted that our optimization
technique is general in the sense that it can be incorporated
to any out-of-core compilation framework for parallel and
sequential machines.

In this paper we presented how basic in-core compilation
method can be extended to compile out-of-core programs.
However, the code generated using such a straightforward
extension may not give good performance. We proposed a
three-step I/O optimization process by which the compiler
can improve the code generated by the above method.

Our work is unique in the sense that it combines data
transformations (layout determination) and control trans-
formations (loop permutation) in a unified framework for
optimizing out-of-core programs on distributed-memory
message-passing machines.
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