
An Integer Linear Programming Approach for Optirnizing Cache Locality
M. Kandemir* P. Banerjee* A. Choudhary* .T. Ramanujamt E. Ayguadkt

Abstract

The actual performance of programs on modern processors that em-
ploy deep memory hierarchies is closely related to the performance
of the memory subsystem. Compiler optimizations aimed at im-
proving cache locality are critical in realizing the performance po-
tential of powerful processors. For scientific applications, several
loop transformations have been shown to be useful in improving
both temporal and spatial locality. Recently, there has been some
work in the area of data layout optimizations, i.e., changing the
memory layouts of multi-dimensional arrays from the language-
defined default such as column-major storage in Fortran. These
memory layout optimizations affect the spatial locality characteris-
tics of loop nests.

This paper presents a technique based on integer linear pro-
gramming (ILP) that attempts to derive the best combination of
loop and data layout transformations. Prior attempts to unify loop
and data layout transformations for programs consisting of a se-
quence of loop nests have been based on heuristics not only for
transformations for a single loop nest but also for the sequence in
which loop nests will be considered. The ILP formulation pre-
sented here obviates the need for such heuristics. Experimental
results on a MIPS RlOOOO based system demonstrate the benefits
of this approach, and show that the use of the ILP formulation does
not increase the compilation time significantly.

1 Introduction

The speed of microprocessors has been steadily improving at a rate
of between 50% and 100% every year, over the last decade. Unfor-
tunately, the memory speed has not kept pace with this, improving
only at the rate of about 10% per year during the same period [8].
Memory hierarchies in the form of one or more levels of cache have
been used extensively in current processors in order to mitigate the
impact of this speed gap. The performance of applications is deter-
mined to a great extent by the memory access characteristics rather
than simple instruction and operation counts. Therefore, exploiting
the memory hierarchy effectively is key to achieving good perfor-
mance on modern computers. But using the caches effectively has
been a difficult problem and will only get more difficult given the
increasing gap between processor and memory speeds.

* CPDC, Department of Electrical and Computer Engineering, Northwestern Uni-
versity, Evanston, IL 60208, USA.

‘Department of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, LA 70803, USA.

* Centre Europeu de ParalIelisme de Barcelona (CEPBA) Dept d’Arquitectura de
Computadors, Univ. Politemica de Catalunya Jonli Ginma 1-3, Modul D6, Barcelona
08034, SPAIN.

Permission to make digital or hard copies of all or part of this work fog
personal or classroom use is granted without fee provided that copies
are not made or distributed Ibr profit or commercial advantage and that
copies hear this notice and the full citation on the lirst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
ICS ‘99 Rhodes Greece
Copyright ACM 1999 l-581 13-164~x/99/06...$5.00

Current approaches to deal with this problem include the man-
ual restructuring of programs in order to change the memory ac-
cess patterns; this requires a clear understanding of the impact of
memory hierarchies on the users’ part. Such an approach is tedious
and can lead to non-portable and difficult-to-maintain programs.
The lack of automatic tools has led to much work on compiler op-
timizations over the last decade [26]. Compiler analysis can re-
sult in useful global memory access information and can be used
to restructure scientific programs in order to improve the memory
access characteristics. Regular scientific codes exhibit significant
amounts of data reuse; therefore, the key issue is the conversion of
this reuse into locality on the target architecture. Several compiler
optimization techniques such as loop interchange [26], unimodu-
lar [25, 191 and non-unimodular [19] loop transformations, loop
fusion [20], and loop tiling [17, 26, 161 have been proposed to im-
prove memory performance of loop nests in scientific codes that
access large arrays.

These loop transformation techniques attempt to change the
memory access patterns of arrays in loops by re-ordering the it-
erations, and can improve both temporal and spatial locality. Since
a single transformation is used for each nest, the effect of the trans-
formation on each array may be different, perhaps resulting in good
locality for some arrays at the cost of poor locality for other ar-
rays. Also, loop transformations are constrained by data depen-
dences [26]. In addition, transformations for imperfectly nested
loops require a different solution as demonstrated by Kodukula et
al. [16].

Some of these drawbacks of loop transformations have led re-
searchers to consider changing memory layouts of arrays. Recent
work [4, 10, 13, 18, 211 has addressed the use of different layouts
for different arrays in a program. This has resulted in the develop-
ment of data transformations, i.e., deriving good layouts for differ-
ent arrays. Data transformations can improve spatial locality signif-
icantly; and are not constrained by data dependences as they do not
change execution order [4, lo]. An added advantage of data trans-
formations is that they are applicable irrespective of the nesting
patterns (perfectly or imperfectly nested). But data transformations
have no effect on temporal locality. In addition, the memory lay-
out of an array influences the locality behavior of every loop nest
that accesses the array; therefore, deciding the memory layouts of
arrays requires a global view of the memory access pattern of the
whole program and not just a single loop nest. Not surprisingly, de-
ciding the optimal layouts is NP-hard. Finally, some problematic
constructs like array aliasing and pointers in C and the EQUIV-
ALENCE statement in Fortran may prevent automatic data layout
modifications.

It seems natural to try and combine the benefits of loop and
data transformations in improving the memory performance of pro-
grams. There have been some efforts aimed at unifying loop and
data transformations [4, 11, 12, 221; all these efforts have used
some form of heuristics. For example, these heuristics are used
to decide such things as the order of processing the nests in decid-
ing layouts and the order in which loop or data transformations are
applied in each nest. In earlier work, we have presented a heuristic
for deciding the order of processing loop nests [1 I] and have shown

500

results on using, for each loop nest, loop transformations followed
by data transformations [121.

In this paper, we present a new approach that uses integer linear
programming (ILP). We use a structure called the memory layout
graph (MLG) to model locality characteristics as a function of loop
order; the problem of determining loop and data transformations is
then formulated as an ILP problem, which is equivalent to finding
optimal paths in the MLG that satisfy different constraints. Unlike,
other solutions, this approach allows us to derive optimal solutions
(within the bounds of our cost model and transfonnation space),
and consider layout changes between parts of a whole program;
that is, we handle both static and dynamic memory layout trans-
formations. We have shown in an earlier paper that the problem
of deciding the best data layouts for a single loop nest (assuming
no loop transformations) corresponds to finding a path in a specific
type of graph structure for that loop nest [131. In this paper, we
show that deciding the best combination of loop and data transfor-
mations corresponds to the solution of a certain path problem on
parallel and series compositions of graphs associated to individ-
ual loops in a nest and loop nests, respectively. We used several
programs to evaluate the approach presented in this paper. The ex-
periments show that our technique is very effective, improving the
performance on the average by 27.5%, sometimes by as much as a
factor of 8.

The rest of this paper is organized as follows. Section 2 presents
the important concepts used in our approach such as the memory
layout graph and reviews the relevant background including dam
reuse and cache locality, loop and data transformations. Section 3
presents our approach in detail highlighting the ILP formulations
we derive. Experimental results are presented and discussed in Sec-
tion 4. Section 5 presents OUI conclusions along with a discussion
of work in progress.

2 Important Concepts

2.1 Memory Layouts and Loop Transformations

We assume that the memory layout of an m-dimensional array
can be in one of m! forms each corresponding to the traversal of
the array dimensions in some predetermined order. For a two-
dimensional array, there are only two possible such memory lay-
outs: row-major (as in C) and column-major (as in Fortran). For a
three-dimensional array, there are six alternatives, and so forth. It
should be noted that this layout space subsumes the classical row-
major and column-major layouts found in the conventional pro-
gramming languages and higher dimensional equivalents of them,
and excludes diagonal and similar layouts.

For each layout we associate a fartest changing dimension or
FCD which is the dimension whose indices vary most rapidly in a
sequential traversal of the array elements in memory. For example,
for a row-major array the last dimension is the FCD. The idea be-
hind focusing only on the FCDs is that in many cases it is sufficient
from the locality point of view to determine the FCD correctly. The
order of the remaining dimensions may not be as important.

As for loop transformations, we focus on general permutations
of loops [26,20]. From a given loop nest of depth n, we can con-
struct n! permutations (loop orders), though some of them may not
be legal. As with the memory layouts, we mainly focus on correctly
determining the innermost loop. The nesting order of the remaining
loops in the nest can also be determined if desired.

2.2 Data Reuse and Cache Locality

When a data item (e.g., an array element) is used more than once
we say that there is temporal reuse. A spatial reuse occurs when

nearby data items are used. It should be noted that data reuse (tem-
poral or spatial) is an intrinsic property of a given program and is
independent of the cache architecture.

Cache locality refers to the actual realization of the inherent
data reuse in a program and is strongly dependent on the cache
memory structure [8, 251. Data reuse translates to cache locality
only if the subsequent uses of data occurs before the data are re-
placed from the cache. Since in current sequential and parallel ar-
chitectures the data access time changes dramatically from level to
level, it is vital to convert data reuse into cache locality.

To see how data reuse can translate to cache locality, consider
the program fragment shown in Figure l(a). This fragment con-
tains two loop nests accessing five arrays. In this and the following
program fragments used in this paper, the references inside a loop
nest will be enclosed by { and }. Assuming that the total size of
the arrays is larger than the cache capacity and the default mem-
ory layout is column-major for all arrays, the cache locality is poor
for all references except for Q(j + Ic, i + j) in the first nest and
for S(i + k, j) and T(L, i) in the second nest. More specifically,
locality for the reference Q(i, j + Ic) is poor in the second nest as
the successive iterations of the innermost k loop access different
columns. The locality for this program can be improved by mak-
ing the loop i innermost in the first nest and j the innermost in the
second nest (provided it is legal to do so) and by assigning the fol-
lowing memory layouts to the arrays: column-major for P and R
and row-major for Q, S, and T. Doing so improves the locality for
all references except for the reference R(i + j, j + k, i + k) in
the first nest. Thus, an appropriate combination of loop and data
transformations can change the locality behavior of a program sig-
nificantly. It should be noted that neither pure loop nor pure data
transformations alone can achieve this performance. This small
example also shows that the most important aspect of optimizing
cache locality for an array is to select an FCD for it such that the
transformed innermost loop index (i.e., after the loop transforma-
tion) will appear either in none of the subscript positions (leading
to temporal locality) or only in the subscript position corresponding
to the FCD (resulting in spatial locality).

Although the reuse and locality concepts involving array refer-
ences and loop orders used by the previous researchers can capture
the general intuition, we need a finer granularity defmition for our
study. Let us concentrate on a reference to an m-dimensional ar-
my in an n-deep loop nest. Assume that the loops in the nest are
ordered as ji , . . . , j, starting from the outermost loop to the inner-
most. Assume further that T is a dimension (subscript position) of
this array where 1 5 r 5 m. We define the locality of the said
reference with respect to the dimension r as follows:

If j, appears in no subscript position (including T), we say
that the reference exhibits temporal locality with respect to
rth dimension.

If j, appears only in rth subscript position with a coefficient
c where c < cache-line-size and does not appear in any
other subscript position, we say that the reference exhibits
spatial locality with respect to rth dimensioni.

In all other cases, we say that the reference exhibits no local-
ity with respect to rth dimension.

Based on these definitions, it is possible that a reference will have
spatial locality with respect to a subscript position r but will not
have spatial locality with respect to any other subscript position r’.
In contrast, if the reference has temporal locality with respect to r,

‘In this paper we assume that the condition c < cache-line-site is always
satisfied and we do not consider it further. However,% should be noted that different
values of c lead to different degrees of spatial locality. The cost model we use [24]
captures this aspect.

501

for i = Ii, ui
for j = lj, uj
for k = Ik, uk
eiiJ;, j, k), Q(j + k, i + j), R(i + j, j + k, i + k), S(j, k)}

endfor
endfor

for i = Ii, ui
for j = lj, uj
fork = Ik, uk

{p(j -I- k, i + k, i - k), Q(i,j + k), R(j, k, i). S(i + k,j), T(k, i)}
endfor

endfor
endfor

(a)

(e)

P
(b) R

R

(d)

St Tr

P R

CD

Figure 1: (a) An example program fragment. (b) The LG for the loop i in the first nest. (c) The NG for the first nest. (d) An optimal solution
for the first nest. (e) The NG for the second nest. (f) An optimal solution for the second nest.

502

Figure 2: The MLG and an optimal solution for the program frag-
ment shown in Figure 1 (a).

it will have temporal locality with respect to all the other dimen-
sions. It is possible to detect the locaiities with respect to subscript
positions during the analysis of the program.

2.3 Memory Layout Graph

A graph that we call the memory layout graph (MLG) is the main
structure in our representation and forms the basis for the ILP for-
mulation. An MLG is built from several nest graphs (NGs), each
corresponding to a loop nest in the program. The nest graphs in turn
are constructed from loop graphs (LGs). An LG is built using node-
columns which correspond to arrays accessed in the nest that con-
tains the loop in question. For each array, we have a node-column
in the LG. The nodes in each node-column denote array subscript
positions (dimensions). For example, for a three-dimensional ar-
ray the node-column has three nodes; the first node from the top
corresponds to the first (leftmost) dimension, the second node cor-
responds to the second (middle) dimension, and the third node cor-
responds to the third (rightmost) dimension. For now we assume
that in a given nest each array is referenced only once. We show
how to deal with the general case in Section 3.3.

In a given LG, the node-columns are placed one after another;
the relative order of the columns is not important for the purposes of
this paper. Between the node-columns P and Q (that corresponds
to the arrays P and Q respectively) there are dim(P) x dim(Q)
edges where dim(.) returns the dimensionality (the number of sub-
script positions) for a given array. In other words, the edges be-
tween P and Q connect every subscript position of P to every
subscript position of Q. In addition to the node-columns, an LG
has a start node (marked with the loop index) and a terminal node.
Each node in the first node-column is connected to the start node,
and each node in the last node-column is connected to the termi-
nal node. Figure l(b) shows the LG for the loop i of the first nest
shown in Figure l(a).

An NG, on the other hand, is obtained by replicating the LG for
each loop in the nest (this is to capture the effect of placing each
loop in the nest at the innermost position) and connecting the start
nodes and the terminal nodes of the individual LGs to build a single
connected graph. Figure l(c) shows the NG for the first loop nest
given in Figure l(a). The nodes St and Tr in Figure l(c) denote the
start and terminal nodes for the NG. Similarly, Figure l(e) depicts
the NG for the second loop nest given in Figure 1 (a).

Finally, an MLG is constructed from the NGs, each correspond-
ing to a nest in a set of consecutive nests in the program. Thus, an
MLG can be thought of as a series (or a chain) of NGs such that
the start node of the ith NG is connected to the terminal node of
the (i - 1)th NG. If the program in question contains only a single
nest then its MLG is the same as the NG of the said nest. Figure 2
shows the MLG for the program fragment shown in Figure l(a).
Note that the MLG, once built, contains all the memory access in-
formation for every array accessed in every loop nest. It is inspired
by the graph structures used by Garcia et al. [7] and Kennedy and
Kremer [151 to solve the automatic data distribution problem for
distributed-memory message-passing architectures. A path in an

MLG is defined as a series of connected paths in each NG. The LG
visited by the path on a specific NG corresponds to the innermost
loop in the nest in question for best locality, and the nodes touched
by the path correspond to the selected FCDs for the arrays accessed
in the nest. As an example, Figure 2 shows a path on the MLG from
St to Tr. In the rest of the paper we use the terms loop (nest) and
loop (nest) graph interchangeably. Sometimes, we use the notation
I E x to indicate that the loop 1 belongs to the nest x. When the
context is clear, we also use the terms node-coIumn, column, and
(its associated) array interchangeably.

2.4 Node Costs

The cost of a node in our problem is the estimation of the cache
misses and the cost of a path is the sum of the costs of the nodes it
contains; the edges have no costs associated with them (unless dy
namic layout transformations are considered). We use the notation
VQ x’ b] to denote the jth node of a node-column for the array Q in
the loop graph 1 of the nest graph x. Then we define Cost(VQ=’ [j])
as the number of cache misses incurred due to array Q when the
dimension j is its FCD and the loop I is placed in the innermost
position in the nest x.

Although several methods can be used to estimate Cost values
(e.g., see [20], [5], [24], [6], [25]), in our experiments we use a
slightly modified form of the approach due to Sarkar et al. [24];
their approach is relatively easy to implement and results in good
estimations for the codes encountered in practice. Since we also
want to consider both the first level cache (Ll) and second level
cache (L2) misses in a single formulation, (as node costs) we use a
metric called weighted cache misses which is defined as

L2 misses f $ Ll misses.

This metric is adapted from the concept of the weighted cache-hit
ratio used by Chong et al. [3]. Here 6 is a system-dependent pa-
rameter and gives the relative access latency of the L2 cache with
respect to the Ll cache. As an example, suppose that we have
a two-level cache hierarchy, each cache having a different topol-
ogy. Assume that for a reference to an array Q we want to estimate
Cost(V~“‘[j]). This is the number of weighted cache misses when
the FCD of the array Q is set to j and the loop I is placed in the
innermost position in the nest x. Using the cache parameters (asso-
ciativity, capacity, line size) and the bounds of the loops enclosing
the reference, Sarkar’s formulae can compute the number of Ll
misses as, say, A&i, and the number of L2 misses as Mz. After-
wards, we can compute the number of weighted cache misses as
MS + (MI/~), and assign this value to Cost(V~“‘lj]).

Once the node cost estimations have been made, the rest of our
approach is independent of how the estimations are made. There-
fore, in order to make the description of our approach more clear
and independent of the cost model, we assume that a node cost can
have only one of three possible values: TL, corresponding to the
number of weighted cache misses when the subscript position has
temporal locality in the loop assuming that the said loop is inner-
most; SL, corresponding to the number of weighted cache misses
when the subscript position has spatial Iocality in the loop assum-
ing that the said loop is innermost; and NL, corresponding to the
number of weighted cache misses when the subscript position has
no locality in the loop assuming that the said loop is innermost.
However, it should be kept in mind that al1 the costs shown here
as TL, SL, and NL actually correspond to the number of weighted
cache misses, and in our experiments the nodes are assigned appro-
priate costs using the techniques in Sarkar et al. [24] and the metric
given above.

Figure l(c) shows the node costs for the first nest shown in
Figure l(a). Notice that no costs are associated with the start and
terminal nodes and with the nodes used to connect individual LGs

503

to make up an NG. In Figure l(c), the cost of the first node of the
column for P in the LG i is SL since the reference P(i, j, k) has
spatial locality when i is the innermost loop and its FCD is the first
dimension. The remaining costs are computed similarly.

3 Our Approach

3.1 Problem Statement

Our goal in this paper is to minimize the number of weighted cache
misses thereby reducing the time spent due to memory stalls. We
achieve this goal by selecting an innermost loop for each loop nest
in the program and selecting the FCD for each multi-dimensional
array accessed. The approach described here constructs a set of lin-
ear equalities and inequalities and solves the locality problem opti-
mally using 0- 1 integer linear programming (ILP). ILP provides a
set of techniques that solve those optimization problems in which
both the objective function and constraints are linear functions and
the variables are restricted to be integers. The O-l ILP is an ILP
problem in which each variable is restricted to be either 0 or 1. Our
ILP formulation allows us to solve the locality problem optimally.
It should be stressed, however, that this optimal@ is within our
transformation space and cost model.

In regular scientific codes where large multi-dimensional ar-
rays are accessed in different fashions in different loop nests, array
remapping actions between loop nests can increase the efficiency
of the solution. Taking this observation into account, our approach
also considers changes in array layouts. Notice that the meaning
of the term ‘remapping’ here is quite different from that of the
same term used in the context of compilers for distributed mem-
ory message-passing machines. Here a re-mapping action is im-
plemented as a simple copy loop, copying one array into another,
thereby creating the effect of a layout transformation. We also as-
sume a linear flow of control through the loop nests of the program.
While this is a common case, our approach can also be extended to
handle the conditional control flow by assigning probabilities to
each loop nest based on profiling data.

3.2 Integer Variables and Objective Function

We use the notation YPQO’ to denote all the dim(P) xdim(Q) edges
between columns P and Q for a loop graph 1 of a nest graph x. The
notation Yp~~~[i, j], on the other hand, denotes the edge between
the ith subscript position of P and the jth subscript position of Q
for a loop graph I of a nest graph x. We also use Y~Q%’ [i, j] to de-
note the O-t integer variable associated with the edge in question.
Given a path on the MLG, Yp~=‘[i, j] has a value of 1 if the edge
belongs to the path; otherwise its value is 0. In other words, the
final value for each YPQ”~ [i, j] variable indicates whether the cor-
responding edge belongs to the optimal solution (i.e., it is chosen)
to the locality problem in question. We define

Cost’(VQ”‘[j]) =

i

Cost(V~“‘lj]) ifaYps”‘[i, j] ischosen
where P is connected to
Qandl<i<dim(P)

0 otherwise

The objective of the locality optimization problem is then to select
apath in the given MLG such that

dimfOl (1)
E I Q j=l

is minimized, where Q iterates over all the arrays accessed in Z,
and 1 E x. That is, one needs to select a path such that the total cost
of the selected nodes is minimized.

n

P

Figure 3: (a) (Top) An acceptable solution and (Bottom) an unac-
ceptable solution (Q has no unique FCD). (b) An acceptable solu-
tion. (c) An unacceptable solution (No path is selected). (d) An
unacceptable solution (Multiple paths are selected).

3.3 Single Nest

We first focus on a single loop nest and formulate the conditions
that must be satisfied by any feasible solution.
(cl) Loop graph condition: The selected edges and nodes should
form a path. That is, whenever two nodes from two consecutive
node-columns are included in a path we should also include the
edge between them. We can express this condition as

dim(P) dim(R)

Vj E [l...dim(Q)] c YpQ+‘[i, j] = c YQR"'[~, k].
i=l k=l

This condition should be satisfied for each 1 of each x. Here P,
Q, and R are three axrays corresponding to three consecutive node-
columns in the LGs. The nodes connected to the start and terminal
nodes are handled using separate equations (not given here for clar-
ity). For example, an acceptable case is shown on the top part of
Figure 3(a). The bottom part of Figure 3(a), however, shows an
unacceptable case.
(~2) Nest graph condition: For a given array Q and a nest graph x
of n loops, only a single loop in x can contain the selected edges.
That is, the selected path should come only from a single LG. We
formalize this condition as

dim(P) din(Q) dim(P) dim(Q)

c c ypQ +fi, j]+...+ Ce C Ypgzln[i, j] = 1,
i=l j=i i=l j=l

where 11 , 1, are the loops in 2. As an example, Figure 3(b)
shows an acceptable case whereas Figure 3(c) and Figure 3(d) de-
pict unacceptable cases. Similarly, two optimal solution paths com-
puted by the solver for the first and second loop nests from Fig-
ure l(a) are shown in Figure l(d) and Figure l(f), respectively.
Let us now interpret these solutions. The optimal solution in Fig-
ure 1 (d) indicates that the loop i should be the innermost in the first
nest and the layouts of P, R, and 5’ should be column-major and
the layout of Q should be row-major. Note that this optimal solu-
tion is not unique as the arrays R and S can assume any memory
layout. The solution in Figure 1 (f), on the other hand, indicates that
the loop j should be the innermost loop in the second nest and Q, S,
and T should be row-major and P and R should be column-major.
Again, the array T can assume any layout.

So far we have assumed that each array is referenced only once
in a given loop nest. In practice this may not necessarily hold.
Therefore, we need a mechanism to take the multiple-reference
case into account. Our solution to this problem is rather simple.
We continue to represent each array using a single node-column,
but the costs of the nodes now reflect the aggregate costs of all ref-
erences to the array in question.

Another issue is the effect of data dependences on the legality
of loop transformations 1261. Unfortunately, arbitrary permutations
of the loops in a given nest may be illegal. The data dependence
theory [26] can be used to determine what permutations are legal.
Our approach uses this information to prune the search space of

504

n ‘L n

. ”

Figure 4: (a) An acceptable solution. (b) An unacceptable solution
(the array Q is assigned different layouts in different nests).

possible loop permutations. For example, if it is determined that
loop 1 in a given nest x cannot be placed in the innermost position
we can omit the LG for the loop I from the NG of z, thereby re-
ducing the size of the search space and the time to find an optimal
solution.

3.4 Multiple Nests with Static Layouts

What we mean by static layouts is that the memory layouts of ar-
rays will be fixed at specific forms for the entire duration of the
program execution. We start by observing that conditions (cl) and
(~2) given above are also valid here for each nest (graph) in the
MLG. In addition to these two conditions, in the multiple loop nest
case we have the following condition that need to be satisfied by all
the nests collectively.
(~3) Multiple nest condition: If a node of an array Q is selected
in nest x, the same node should also be selected in every nest x’
(different from x) that accesses the array Q. This is expressed as

Vj f [l...&m(Q)] :

dim(P1) dina

c YP,Q
~llll[i,j] + c ypl*“‘*“l[i,j] +. . . =

i=l i=l

dim(Pz) dim(Pz)

c fi2Q
12112[i,j] + c yj,2Q12122(i,j] + . . . =

i=l i=l
dim(P,,) dim(P,)

.**=
c fit,Q 5v11y[i,j] + c YP,,QzV12U[i,j] +***.

i=l i=l

Here PI, . . ., PV are the arrays whose node-columns are connected
to that of the array Q in the nests x1, xv, respectively, and
Ilk, lZk, . . . are the loops in the nest Xk. Figure 4(a) shows an ac-
ceptable case whereas Figure 4(b) shows an unacceptable one. The
problem in Figure 4(b) is that for atray Q different nodes are se-
lected in different nests. Similarly, Figure 2 shows a static optimal
solution for the program fragment shown in Figure 1 (a).

3.5 Multiple Nests with Dynamic Layouts

In a dynamic layout selection problem we allow the same array to
have different layouts in different loop nests provided that it is ben-
eficial to do so from the cache locality viewpoint. Assume that z
and x’ are two nests (with 1 E x and 1’ E x’) accessing an ar-
ray Q and there is no other nest between them which accesses Q.
Let ZQr’z”’ [i, j] denote a conversion edge between ith node of
the node-column for array Q in loop 1 of nest z and jth node of
the node-column for array Q in loop I’ of nest x’. The value of
this edge is 1 if it is selected; that is, if the layout of Q is dynami-
cally transformed between 2 and 2’ from the FCD i to the FCD j;
otherwise its value is zero.

As in the static layout selection case, the conditions (cl) and
(~2) should be satisfied by the individual nests involved In addi-
tion to those two conditions, the following condition needs to be
satisfied by all the nests collectively.

Figure 5: A solution with the dynamic layouts.

(~3’) Multiple nest condition: An edge zQxlx”’ [i, j] will be se-
lected if and only if both Yp~“‘[k,i] and Yp,oE”‘[k’, j] for a
5 E [l...dim(P)] and k’ E [l...dim(P’)] areselected. In terms of
our Y and 2 variables, this condition can be stated as

YPQ”[k, i] + YPtQ dl’ [k’, j] 5 1 + zQz12’1’ [i, j]

ZQ zh”’ [i, j] 2 Y&-Q=’ [k, i]

ZQ z*r’z’ [i, j] 5 Y~IQ”‘~’ [k’, j]

Here P and P’ are the arrays whose node-columns are connected
to that of Q in x and x’, respectively. The objective of the locality
optimization problem needs to be re-stated now. We first define
cOst(2, s’r”‘[i, j]) as the cost of converting the FCD of array Q
from i (in loop I of nest 2) to j (in loop I’ of nest 2’). Of course, if
i = j then the conversion cost is zero; that is, there is no dynamic
layout conversion. Then we define

Cost(ZQz’a”’ [i, j]) if zQz12’1’ ’ ’

COSt’(~Qziz”’ [i, j]) = is selected I” ‘I

0 otherwise

The objective of the locality problem now is to select a path from
each nest graph of a given MLG and a conversion edge for each
array between pairs of nests that access the said array such that

dim(Q)

3: 1 Q j=l

dim(Q) dim(Ql

is minimized, where z, Z’ denotes two nests accessing the array Q,
and have no other such nest between them.

As an example consider the solution given in Figure 5 for a
program that consists of two nests. The first nest accesses the arrays
P, Q, and R while the second nest accesses the arrays P’, Q, and
R. Notice that the layout of the array R is different in two nests
(column-major in the first nest and row-major in the second nest).
The figure also shows the conversion edges. (Due to clarity, not all
the conversion edges are attached to their destinations). Assuming
the optimal path shown in the figure the conversion edge between
the first node of the node-column for R in the loop j of the first
nest and the second node of the node-column for R in the loop i of
the second nest is selected. Note that since Q and R are the onIy
common arrays between these two nests the conversion edges are
put only between their columns. In this example, we have assumed
that the optimal solution does not involve any layout conversion for
the array Q.

An important issue is to determine the cost of dynamic layout
transformation nest which is used to transform memory layout from

505

a form (a FCD) into another. Since it is simply a copy loop nest,
we treat this nest as an ordinary nest and use the approach proposed
by Sarkar et al. [24] to estimate its cost. Notice, however, that this
loop nest is a pure overhead and its cost should be minimized as
much as possible.

4 Experimental Results

In this section we report our experimental results obtained on a sin-
gle processor of an SGI Origin 2000 distributed shared memory
multiprocessor. The Origin 2000 uses 195 MHz R 1 OK micropro-
cessors from MIPS Technologies. Each processor has a two-level
cache hierarchy. Located on the microprocessor chip is a 32 KB,
two-way set associative Ll data cache. Off-chip is a two-way set
associative L2 cache which is 4 MB. The latency ratio between the
Ll and L2 caches is about 1:5.

For this study we selected I2 programs whose characteristics
are shown in Table 1. All of these are C programs and are com-
piled using the native compiler MIPSpro version 7.2.1. lm. MxM is
classical ijk matrix-multiply code and LU is an LU-decomposition
program. The Array Sizes column gives the total size of the de-
clared arrays in MBytes. The next four columns give the number of
nodes in the MLG (Nodes), the number of edges (Edges), the num-
ber of O-l integer variables (Var), and the number of constraints
(Constr) for both static (S) and dynamic (D) optimization cases.
These numbers are obtained by taking the data dependence infor-
mation into account; otherwise, they would be much higher. The
Time column gives the times (in second) required to find optimal
solutions using the Omega library [14]. Our initial evaluation is
that these times are not very high and (except for Vpent a and AD I)
they will bring at most a 16% increase in the compilation times as
compared to a faster heuristic approach [l I] that uses both loop
and data transformations to improve cache locality; in our experi-
ments the time taken to find a solution constituted at most 33% of
the totai compilation time (excluding Vpenta). Notice that the total
array sizes used are larger than the L2 cache size but smaller than
the node memory size, which is 256 MBytes.

Our experimental methodology is as follows. First, we take
the original (unoptimized) code and incrementally optimize it us-
ing the techniques shown in Table 2. When prefetching, tiling and
unrolling optimizations are turned on, we let the commercial com-
piler to select the best prefetch style, the best blocking factor, and
the best unrolling factor. Then, we optimize the original (unopti-
mized) code using the approach proposed in this paper and after-
wards we again apply all the optimizations shown in Table 2 taking
this version as input2. That is, in that case our approach acts as a
front-end to the commercial compiler.

The performance results are presented in Tables 3 and 4. The
first column in these tables (V) gives the version number (see Ta-
ble 2). The remaining columns show the total execution cycles
(Cyc), Ll miss rates (El), L2 miss rates (L2), weighted miss rates
(W), and the achieved Mflops rates (Mf lops). All the numbers are
obtained using the hardware performance counters in the RIOK. In
all of the applications except AD1 and Aps the LI and L2 cache
misses were the main performance bottlenecks. In Tables 3 and 4,
for each column (corresponding to cycles, misses or Mflops rates)
the first (left) sub-column denotes the versions obtained using the

*Our approach is currently being built (as a proof-of-concept implementation) us-
ing the Omega Library [14] as solver. It should be mentioned that the Omega library is
not an ILP solver and generates only the loops that enumerate possible solutions. By
putting the objective function as the first element of the tuples enumerated, atIer run-
ning the loops once, we obtain the solution. In future we plan to connect our compiler
to standard ILP solvers such as CPLEX or LpSolve [l]. Our initial experiments with
the LpSolve tool indicate that the time taken by the Omega library (to generate the
loops) and the time taken by the ILP tools are of the order. We believe that using the
Mwu~ version of LpSolve will reduce the time spent in finding the optimal solution.

original (unoptimized) code as input and the second (right) sub-
column denotes the versions obtained using the code optimized us-
ing our approach as input. In two codes (Bmcm and Tsf) the solver
selected the dynamic layouts as optimal. In Tsf, the static layout
detection technique could not optimize the code, so in Table 4(c)
the first (left) sub-column refers to the original case and the sec-
ond (right) is the result of dynamic layout optimization. Similarly,
in Table 4(a) the first sub-column corresponds to the unoptimized
case and the second the dynamic optimized version. We believe that
this is the first approach that determines dynamic memory layouts
with accompanying loop transformations and is a definite improve-
ment over the previous unified approaches presented in [1 I], [21],
[4], and [121 which do not take the possibility of dynamic memory
layouts into account. From these results, we infer the following:

l The performance of unoptimized codes (the original codes
with NO version) is extremely poor. In seven out of twelve
codes the performance is below 10 Mflops.

l With no optimization turned on (NO), our approach improves
the performance of the original codes in average by a-factor
of 15. In four codes (Transpose, Aps, LU, and Htribk)
the code generated with our approach without any additional
optimizations (NO) outperforms the best compiler optimized
version (LPUT) of the original code. The main reason for
this result is that the commercial compiler could not improve
the locality of arrays for which the layout transformations
are necessary (e.g., Transpose and Htribk); and also in
some codes (e.g., Aps and LU) the imperfect nest structure
prevented the loop transformations including tiling.

Applying loop unrolling and tiling does not always improve
the performance. In the versions that start from the unopti-
mized programs, tiling and unrolling could not improve the
performance in four cases over the LP version. In the ver-
sions that start with our optimized programs, the tiling could
not improve the performance in two cases and the loop un-
rolling could not improve the performance in three cases.
Saavedra et al. [23] also observe similar problems in codes
optimized using tiling and prefetching together.

When we consider the best optimized versions (LPUT), the
versions that start with our optimized code outperform the
versions starting with the unoptimized codes by an average
27.5%, excluding two extreme cases, Transpose and Aps, in
which the performance is improved by a factor of 8.5 and 7,
respectively. This shows that optimizing data layouts is very
important even in the cases where tiling and/or loop unrolling
are applicable,

Finally, in all the cases the best Mflops rates (shown in bold-
face) are obtained using the code generated taking our opti-
mized version as input. Also in all cases except ADI, Aps,
and Bmcm the best weighted miss rates (shown in boldface)
correspond to the best Mflops rates indicating that the data
locality plays a major role in the overall performance.

From this experience, we emerge with the following suggestions
for optimizing compiler implementors:

1. They should consider data layout optimizations. In cases
where data layout optimizations are necessary for the best
performance, the non-linear optimizations such as tiling and
unrolling could not enhance the poor performance of lin-
ear loop-level transformation techniques. The codes such as
Transpose, Aps, LU3, and Htribk are examples supporting
this claim.

‘The LU code that we optimize uses three anays; the version that uses only a single
array is not amenable to layout optimizations.

506

Table 1: Programs in our experiment set.

PYX.grMl Source # of Array Nodes (Edges 1 Var 1 Constr 11 Time
ArrEIp Sizes S f D I S I D I S I D I S I D II S I D

MXM 3 34.5
MXMXM 141 3 57.6

- .._
Perfect Club 192.3

TSf Perfect Club 2 45.0 36 36 69 95 36 12 46 58 0.81 0.90 n
LU 3 8.7 54 54 86 158 48 120 36 48 0.70 0.86
Tomcatv I Spec 9 14.7 66 66 116 146 14 104 68 84 0.95 2.10

[I Etribk 1 Eispack 1 5 (10.5 11 52 1 52 89 112 64 96 60 80 0.83 1.87

Table 2: Different versions (numbers) and the associated compiler flags.

vex! * No (V) Ver . Brief Explanation Optimization Flags
1 NO Input program (This can be either the original code or the code -102 -mips4 -Ofast=ip27 -OPT:IEEEarithmetic=3 -LNO:opt=O

obtained using our approach).
2 LP A version with all loop level locality optimizations and -1132 -mips4 -O&&p27 -OPT?IEEE&thmetic=3

pwfetching turned on except loop unrolling and tiling. -LNO:blocking=off -LNO:outer-unroll=1
3 LPU Same as the L+P version with loop unrolling turned on. -o32 -mips4 -Ofast=ip27 -OPT:IEEEaritbmetic=3 -LNO:blocking=off
4 LPT Same as the L+P version with loop tiling turned on. -n32 -mips4 -Ofast=ip27 -OPT:IEEEarithmetic=3 -LNO:outer-unroll=1
5 LPUT Same as the L+P version with unrolling and tiling turned on. -n32 -1nips4 -0fastip27 -OPT:IEEEarithmetic=3

They should focus more on imperfectly nested loops. In a
number of codes in our experimental suite (e.g., LU and Aps)
the potential of loop transformations could not be realized
due to imperfect nests. We believe that the research for opti-
mizing cache locality for imperfectly nested loops (e.g., Ko-
dukula et al. [161) is extremely important for f%ure architec-
tures.

They should develop algorithms that couple loop unrolling
and tiling with the linear loop and data transformations bet-
ter. Even in a sophisticated commercial compiler like MIP-
Spro we have found that sometimes loop unrolling and tiling
could not improve the performance over linear loop transfor-
mations. Therefore, the works such as the one done by Carr
[2] for combining optimizations for cache and instruction-
level parallelism are very important.

5 Conclusions and Future Work

The performance of applications on modern processors depends on
the memory access patterns to a large extent. Loop (iteration space)
and memory layout (data space) transformations have been shown
to be useful in improving the memory performance of loops in sci-
entific computation. This paper presented an integer linear pro-
gramming (ILP) based approach to the problem of detecting mem-
ory layouts of different arrays along with the best loop permutation
for each loop nest in a sequence of loop nests. This allows the han-
dling of whole programs. Unlike other approaches that rely on ad
hoc heuristics for the various sub-problems, the ILP approach used
here allows us to derive exact solutions (without resorting to any
heuristics) to the problem. In addition, the ILP formulation allows
to infer when it is beneficial to change the memory layouts of some
arrays dynamically.

We are in the process of including other loop transformations
such as tiling and fision in our framework. The investigation of the
effects of our approach on tile size selection is under way. Whole

program compilation requires effective inter-procedural optimiza-
tion as well; we plan to study this problem, focusing in particular
on the formulation proposed recently by O’Boyle and Knijnenburg
[22]. In addition to spatial and temporal locality, the issues of par-
allelism and false sharing are extremely important in distributed
shared memory (DSM) machines. In this case, we plan to inves-
tigate accurate estimation techniques for TLB and false sharing
misses. In addition, we plan to work on extending our framework
to deal with more general layouts such as diagonal layouts. We
are working on extending our ILP model using the memory layout
graphs to deal with these added issues. In the case of message-
passing machines, we plan to solve the data mapping and the mem-
ory layout problems simultaneously. Thus, we see our work as an
important step in a multi-frontal attack on the problem of optimiz-
ing the performance of large scientific codes on a variety of modern
computing platforms.

Acknowledgments

The work of M. Kandemir and A. Choudhary were supported in
part by NSF Young Investigator Award CCR-9357840, NSF grant
CCR-9509143 and Air Force Materials Command under contract
F30602-97-C-0026, P. Banerjee was supported in part by DARPA
under contract F30602-98-2-0144 and by NSF grant CCR-9526325.
J. Ramanujam was supported in part by NSF Young Investigator
Award CCR-9457768. Eduard Ayguade was supported by the Min-
istry of Education of Spain under contract of the CICYT TIC98-
511.

References

[I] Berkelaar, lpsofve version 2. I, Available through anonymous
ftp from ftp://ftp.es.ele.tue.nl/pub/lpsolve.

[2] S. Cam Combining optimization for cache and instruction-
level parallelism. In Pmt. the 1996 International Confer-

507

ence on Parallel Architectures and Compiler Techniques
(PACT’96), Boston MA, Ott 1996.

[3] F. T. Chong, B-H. Lim, R. Bianchini, J. Kubiatowicz, and A.
Agarwal. Application performance on the MIT Alewife ma-
chine. IEEE Computer Vol. 29, No. 12, December 1996, pp.
57-64.

E41

[51

161

r71

PI

PI

r101

ill1

1121

[I31

[I41

El4

[I61

M. Cierniak and W. Li. Unifying data and control transfor-
mations for distributed shared memory machines. Proc. SIG-
PLAN Conf Programming Language Design & Implementa-
tion (PLD1’95), La Jolla, CA, pages 205-217, June 1995.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating and en-
hancing cache effectiveness. In Proc. Languages and Compil-
ers for Parallel Computing (LCPC’91), pages 328-343, 199 1,

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache
and local memory management by global program trans-
formations. Journal of Parallel & Distributed Computing,
5(5):587-616, October 1988.

J. Garcia, E. Ayguade, and J. Labarta. A novel approach
towards automatic data distribution. In Pnx. Supercomput-
ing’95, San Diego, December 1995.

J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Second edition, Morgan Kaufinann
Publishers, San Mateo, CA, 1995.

High Performance Computational Chemistry Group.
NWChem: A computational chemistry package for parallel
computers, version 1.1, Pacific Northwest Laboratory, Rich-
land, WA 99352, 1995.

M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and
J. Ramanujam. A hyperplane based approach for optimizing
spatial locality in loop nests. In Proc. I998 ACMInternational
Conference on Supercomputing (ICS’98), pages 69-76, Mel-
bourne, Australia, July 1998.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee.
A matrix-based approach to the global locality optimization
problem. In Proc. 1998 Intl. Conf Parallel Architectures &
Compilation Techniques (PACT’98), Paris, France, October
1998.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Baner-
jee. Improving locality using loop and data transformations
in an integrated approach. In Proc. MICRO-31, Dallas, TX,
December 1998.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Baner-
jee. A graph based framework to detect optimal memory lay-
outs for improving data locality. In Proc. IPPS 99, San Juan,
Puerto Rico, April 1999.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
D. Wonnawtt. The Omega Library interface guide. Techni-
cal Report CS-TR-3445, CS Dept., University of Maryland,
College Park, March 1995.

K. Kennedy and U. Kremer. Automatic data layout for
High Performance Fortran. In Proc. Supercomputing’95, San
Diego, CA, December 1995.

I. Kodukuia, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. In Prac. Programming Language Design and
Implementation (PLDI’97), June 1997.

r171

[I81

r191

WI

1211

1221

1231

v41

v51

1261

M. Lam, E. Rothberg, and M. Wolf. The cache performance
and optimizations of blocked algorithms. In Proc. the 4th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’9I),
ACM, New York.

S.-T. Leung and J. Zahorjan. Optimizing data locality by ar-
ray restructuring. Technical Report TR 95-09-01, Dept. of
Computer Science and Engineering, University of Washing-
ton, September 1995.

W. Li. Compilingfor NUMA Parallel Machines. Ph.D. Thesis,
Cornell University, Ithaca, NY, 1993.

K. McKinley, S. Can-, and C. Tseng. Improving data locality
with loop transformations. ACM Transactions on Program-
ming Languages & Systems, 18(4):424-453, July 1996.

M. O’Boyle and P. Knijnenburg. Non-singular data transfor-
mations: definition, validity, applications. In Proc. 6th Work-
shop on Compilers for Parallel Computers (CPC’96), pages
287-297, Aachen, Germany, 1996.

M. O’Boyle and P. Knijnenburg. Integrating loop and data
transformations for global optimisation. In Proc. Znterna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT’98), October 14-l 7, 1998, Paris, France.

R. H. Saavedra, W. Mao, D. Park, J. Chame, and S. Moon. The
combined effectiveness of unimodular transformations, tiling,
and software prefetching. In Proc, 10th International Parallel
Processing Symposium (IPPS’96), Honolulu, Hawaii, April
15-19, 1996, pp. 3946.

V. Sarkar, G. Gao, and S. Han. Locality analysis for dis-
tributed shared-memory multiprocessors. In Proc. the Ninth
International Workshop on Languages & Compilers for Par-
allel Computing (LCPC’96), Santa Clara, California, August
1996.

M. Wolf and M. Lam. A data locality optimizing algorithm.
In Proc. SIGPLAN Conf Programming Language Design &
Implementation (PLDl’9!), pages 30-44, Toronto, Canada,
June 1991.

M. Wolfe. High Pe$ormance Compilers for Parallel Comput-
ing, Addison-Wesley, CA, 1996.

508

Table 3: Performance Results. For each column-Cyc, Ll, L2, W
misses and Mf lops-the first (left) sub-column denotes the ver-
sions obtained using the original (unoptimized) code as input and
the second (right) sub-column denotes the versions obtained using
the code optimized by our approach as input. (B) means in billions
and (Ml means in millions.

(a): MxM

(b): MxMxM

(c): Vpenta

(d): ADI

(e): Transpose

(f): Amkmtm

Table 4: Performance Results. For each column-Cyc, Ll, L2, W
misses and Mflops-the first (left) sub-column denotes the ver-
sions obtained using the original (unoptimized) code as input and
the second (right) sub-column denotes the versions obtained using
the code optimized by our approach as input. (B) means in billions
and (M) means in milhons.

(a): Bmcm

(b): Aps

(c): Tsf

(d): LU

(e): Tomcatv

(f): Htribk

509

