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Abstract—As modern parallel computers enter the
exascale era, the communication cost for redistribut-
ing requests becomes a significant bottleneck in MPI-
IO routines. The communication kernel for request
redistribution, which has an all-to-many personalized
communication pattern for application programs with
a large number of noncontiguous requests, plays an
essential role in the overall performance. This paper
explores the available communication kernels for two-
phase I/O communication. We generalize the spread-
out algorithm to adapt to the all-to-many commu-
nication pattern of two-phase I/O by reducing the
communication straggler effect. Communication throt-
tling methods that reduce communication contention
for asynchronous MPI implementation are adopted
to improve communication performance further. Ex-
perimental results are presented using different com-
munication kernels running on Cray XC40 Cori and
IBM AC922 Summit supercomputers with different
I/O patterns. Our study shows that adjusting commu-
nication kernel algorithms for different I/O patterns
can improve the end-to-end performance up to 10 times
compared with default MPI-IO implementations.

Index Terms—MPI-IO, ROMIO, two-phase I/O,
communication traffic throttling

I. Introduction
The Message Passing Interface (MPI) standard defines

a set of programming interfaces for interprocess com-
munication [1]. MPI-IO, a submodule of the MPI stan-
dard, provides interfaces for parallel shared-file access.
I/O operations in scientific applications such as as [2]–
[6] are implemented with MPI-IO libraries. MPI processes
can collectively open a file to perform I/O operations.
Implementations of the collective I/O functions can co-
ordinate processes’ operations to achieve better end-to-
end performance compared with independent I/O. A well-
known collective I/O design is the two-phase I/O strat-
egy [7], which has become the implementation backbone
for collective I/O in almost all MPI libraries.

Two-phase I/O consists of a communication phase and
an I/O phase. I/O aggregators, a subset of processes, are

assigned with file access regions, denoted as file domains.
The aggregators gather I/O requests and data, based on
their file domain, from the rest of the processes in the
communication phase and carry out I/O operations with
file systems in the I/O phase. In general, the commu-
nication between nonaggregators and I/O aggregators is
many-to-many. ROMIO, the implementation of the MPI-
IO functions used most frequently in high-performance
computing (HPC) and provided by vendors as part of
their MPI implementation [8], implements two-phase I/O
in multiple rounds of communication and I/O with asyn-
chronous MPI functions. When the number of noncontigu-
ous I/O requests is significant, the communication phase
of two-phase I/O exhibits an all-to-many personalized
communication pattern, where the “many” group refers to
the I/O aggregators. The communication cost may exceed
the I/O cost for large parallel jobs when the number of
noncontiguous I/O requests is significant because of high
communication contention and straggler effects [9], [10]
caused by multiple rounds of all-to-many communication,
especially as the number of processes increases.
In this paper, we explore all-to-many personalized com-

munication algorithms: pairwise, spread-out, and the two-
layer aggregator method (TAM) for improving two-phase
I/O communication performance. We extend the spread-
out algorithm adopted by the implementations of per-
sonalized all-to-all in major MPI production libraries to
adapt to the all-to-many communication pattern by re-
ducing the straggler effect resulting from an unbalanced
communication workload. Throttling techniques are addi-
tionally applied to the asynchronous MPI point-to-point
implementation to reduce communication contention. For
evaluation, we replace the metadata and communication
kernels of two-phase I/O in ROMIO with different all-
to-many personalized communication algorithms. Exper-
iments are conducted on two different supercomputing
systems: Cori, a Cray XC40 supercomputer with Intel
KNL processors and the Lustre file system, and Summit
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IBM Power System AC922 nodes equipped with IBM
POWER9 CPUs and IBM GPFS. We use three benchmark
programs: E3SM-IO [5], FLASH/IO [11], and BTIO [12].
These three I/O benchmarks have different metadata and
data communication patterns.

Applying communication throttling in a two-phase I/O
communication phase with an all-to-many pattern can im-
prove the communication performance by up to 10 times,
compared with the current implementation of ROMIO
two-phase I/O. Our balancing strategy for the spread-out
algorithm improves communication performance by over
30%. The two-layer aggregation method [13], an implicit
throttling approach that performs intranode and internode
communications separately, works best for I/O patterns
that require all-to-many communication because intern-
ode communication contentions are significantly reduced.
However, we expect that applying the proposed spread-out
reordering method, along with the throttling technique,
to the communication kernels of existing communication
designs such as TAM can further reduce internode commu-
nication contentions for the future exascale applications
running on a considerable number of compute nodes.
When applications do not exhibit significant many-to-
many communication contentions, the current ROMIO
implementation for all-to-many communications can out-
perform the rest of the communication kernels. Thus,
the communication kernel of two-phase I/O should be
dynamically chosen based on application I/O patterns.

II. Background
We define the terminology of personalized communica-

tion. Let P be the array of all processes ranked from 0 to
p− 1. A sorted array of sender ranks S transfer their data
with arbitrary length to a sorted array of receiver ranks R.
Let mi,j be the message sent from rank i to rank j. mi,j is
empty if either i /∈ S or j /∈ R. We refer to m0,j , ...,mp−1,j

as the local messages at rank j. We assume that point-to-
point communication operations (send/receive) between
any two arbitrary processes are available. An algorithm
schedules the send and receive operations to accomplish
the data transfer. All-to-many communication has S = P .
All processes are sending personalized messages to a subset
of processes.
Our point-to-point communication model has two com-

ponents: the startup term ts and the per-byte transfer
(inverse bandwidth) time tw. The startup and transfer
terms are classical communication models, as mentioned
in [14]. Sending k bytes from a sender to a receiver,
including self-send, has a communication cost of ts + ktw.
For simplicity of analysis, we assume a textbook one-port
communication constraint, which means the maximum
number of either concurrent send or receive operations
is 1. We can, however, extend our results to an n-port
communication constraint by discussing send and receive
operations in blocks of processes. We denote the term
communication contention as the additional time cost

resulting from excess concurrent point-to-point communi-
cation requests at a process.

A. Motivation
Our research is motivated by the communication pat-

tern of two-phase I/O [7]. Two-phase I/O consists of
communication and I/O phases. A few MPI processes
called I/O aggregators are selected as I/O proxies for
all processes. Only I/O aggregators exchange data with
the file systems. Other processes communicate with I/O
aggregators to complete their I/O requests. For collective
write, all processes send their I/O requests and write data
to I/O aggregators. I/O aggregators then exchange data
with file servers according to the gathered I/O requests.
Parallel I/O for large files in the exascale computing era
can cause memory overflow at I/O aggregators, especially
when the number of I/O aggregators is much smaller than
the number of processes in the computation. ROMIO [8],
a widely used MPI-IO implementation adopted by major
production libraries, avoids the memory overflow by im-
plementing two-phase I/O in multiple rounds. The I/O
driver processes file domains with limited sizes in each
round. Thus, the communication of two-phase I/O con-
sists of multiple rounds of many-to-many communication.
With a large number of noncontiguous I/O requests, the
communication pattern becomes all-to-many. Our recent
study of the I/O performance of the E3SM [5] model has
shown that such all-to-many communication dominates
the overall performance. The performance degradation is
more severe as the number of processes scales.

B. Related Work
Personalized communication is implemented by the

MPI_Alltoallv and MPI_Alltoallw functions. Many
works of literature have focused on all-to-all communica-
tion patterns (S = R = P ). We summarize the main-
stream algorithms that are implemented by production
libraries such as MPICH [15] and OpenMPI [16].
Bruck’s algorithm [17] is an efficient algorithm for

transmitting small messages in personalized communica-
tion. It has a performance advantage over the traditional
recursive-doubling approach in practice [18]. This algo-
rithm finishes in log (p) steps for p that is a power of two.
If p is not a power of two, some slight overhead occurs‘.
At step i, rank x sends nonlocal messages gathered from
previous rounds to x + 2i−1 mod p. When S = R = P
and all receivers have the same local data size k, the
overall performance is log (p) ts + k

2
(
log (p) + 2log(p)) tw

This performance is desirable when k is small.
For parallel I/O problems, k is usually a large value,

so the communication kernel should adopt algorithms
that optimize the tw term. This class of algorithms is
designed based on the principle that processes are always
busy receiving their personalized messages. The pairwise
algorithm is designed for large data exchange when p is
a power of two. The algorithm finishes in p − 1 steps. At



step i, rank j exchanges data with rank i ⊕ j. Another
algorithm, called the spread-out algorithm, can also handle
the case when p is not a power of two; rank j exchanges
data with rank j−i+p mod p at step i. When S = R = P
and all receivers have the same local data size k, both the
pairwise and spread-out algorithms have communication
cost of (p−1)ts+ktw. These two methods have advantages
over Bruck’s algorithm for a large k.

Two-phase transmission for all-to-all exchange is an
efficient strategy for reducing the total number of intern-
ode communications. Träff and Rougier have proposed
a local node gathering strategy for MPI_Alltoall data
using communicator splitting [19]. SLOAV [20] is an im-
provement over the Bruck’s algorithm with two-phase
message transmission that handles data with variable size
for MPI_Alltoallv and MPI_Alltoallw. The two-layer
aggregation method (TAM) applies the intranode gath-
ering principle to MPI two-phase communication [13]. A
subset of processes, denoted as local aggregators, gathers
I/O requests from all processes. then, local aggregators
and I/O aggregators carry out two-phase I/O. With the
help of intranode aggregation, internode communication
contentions are significantly reduced because a smaller
number of processes participate in data exchange among
compute nodes.

C. MPI Asynchronous Communication
Modern supercomputers have multiple intranode and

internode communication channels. Applications can over-
lap computation and communication for better perfor-
mance. Therefore, implementing personalized communi-
cation patterns with asynchronous MPI functions may
utilize hardware resources more efficiently. To implement
algorithms for all-to-all with asynchronous MPI communi-
cation functions, the MPICH library posts all MPI_Isend
and MPI_Irecv requests in the order defined by the algo-
rithms. A subsequent MPI_Waitall for all requests is made
in the end.

There are three major MPI asynchronous communi-
cation implementations. One method is a thread-based
approach, which is adopted by the current branches of
MPICH and MVAPICH [21]. MPI_Init creates a commu-
nication thread for every process that continuously handles
point-to-point communication requests posted from the
master thread. When a large number of asynchronous send
requests are posted to a receiver, however, the mutex-
based approach that most MPI implementations adopt
today for thread safety can be a source of contention [22].
Another method is to assign dedicated “ghost” processes
for processing asynchronously communication requests of-
floaded from user processes [23]. The “ghost” process
approach offers a more flexible core usage compared with
the thread-based method, but multiple processes can still
race for shared resources. The third approach is to utilize
hardware interrupts as in the Blue Gene/Q [24]–[26], and
Cray systems.

Algorithm 1: The spread-out algorithm.
1 rank← local process rank ID
2 if rank ∈ R then
3 for i ∈ [0, .., p− 1] do
4 src← (rank + i) mod p
5 rank receives msrc,rank from src
6 end
7 end

Algorithm 2: The balanced spread-out algorithm.
1 rank← local process rank ID
2 if rank ∈ R then
3 j ← local receiver index in R
4 rank_list←Any ordering of process ranks
5 q ← p mod |R|
6 if j < q then
7 rindex ← d p

|R|ej
8 else
9 rindex ← d p

|R|eq + (j − q) b p
|R|c

10 end
11 for i ∈ [0, .., p− 1] do
12 src← rank_list[(rindex + i) mod p]
13 rank receives msrc,rank from src
14 end
15 end

III. Design
In this section, we propose an algorithm for all-to-

many personalized communication that evenly spreads
out the communication workload. The new algorithm is
a generalization of the spread-out algorithm used for
MPI_Alltoallv and MPI_Alltoallw in MPICH. We refer
to this improvement as the balanced spread-out algorithm.
We compare the spread-out and the balanced spread-out
algorithm from the point of view of communication strag-
gler effects. A throttling technique for both algorithms is
also discussed for reducing communication contention.

A. The Balanced Spread-Out Algorithm
Algorithm 1 is the traditional spread-out algorithm

adopted by major production libraries. The algorithm
depicts the receiving order of local messages at an ar-
bitrary receiver. Since R is not necessarily equal to P ,
non-receivers do not enter the condition at Line 2. When
the communication pattern has a few receivers with lower
ranks that receive from all processes, non-receivers can
cause a potential contention at the beginning, as illus-
trated in Figure 1 (a). All processes with ranks larger than
the largest receiver rank rmax ∈ R : r ≤ rmax∀r ∈ R
among receivers directly send their messages to rmax. For
large p−rmax, contention occurs due to the straggler effect,
which is explained later.
Algorithm 2 resolves the contention scenario of Algo-

rithm 1 by providing a load-balancing solution. To gener-
alize the solution, we construct a rank_list owned by all
processes. The array rank_list can be a simple ordering of



Rank 0

Send req from ranks >= 
largest receiver rank

a

Rank 3
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Rank 1 Rank 2 Rank 0
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Rank 3
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Rank 1 Rank 2

Figure 1: This figure illustrates the communication workload of all processes in the spread-out and balanced spread-out algorithms
in the first round. The red circles represent processes that are receivers. The blue circles represent the rest of the processes. An
arrow between two circles represent a point-to-point communication. (a) The communication workload is imbalanced in the
spread-out algorithm. Rank 3 receives data from 3–7 in the first round. (b) The communication workload is balanced in the
balanced spread-out algorithm with virtual rank list {0, 4, 1, 5, 2, 6, 3, 7}.

processes from 0 to p−1. It can also be any ordering of P ,
such as round-robin, based on compute nodes to adapt to
different types of rank assignments. The algorithm divides
p processes in the rank_list into |R| groups. If |R| does
not divide p, p mod |R| groups have size of d p

|R|e, and
the rest of the groups have size b p

|R|c. Receivers and the
process groups form a bijection mapping. The first process
in the group that corresponds to an arbitrary receiver
is rank_list[rindex]. The receiver posts its requests from
senders in order of rank_list[rindex],.., rank_list[rindex +p
mod p]. Figure 1 (b) is an example of the initial communi-
cation step of the proposed algorithm. We use a rank_list
setting {0, 4, 1, 5, 2, 6, 3, 7} as an example. A receiver posts
receive operations from two senders at a time.

B. Straggler Effect in Communication
A communication straggler refers to the communica-

tion time difference between a process and the average.
Straggler effects are the idle time that a process waits
for other processes to finish because of dependency on
available data or operation orders. The original spread-
out algorithm suffers from straggler effects when applied
to all-to-many case, as shown in Figure 1 (a). With a one-
port communication constraint, process rank 2 starts to
receive data from process rank 4 after process rank 4 has
finished the sending operation to rank 3. In general, any
receive operation at ranks 0–2 has to wait for all the rest
of the senders to finish their previous communications.

We assume that the latency of a point-to-point data
transfer has a white noise ε ∼ N

(
0, σ2)., where σ2

is the variance of the noise term. Let µ be the mean
communication time. For small data size, the ratio µ to σ
is large. The message size exchanged per round does not
exceed the collective buffer size, so the noise term is not
negligible even for very large files. Straggler effects can be
formulated as the following. When a receiver attempts to
receive from a sender, there are two cases. The first case is

that the sender is ready to send, and the second case is that
the sender has not finished its previous send operations.
When a process finishes receiving its first message and
becomes ready to receive its second message, both cases
can occur with an equal chance. The first case does not
cause delay, but the second case causes a delay in the
receive operation at the receiver. The expectation of the
straggler effect X1 after the first step is shown Equation 2.
We use φ and Φ to denote the probability and cumulative
functions of standard normal distribution.

E (X1) = 1
2 × 0 +

∫ ∞
0

xφ (x) dx (1)

= σ

√
1

2π (2)

For the spread-out example, rank 0 has straggler effects,
denoted by random variable Xi for each of sender ranks
i ∈ {2, ..., p−1}. Straggler effects from senders with higher
ranks are dependent on those from lower ranks. Neverthe-
less, by treating them independently, we can approximate
the expectation of total delay in Equation 4.

E

(
p−1∑
i=1

Xi

)
≈

p−1∑
i=1

σ

√
1

2π (3)

= (p− 1)σ
√

1
2π (4)

The total delay scales as the number of processes increases.
On the other hand, for Algorithm 2, the expectation of
total straggler effects at any receivers is close to zero as
long as |R| ≤ p

2 . For example, in Figure 1, receivers send
to themselves at the beginning. Rank 0 starts to receive
from rank 4 after it finishes its self-send. It is unlikely
that rank 1 has not finished its self-send by the time when
rank 0 finishes receiving data from rank 4. We use X ′1 to
denote the random variable for the straggler effect from
the second communication in Algorithm 2. If we assume



σ = 1
8µ, a reasonably large variance, the probability of the

first straggler effect happening (X ′1 > 0) when |R| = p
2 is

Equation 5 for Algorithm 2, which is much less than 1
2 for

Algorithm 1. In addition, regardless of the value of σ, this
probability is always less than 1

2 .

1− Φ

 2− 1√
1+2
82

 = 1− Φ
(

8√
3

)
(5)

< 2× 10−6 (6)

Moreover, this probability reduces as |R| or σ decrease.
Therefore, the total straggler effects can be considered
as negligible. When p > |R| > p

2 , p mod |R| out of |R|
receivers have the same straggler effects as the spread-
out algorithm. When |R| = p, the proposed algorithm has
identical straggler effects as the spread-out algorithm. To
sum up, the balanced spread-out algorithm is expected
to have less performance degradation caused by straggler
effects compared with the spread-out algorithm.

IV. Implementation
The pairwise algorithm is a store-and-forward design,

so adjacent steps have data dependency. Hence this algo-
rithm is usually implemented with MPI blocking functions.
Spread-out algorithms, on the other hand, can be imple-
mented with asynchronous MPI functions because there is
no data dependency for the personalized communication
pattern. Since our proposed algorithm is a generalization
of the spread-out algorithm, it can also be implemented by
using MPI asynchronous functions. We present two imple-
mentation methods that can improve the performance of
the spread-out and balanced spread-out algorithms.

A. Replacing Isend with Issend
Both MPI_Isend and MPI_Issend can be used for post-

ing data transfer requests from senders to receivers. The
difference between these two, according to the standard,
is the behavior when MPI_Wait is called for their requests.

MPI_Wait may return the request from MPI_Isend when
the send buffer is ready to be modified. The request from
MPI_Issend cannot be returned from MPI_Wait until the
MPI_Irecv at the remote side has started receiving data
from the corresponding MPI_Issend. For a single point-
to-point communication, the end-to-end latency difference
between using MPI_Isend and MPI_Issend is not signifi-
cant. The difference is critical for the performance of all-
to-many communication, however, especially when there
are multiple rounds.
For small messages, some MPI implementations cache

the data of MPI_Isend requests. MPI_Wait immediately
returns after the message copy from the send buffer. If the
all-to-many operation is executed many times in a loop
with small message sizes, senders can accumulate a large
number of data buffers for MPI_Isend requests because
the program is not necessarily blocked by MPI_Waitall
after data memory copy. Receivers, on the other hand,

can escape from the MPI_Waitall blocking only after
receiving all data in the MPI_Irecv requests in the current
iteration. When a large number of requests accumulate at
the senders, the communication performance at senders
degrades dramatically, resulting in poor performance. We
refer to this scenario as request contention at senders.
To avoid request contention at senders, we could call

MPI_Barrier at the end of each iteration. The barrier
would force synchronization of senders and receivers, so
senders could not post requests in the next iteration until
all requests in the current iteration were finished. Perform-
ing a global barrier per round, however, can significantly
degrade performance. Alternatively, replacing MPI_Isend
with MPI_Issend can resolve this issue. MPI_Issend forces
receivers to acknowledge requests by calling MPI_Irecv at
the remote side. This approach allows us to force senders
to block until receivers have at least entered the sender’s
current round. We adopt this MPI_Issend strategy, avoid-
ing the need to use a barrier to synchronize all processes
and the associated delays.

B. Throttling for Asynchronous Communication

Oversubscription caused by a large number of MPI re-
quests can be a performance bottleneck [9]. Asynchronous
implementation of all-to-many algorithms often requires
receivers to handle multiple MPI_Irecv requests simul-
taneously. When MPI_Waitall is called, receivers test
whether data for individual MPI_Irecv have been received.
The checking operations can be considered as a light-
weight version of MPI_Test. A long list of requests can
result in longer checking time. Furthermore, the orders of
acknowledgment for senders and messages received for re-
ceivers are not constrained. Hence the worst-case checking
complexity is proportional to the number of MPI requests
in the queue. In addition, when a large number of MPI
requests are passed to lower-level communication libraries,
repeated checking can also happen at those libraries.
Therefore, posting an extensive array of MPI requests is
not recommended.
Throttling at a collective communication algorithm level

is a useful technique to avoid performance degradation
caused by oversubscription. The current MPI_Alltoallv
and MPI_Alltoallw implementation of Algorithm 1 by
MPICH has adopted this strategy. The throttling strategy
separates MPI_Irecv requests into small groups with a
maximum size of comm_size. For example, the MPICH
master branch has a default size of 32, and Cray-mpich has
comm_size (MPICH_ALLTOALLV_THROTTLE) equal
to 8 by default. MPI_Waitall is called for every group
of MPI_Irecv requests sequentially at receivers. The to-
tal number of concurrent communication is bounded by
comm_size. Similarly, TAM [13] implicitly throttles for
internode communication since only local and I/O aggre-
gators perform internode communication.



Table I: Datasets used in our evaluation. The second column
shows the total number of noncontiguous requests. For the
E3SM F benchmark, the noncontiguous requests are collected
from production runs using 21,600 processes. We present the
strong-scaling results, so the noncontiguous requests parti-
tioned among all p processes are used in our experiments. BTIO
has more significant numbers of noncontiguous requests, and
the number increases as the number of processes p.

Dataset # Noncontiguous Requests Write Amount
E3SM F 1.36× 109 14GiB
FLASH/IO 24p 8× 803pGiB
BTIO 10242p 40GiB

V. Experimental Results

We conduct evaluations for MPI collective write in
ROMIO by replacing its metadata and data communi-
cation kernels with five all-to-many communication algo-
rithms.

Our implementations are based on the Lustre and GPFS
drivers in the MPICH-3.3 release. The default ROMIO
implements metadata and data communications by post-
ing MPI_Isend and MPI_Irecv in ascending rank order
followed by MPI_Waitall. We explore four communica-
tion algorithms for metadata and data exchange: (1) the
current ROMIO implementation that posts all requests
in ascending rank order with Issend, (2) the spread-out
algorithm, (3) the balanced spread-out algorithm, (4) the
pairwise algorithm, and (5) TAM. Figure 3 illustrates
the communication patterns of these algorithms. For the
balanced spread-out algorithm, we use the default rank list
ordering {0, ..., p−1}. For TAM, we use the default setting
of 512 for the number of local aggregators. If the number of
processes is less than 512, TAM is equivalent to the default
ROMIO two-phase I/O. All algorithms except the pairwise
algorithm are implemented with the MPI asynchronous
functions MPI_Issend and MPI_Irecv. The pairwise algo-
rithm is implemented by using MPI_SendRecv.
We perform all evaluations on two supercomputing sys-

tems. One is Cori, a Cray XC40 supercomputer with Intel
KNL processors and Lustre file system at the National
Energy Research Scientific Computing Center (NERSC).
Each Cori KNL node contains one CPU with 68 CPU
cores. Compute nodes on Cori are connected with a drag-
onfly topology. We set the Lustre stripe count to be 64 and
stripe size to be 1 MiB. In our experiments, we allocate 64
processes per Cori KNL node. The other supercomputer is
Summit, at the Oak Ridge Leadership Computing Facility
(OLCF), with IBM Power System AC922 nodes equipped
with IBM POWER9 CPUs and IBM GPFS. Each Summit
node has two CPUs with 21 CPU cores per socket. The
interconnect topology on Summit is a non-blocking fat-
tree with a Mellanox EDR 100G InfiniBand connection.
The default MPI compilers are Cray-mpich on Cori and
IBM Spectrum on Summit. Both MPI implementations
are not open-sourced. Nevertheless, their end-to-end tim-
ing results can serve as baselines.

First Second Third
a

b
First Second Third First Second Third First Second Third

Figure 2: Two-phase I/O implementation for the Lustre and
GPFS drivers. Different colors represent file domains owned by
different I/O aggregators. We label the file domains handled by
different rounds of two-phase I/O. (a) Lustre driver. (b) GPFS
driver.

The Lustre driver assigns the number of I/O aggrega-
tors equal to the stripe count in a round-robin fashion
across nodes by default. We present the performance
using default aggregator placement that assigns ranks
64i∀0 ≤ i < 64 as I/O aggregators. This setting allows
us to evaluate the advantage of the balanced spread-out
algorithm over the original spread-out algorithm for all-
to-many communication patterns. When the environmen-
tal variable AGGREGATOR_PLACEMENT_STRIDE is
set to -1 on Cori, the placements of I/O aggregators are
fully spread out across nodes, so ranks b n

64ci∀0 ≤ i < 64
become I/O aggregators on n nodes for p > n. Therefore,
the balanced spread-out algorithm becomes identical to
the original spread-out algorithm when this hint is set.
Moreover, the spread-out algorithm and the evenly spread-
out algorithm are identical for experiments on Summit and
64-node experiments on Cori by default, so we do not list
the performance of these two algorithms separately. On
the other hand, GPFS drivers select the process with the
lowest rank as an I/O aggregator for every node by default.

ROMIO implements Lustre and GPFS drivers in mul-
tiple two-phase I/O rounds with different access patterns.
As illustrated in Figure 2 (a), the file views of an I/O
aggregator in the Lustre driver are interleaved contiguous
regions of stripe size. For each round of two-phase I/O,
the Lustre driver processes one stripe, a contiguous block
of data with a size equal to stripe size multiplied by stripe
count. Our Lustre setting results at 1MiB (stripe size)
collective buffer size.
The GPFS driver evenly divides the entire file domain

into the number of I/O aggregators contiguous regions.
For each round of two-phase I/O, each I/O aggregator
handles a contiguous region of I/O requests within its
file domain, as illustrated in Figure 2 (b). Furthermore,
the default collective buffer size, the maximum number
of bytes processed by an I/O aggregator per round, is 16
MiB in the GPFS driver. Therefore, the number of two-
phase I/O rounds performed by the Lustre driver is 16
times that of the two-phase I/O rounds executed by the
GPFS driver. Consequently, the numbers of two-phase I/O
rounds in Lustre and GPFS drivers are different.
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Figure 3: These figures illustrate the differences in the implementations we used for evaluation. We use the blue circles to denote
nonaggregators. The red circles are I/O aggregators, and the green circles are local aggregators in TAM language. In this example,
we have 2 I/O aggregators, 4 local aggregators, and 8 processes. We label their ranks next to them. The arrows indicate point-
to-point communications. (a) Default ROMIO implementation. All communication requests are posted simultaneously. (b) The
balanced spread-out algorithm with throttling limit 4. The difference between the original and balanced spread-out algorithm
has been illustrated in Figure 1. With throttling, an I/O aggregator receives data from a batch of 4 processes at a time. After
receiving from a batch is finished, it receives from the next batch. This figure shows the first round of communication. (c)
Pairwise algorithm. An I/O aggregator receives data from 1 process at a time. After receiving data from rank x, it receives data
from x + 1 mod p. This figure shows the first round of communication. (d) Two-layer aggregation method (TAM). An arbitrary
process sends data to 1 local aggregator. Then all local aggregators exchange data with all I/O aggregators.

Table I summarizes the datasets used in our experi-
ments. The E3SM-IO F case has an all-to-many commu-
nication pattern for both metadata and data communica-
tion. FLASH/IO has many-to-many instead of all-to-many
communication patterns, for both metadata and data. We
show that algorithms designed for all-to-many patterns
may no longer have advantages over the traditional ap-
proach. For BTIO, the metadata communication is all-
to-many, and data communication is many-to-many. We
can apply different communication strategies that adapt
to these two patterns. The conclusion of this case study is
that communication algorithms should be selected based
on the I/O pattern.

A. E3SM-IO Benchmark
E3SM [5] is an exascale Earth system modeling program

for simulating atmosphere, land, and ocean behavior in
high resolution. Its I/O module is implemented with PIO
library [27], which is built on top of PnetCDF [28]. Check-
pointing is implemented by using nonblocking PnetCDF
APIs. The PnetCDF library is a high-level parallel I/O
library popular in the climate research community; the
library is built on top of MPI-IO. Sending nonblocking
requests are flushed by aggregating the request data and
combining the MPI file views, followed by a single call
to the MPI collective write function. The cost of posting
the nonblocking APIs is negligible, so the end-to-end
performance is almost equivalent to the timing of the
collective I/O calls inside the PnetCDF flush API.

We evaluated a particular decomposition used in E3SM
production runs, namely, F case [5]. The I/O kernel of
E3SM has been extracted for I/O study [29]. F case
has atmosphere, land, and runoff model components. The
data access pattern in the F case consists of 1.36 billion
noncontiguous write requests and a total write amount of

14 GiB. For all experiments in our evaluation, the E3SM-
IO F case creates an all-to-many communication pattern
for both metadata and data transfer from all processes to
I/O aggregators.
To present strong-scaling results, we distribute all I/O

requests from production runs evenly across all processes.
In other words, the entire offset-length pairs from a process
in the production run are assigned to a process. The
noncontiguous I/O requests in E3SM-IO do not have a
subarray pattern, and adjacent file offsets do not have a
regular interval. Thus, the file access patterns of E3SM-IO
differ from BTIO.
The end-to-end timing consists of computation, com-

munication, and I/O components. Computation cost is
dominated by request offset computation and the heap
merge sort for I/O requests at I/O aggregators. I/O cost,
by its name, is the cost for writing data gathered at I/O
aggregators to file servers. Our focus is to improve the
communication cost, so we put the computation and I/O
cost into the “other” category.
Figure 4 presents the timing results of the E3SM-

IO F case using the balanced spread-out algorithm with
different throttling thresholds. The purpose of these ex-
periments is to demonstrate that throttling is important
for large-scale all-to-many communications. Figures 4 (a)
and (b) show results on Cori 64 and 256 KNL nodes,
respectively. As the throttling threshold increases, the
communication cost increases sharply. Summit 128-node
results in Figure 4 (c), on the other hand, do not have
such observable performance degradation. Nevertheless,
on 512 nodes, the contention is significant as shown
in Figure 4 (d). Both computing systems suffer from
oversubscriptions of communication resources caused by
an excessive number of MPI requests as the number of
processes scales. For the rest of the evaluations, we use
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Figure 4: (a)–(d) illustrate the communication time of the E3SM-IO F case using the balanced spread-out algorithm with different
throttling threshold. The figure titles identify the dataset, number of nodes, and computing system. The data communication
pattern in E3SM-IO is all-to-many. The x-axis depicts the upper bound of the number of concurrent MPI_Irecv in any
MPI_Waitall call.

a default throttling threshold 32, which is also adopted
by MPICH MPI_Alltoallw, for both the original and
balanced spread-out algorithms. Tuning this threshold can
be important on certain systems, but it is not the focus of
this paper.

Figures 5 (a) and (b) illustrate the E3SM-IO F case per-
formance results running on Cori KNL. Both the spread-
out algorithms have less metadata and data communi-
cation time compared with the other algorithms, which
benefits from the communication throttling. Communi-
cation costs can be further divided into two parts. The
first part is the metadata transfer from all processes to
I/O aggregators. The second part is the data transmission
from all processes to I/O aggregators based on metadata
information. To avoid memory overflow for large files,
ROMIO implements two-phase I/O by splitting the com-
munication and I/O operations into multiple rounds. I/O
aggregators perform two-phase I/O for requests that lie
in a file domain with limited size per round. Thus, there
are many consecutive all-to-many communications in the
ROMIO implementation. For the Lustre file systems, the
file domain has a maximum size of Lustre stripe. For
GPFS, the maximum file domain size is the collective
buffer size (16 MiB by default) multiplied by the number
of I/O aggregators. Furthermore, the proposed evenly
spread-out algorithm outperforms the original spread-out
algorithm used by MPI_Alltoallw, as shown in Figure 5
(b) for 256-node experiments. Thus, avoiding the straggler
effect discussed previously can improve the communication
performance.

Figures 5 (c) and (d) show E3SM-IO F case performance
results on Summit. As the number of processes scales
up, ROMIO Issend has significantly higher metadata and
data communication time. The spread-out algorithm with
throttling can effectively reduce this communication cost,
which in turn improves the performance. Different from
the Cori results, the communication time of the pairwise
algorithm on Summit becomes faster as the number of
processes increases because the number of two-phase I/O
round is d 14.07GiB

16MiB×512e = 2 on Summit 512 nodes. The
number of rounds on Cori, on the other hand, is a constant
225 regardless of the number of processes used given
stripe count 64 and size 1 MB. The pairwise algorithm

is an effective design for all-to-all personalized communi-
cation. However, the straggler effect for many MPI_Recvs
slows performance significantly as the number of rounds
increases for all-to-many communication. Asynchronous
communication, on the other hand, suffers less from strag-
gler effects because multiple communications are processed
simultaneously.
The two-layer aggregation method (TAM) has a per-

formance advantage with our settings compared with the
rest of the algorithms. When TAM is used, the participants
of the internode metadata and data communications are
limited to local and I/O aggregators, so the communica-
tion scale is much smaller compared with explicit all-to-
many communications. Instead of reducing contentions by
throttling and communication reordering, TAM eliminates
the contention implicitly by reducing the communication
size. The reduction of communication contention by TAM
is at the expense of casting extra intranode communication
and memory footprints because the intranode aggregation
phase requires local aggregators to receive extra data
from other data within the same node. However, such
extra costs are negligible compared with the reduction
in communication cost, so TAM has a huge advantage
over other explicit throttling approaches. The communi-
cation kernel of TAM is the same as the one adopted by
default in ROMIO, which posts all send/receive requests
in ascending rank order followed by a wait all operation.
Unfortunately, we have not found any compelling evidence
that replacing the communication kernels of two-layer
aggregations with any all-to-many algorithms discussed
in this paper improves performance with our benchmarks
that run on a few hundred compute nodes. Nevertheless,
when the number of nodes scales from hundreds to tens
of thousands in exascale computing, we expect that the
overwhelming number of MPI_Irecv operations queued
at receivers will become a bottleneck for the internode
aggregation of TAM because of the reasons discussed in
the implementation section. Theoretically, the internode
aggregation stage of TAM can suffer from performance
degradation caused by communication contentions, even
if only one process per node participates in the inter-node
aggregation. As a result, replacing its internode communi-
cation kernel with the balanced spread-out algorithm will
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Figure 5: (a)–(l) are breakdown timings of different communication kernels on Cori and Summit. The figure titles indicate the
dataset, number of nodes, and computing system. Cray-mpich and IBM Spectrum MPI libraries are not open-sourced, so we
present their end-to-end time only. “ROMIO default” means that the current version of ROMIO is used. “Hybrid” means that we
use the ROMIO default for metadata exchange and the balanced spread-out algorithm for data exchange. (a) E3SM-IO F case
on 64 Cori KNL nodes. (b) E3SM-IO F case on 256 Cori KNL nodes. (c) E3SM-IO F case on 128 Summit nodes. (d) E3SM-IO
F case on 512 Summit nodes. (e) FLASH/IO on 64 Cori KNL nodes. (f) FLASH/IO on 256 Cori KNL nodes. (g) FLASH/IO on
128 Summit nodes. (h) FLASH/IO on 512 Summit nodes. (i) BTIO on 64 Cori KNL nodes. (j) BTIO on 256 Cori KNL nodes.
(k) BTIO on 128 Summit nodes. (l) BTIO on 512 Summit nodes.

help scale up TAM in the future for tens of thousands of
compute nodes.

B. FLASH/IO Benchmark

The FLASH I/O benchmark suite is the I/O kernel
of a block-structured adaptive mesh hydrodynamics code
developed for the study of nuclear flashes on neutron stars
and white dwarfs [3]. We use the checkpoint variables
I/O, whose data pattern is an array of 24 variables that
consist of 3D blocks of data, to evaluate communication
kernels of two-phase I/O. We use a default block size of
83. Each 3D block has a fourth dimension of size one,
so the flatten offsets of any 3D block are contiguous. A
variable distributes its 3D blocks evenly to all processes.
Each process has a fixed number of 80 to 82 3D blocks, so
variable data sizes scale with the number of processes. As
a result, FLASH/IO is a weak-scaling benchmark.

Figure 6 illustrates an example of I/O access orders
of ROMIO two-phase I/O in multiple rounds on Lustre
file systems with stripe size 3. Data gathered by I/O
aggregators are illustrated in different colors. To simplify
the illustration, we assume I/O data at all processes have

24 checkpoint variables, each has contiguous offsets one after another
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Figure 6: The ROMIO Lustre collective write driver partitions
FLASH/IO data as the figure show. There are 24 checkpoint
variables, each with contiguous offsets represented in 3D blocks.
The colors represent the file domains of I/O aggregators. An
I/O aggregator receives metadata and data from ranks labeled
with its color. Metadata exchange is in one round, and data
exchange is in multiple rounds. Each round of data exchange
spans three rows of file domains (blue, brown, and green)
within a variable in this example. Both metadata and data
communication patterns are not all-to-many.

the same size. In this example, each checkpoint variable
spans two Lustre stripes, so there are two rounds of two-



phase I/O per variable. Both metadata and data communi-
cation have many-to-many patterns instead of all-to-many.
For instance, the aggregator with light-blue file domain
receives I/O requests from process ranks 0 and 3 only
during metadata exchange. It receives data from process
rank 0 or 3 exclusively per two-phase I/O round.

In general, the communication contention in FLASH
I/O is less significant than contentions in BTIO and E3SM
F cases. With 80 3D blocks of 83 double-precision floating-
point values, a process has 80 × 83 × 8B = 327680 bytes
of data. With our Lustre setting on Cori, an aggregator
receives data from at most d 1MiB

327680Be = 4 processes per
two-phase I/O round. On the other hand, I/O aggregators
on Summit receive data from d 16MiB

327680Be = 53 processes
per round. Furthermore, 1,260 processes send metadata
to an aggregator on average for the GPFS driver running
on 512 Summit nodes. The Lustre driver running on Cori
KNL nodes, on the other hand, has only MPI 21 receive
requests per I/O aggregator on average at the metadata
exchange stage. Therefore, data exchange on Summit has
a larger degree of contention compared with data exchange
on Cori.

Figures 5 (e) to (h) summarize the performance results
of writing FLASH I/O checkpoint in parallel. With the
pairwise blocking kernel, the communication time for all
experiments is slower compared with the rest of asyn-
chronous communication implementations. For Cori re-
sults in Figures 5 (e) and (f), we present their timing values
up to 250 seconds. However, the actual communication
time is more than 20 minutes. The pairwise algorithm,
implemented with MPI_SendRecv, constrains the order of
data received by different aggregators with the blocking
MPI functions. An aggregator may stay idle, waiting for
communication of a process to finish, even though the
aggregator does not receive any data from the process.
Thus, applying the pairwise algorithm, designed for an
all-to-all pattern, to a many-to-many communication pat-
tern can cause a significant straggler effect. On Cori,
algorithms with throttling techniques do not show an
advantage over the original version that posts all requests
in ascending rank order. With throttling comm_size 32,
each MPI_Waitall handles at most one send request at a
sender, so such an over-throttling becomes an overhead.
On GPFS, I/O aggregators receive data from a larger
number of senders, so data communication benefits from
throttling, as shown in Figures 5 (g) and (h).

C. BTIO Benchmark
BTIO, developed by NASA’s Advanced Supercomput-

ing Division, is part of the benchmark suite NPB-MPI
version 2.4 for evaluating the performance of parallel
I/O [12]. I/O requests in BTIO are partitioned in a block-
tridiagonal pattern over a three-dimensional square array.
Therefore, the BTIO benchmark must run with a square
number of MPI processes, which divide the cross-sections
of a global 3D array evenly. Thus, we increment the num-
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Figure 7: BTIO is a 3D array. The ROMIO Lustre collective
write driver partitions BTIO data with three permutations
(along the third dimension) represented by (a), (b), and (c).
The colors represent the file domains of I/O aggregators. An
I/O aggregator receives metadata and data from ranks labeled
with its color. Metadata exchange is in one round, and data
exchange is in multiple rounds. Each round of data exchange
spans a file domain (blue, brown, and green) of three rows of the
2D array. The metadata communication pattern is all-to-many,
but the data communication pattern is not.

ber of nodes on Summit to 168 and 672. Figure 7 illustrates
an example of the data partition pattern of BTIO with 9
processes and 3 aggregators. The three-dimensional array
is divided into 27 subarrays of size 3 × 3 × 3. All I/O
requests within a subarray are located on a single process.
We can view the BTIO data pattern as three planes of 3D
subarrays of size 3 × 3 × 3. There are √p permutations
of subarrays owned by processes on the planes. The first
permutation is a row-major ordering of subarrays. In our
example, Figure 7 (a) illustrates the first 2D subarray in
the 3D array with this permutation method. The next
permutation is by decreasing the subarrays row index
and increasing the column index, taking the modulus of√
p. For example, the next subarray plane is illustrated

by Figure 7 (b) transformed from the initial row-major
permutation. Figure 7 (c) shows the last subarray plane.
With multiple rounds of two-phase I/O implementation

in ROMIO on Lustre, an I/O aggregator handles only a
limited range of file domains per round. One round of two-
phase I/O handles a contiguous region of file domains,
evenly divided among I/O aggregators. In our example,
we use three colors to represent the file domains at three
I/O aggregators. I/O requests marked with the same color
are aggregated to the same aggregator. Two-phase I/O
in a 2D array of I/O requests completes in two rounds.
For example, the top three rows in Figure 7 (a) are
completed in the first two-phase I/O run. The bottom
three rows are completed in the second two-phase I/O
run. Consequently, for any two-phase I/O round, an I/O
aggregator gathers data from at most 3 processes, so the
data exchange pattern is many-to-many instead of all-to-
many. Metadata exchange has a single round. I/O aggrega-
tors gather offset/length pairs for noncontiguous requests
from all processes in our example, which exhibits an all-
to-many communication pattern. Therefore, the metadata
and data communication patterns can be different in the
BTIO benchmark.
Figures 5 (i) and (j) illustrate the breakdown perfor-



mance for running two-phase I/O on 64 and 256 Cori
KNL nodes. The evenly spread-out algorithm has the best
metadata exchange performance. However, the original
ROMIO MPI_Issend implementation yields the best data
exchange performance. As mentioned earlier, the data
exchange pattern of BTIO is not all-to-many, so the orig-
inal and balanced spread-out algorithms may underutilize
the communication channels because of the throttling
approach. The BTIO size has 1,024 40 MiB 2D data arrays
stacked side by side. Each of the 2D data arrays is evenly
divided among all processes in a different permutation
of square blocks. Hence an aggregator gathers 1 MiB
of data from approximately √p processes per two-phase
I/O round on the Lustre file systems. Thus, the size of
communication is much less than the all-to-many commu-
nication for metadata exchange. Similar to FLASH/IO,
throttling can have a negative effect since the number of
requests handled by MPI_Waitall is too small. To optimize
communication performance, we use the original ROMIO
communication kernel for data exchange and the evenly
spread-out algorithm for the metadata communication.
The results presented in the hybrid column are better
than the results of all other columns. Thus, the proposed
all-to-many algorithms are not universal for any type of
many-to-many communication in multiple rounds. When
the many-to-many communication size is small, the I/O
driver should fall back to the original two-phase I/O imple-
mentation without throttling to improve communication.

Figures 5 (k) and (l) illustrate the performance break-
down on Summit. Since the collective buffer size on GPFS
is 16 MiB by default, almost half of the data in a 2D
data array is collected by an aggregator. Thus, an I/O
aggregator gathers data from approximately 1

2p of the
processes. Although the communication pattern is not
all-to-many, the number of senders is large enough to
cause contention. Consequently, unlike the results on Cori,
the evenly spread-out algorithm has an advantage over
the traditional ROMIO Issend approach. The number of
I/O aggregators scales up with the number of nodes on
Summit, so there are fewer two-phase I/O rounds as the
number of processes increases. Therefore, data communi-
cation with the pairwise algorithm is faster on 672 nodes
than 168 nodes because straggler effects resulting from
multiple rounds of data communications on Summit are
smaller on a larger number of nodes. Our experiments
on Cori, on the other hand, have a fixed number of I/O
aggregators. Hence the pairwise algorithm slows down on
a large number of nodes because the straggler effects also
scale up with the increasing number of processes.

VI. Conclusion
Metadata and data communication become performance

bottlenecks of two-phase I/O when the communication
pattern is all-to-many in multiple rounds. In this paper,
we replaced the two-phase I/O communication kernels
In ROMIO that adapt to input I/O patterns, instead

of using different all-to-many personalized communication
algorithms. Experimental results demonstrated the neces-
sity of communication balancing and throttling for all-to-
many communication patterns. Moreover, we expect that
adjusting personalized all-to-many communication kernels
can further reduce communication contentions for existing
communication designs such as the two-layer aggregation,
especially when the number of compute nodes scales to
meet the demand of exascale computing in the future.
However, when an input I/O pattern does not exhibit an
all-to-many communication pattern, two-phase I/O should
fall back to the implementation without communication
throttling.
Several opportunities remain for future research. The

communication kernels are chosen by users with MPI hints
to adapt to their application I/O patterns. It is useful to
let the I/O drivers parse the I/O pattern and dynamically
select appropriate communication kernels. Furthermore,
the communication throttling approach can take advan-
tage of compute node topology information. Topology-
aware throttling can reduce communication contention at
network switches, which in turn further improves commu-
nication performance.

A. Acknowledgment
This research was supported in part by the Exascale

Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration and in part
by the DOE Office of Advanced Scientific Computing
Research.
This work is also supported in part by the DOE

award numbers DE-SC0014330 and DE-SC0019358. This
research used resources of the National Energy Research
Scientific Computing Center, a U.S. Department of Energy
Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231 and the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

References

[1] MPI Forum, MPI: A Message-Passing Interface Standard. Ver-
sion 3.1, June 4th 2015. www.mpi-forum.org.

[2] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann,
D. Daniel, P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vish-
wanath, Z. Lukic, S. Sehrish, and W. keng Liao, “Hacc: Simu-
lating sky surveys on state-of-the-art supercomputing architec-
tures,” New Astronomy, vol. 42, pp. 49–65, July 2015.

[3] R. Latham, C. Daley, W. keng Liao, K. Gao, R. Ross, A. Dubey,
and A. Choudhary, “A case study for scientific i/o: Improving
the flash astrophysics code,” Computer and Scientific Discovery,
vol. 5, March 2012.

[4] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R.
Hawkes, S. Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey,
N. Podhorszki, et al., “Terascale direct numerical simulations
of turbulent combustion using s3d,” Computational Science &
Discovery, vol. 2, no. 1, p. 015001, 2009.

www.mpi-forum.org


[5] P. M. Caldwell, A. Mametjanov, Q. Tang, L. P. Van Roekel, J.-
C. Golaz, W. Lin, D. C. Bader, N. D. Keen, Y. Feng, R. Jacob,
et al., “The doe e3sm coupled model version 1: Description and
results at high resolution,” Journal of Advances in Modeling
Earth Systems, 2019.

[6] K. Schuchardt, B. Palmer, J. Daily, T. Elsethagen, and
A. Koontz, “Io strategies and data services for petascale data
sets from a global cloud resolving model,” Journal of Physics:
Conference Series, no. 78, 2007.

[7] J. del Rosario, R. Bordawekar, and A. Choudhary, “Improved
parallel I/O via a two-phase run-time access strategy,” ACM
SIGARCH Computer Architecture News, vol. 21, pp. 31–38,
Dec. 1993.

[8] R. Thakur, R. Ross, E. Lusk, and W. Gropp, “Users guide for
romio: A high-performance, portable mpi-io implementation,”
Tech. Rep. 234, MCS dividion, Argonne National Lab., IL
(United States), May 2002.

[9] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. Lusk, “Non-
data- in mpi: analysis on blue gene/p,” in European Parallel Vir-
tual Machine/Message Passing Interface Users’ Group Meeting,
pp. 13–22, Springer, 2008.

[10] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and
performance analysis of non-blocking collective operations for
mpi,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, p. 52, ACM, 2007.

[11] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K.
Law, “Direct numerical simulations of turbulent lean premixed
combustion,” in Journal of Physics: conference series, vol. 46,
p. 38, IOP Publishing, 2006.

[12] P. Wong and R. Der Wijngaart, “Nas parallel benchmarks i/o
version 2.4,” NASA Ames Research Center, Moffet Field, CA,
Tech. Rep. NAS-03-002, 2003.

[13] Q. Kang, S. Lee, K. Hou, R. Ross, A. Agrawal, A. Choud-
hary, and W.-k. Liao, “Improving mpi collective i/o for high
volume non-contiguous requests with intra-node aggregation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 11, pp. 2682–2695, 2020.

[14] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduc-
tion to parallel computing: design and analysis of algorithms,
vol. 400. Benjamin/Cummings, 1994.

[15] “Mpich3.” http://www.mpich.org/downloads/, 2017.
[16] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,

J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S.
Woodall, “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proceedings, 11th Euro-
pean PVM/MPI Users’ Group Meeting, (Budapest, Hungary),
pp. 97–104, September 2004.

[17] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby,
“Efficient algorithms for all-to-all communications in multiport
message-passing systems,” IEEE Transactions on parallel and
distributed systems, vol. 8, no. 11, pp. 1143–1156, 1997.

[18] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of
collective communication operations in mpich,” The Interna-
tional Journal of High Performance Computing Applications,
vol. 19, no. 1, pp. 49–66, 2005.

[19] J. L. Träff and A. Rougier, “Mpi collectives and datatypes for
hierarchical all-to-all communication,” in Proceedings of the 21st
European MPI Users’ Group Meeting, pp. 27–32, 2014.

[20] C. Xu, M. G. Venkata, R. L. Graham, Y. Wang, Z. Liu, and
W. Yu, “Sloavx: Scalable logarithmic alltoallv algorithm for
hierarchical multicore systems,” in 2013 13th IEEE/ACM In-
ternational Symposium on Cluster, Cloud, and Grid Computing,
pp. 369–376, IEEE, 2013.

[21] “Mvapich: Mpi over infiniband, 10gige/warp and roce.” http://
mvapich.cse.ohio-state.edu. Accessed: 2020.

[22] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “Mpi+
threads: Runtime contention and remedies,” ACM SIGPLAN
Notices, vol. 50, no. 8, pp. 239–248, 2015.

[23] M. Si and P. Balaji, “Process-based asynchronous progress
model for mpi point-to-point communication,” in 2017 IEEE
19th International Conference on High Performance Comput-
ing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data

Science and Systems (HPCC/SmartCity/DSS), pp. 206–214,
IEEE, 2017.

[24] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E.
Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman,
et al., “The deep computing messaging framework: generalized
scalable message passing on the blue gene/p supercomputer,”
in Proceedings of the 22nd annual international conference on
Supercomputing, pp. 94–103, 2008.

[25] S. Kumar, Y. Sun, and L. V. Kale, “Acceleration of an asyn-
chronous message driven programming paradigm on ibm blue
gene/q,” in 2013 IEEE 27th International Symposium on Par-
allel and Distributed Processing, pp. 689–699, IEEE, 2013.

[26] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Lever-
aging the cray linux environment core specialization feature
to realize mpi asynchronous progress on cray xe systems,” in
Proceedings of the Cray User Group Conference, 2012.

[27] J. Edwards, J. Dennis, M. Vertenstein, and E. Hartnett,
“Parallel io libraries (pio) - high-level parallel i/o libraries
for structured grid applications.” https://github.com/NCAR/
ParallelIO. Accessed: 2019-05-23.

[28] “Pnetcdf.” www.mcs.anl.gov/parallel-netcdf/, 2019.
[29] “Parallel i/o kernel case study – e3sm.” https://github.com/

Parallel-NetCDF/E3SM-IO. Accessed: 2019-03-06.

 http://www.mpich.org/downloads/
http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu
https://github.com/NCAR/ParallelIO
https://github.com/NCAR/ParallelIO
www.mcs.anl.gov/parallel-netcdf/
https://github.com/Parallel-NetCDF/E3SM-IO
https://github.com/Parallel-NetCDF/E3SM-IO


Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We run FLASH/IO, BTIO, and E3SM-IO on NERSC’s Cori KNL nodes
with default Cray MPICH and our customized MPICH implemen-
tation (for evaluating proposed algorithms). We also run the same
set of benchmarks on OLCF Summit nodes. The modified ROMIO
libraries have ad_lustre and ad_gpfs drivers that can be built on
Cori and Summit. Benchmarks can be built by linking to these li-
braries. We have listed all Github URLs in the Artifacts Available
(AA) section. For experiments, we use 64/256 KNL nodes on Cori
and 128/512 IBM power9 nodes on Summit to run these benchmarks.
On Cori, we used Lustre file system with stripe size 1MB and count
64. On Summit, we used GPFS file system (GPFS setting does not
require us to set anything) We describe the details of benchmarks
in the following.

FLASH/IO: part of PnetCDF version 1.12.1. We used a block size
8*8*8 for all experiments. Available on https://github.com/Parallel-
NetCDF/PnetCDF/tree/master/benchmarks/FLASH-IO.

BTIO: part of NPB-MPI version 2.4. Execution mode is PnetCDF
nonblocking I/O. XYZ grid is 1024*1024*1024 for all experiments.
Available on https://github.com/Parallel-NetCDF/BTIO with (git
master branch commit hash @d45c270)

E3SM-IO: version v.1.1.0 available on https://github.com/Parallel-
NetCDF/E3SM-IO (git master commit hash @ed682a3). We use
decomposition file f_case_72x777602_21632p.nc to carry out the
experiments in our paper. This file picks up all NetCDF parameters.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: DOI: 10.5281/zenodo.3932426, GitHub
URL: https://github.com/QiaoK/mpich/tree/ad\_lus ⌋

tre\_alltoall
↪→

↪→

Artifact name: Source code for all types of
communication algorithms in this paper (modified
ROMIO in MPICH)

↪→

↪→

Citation of artifact: Pavan Balaji, Dave Goodell, Ken
Raffenetti, William Gropp, Wesley Bland, Hui
Zhou, . . . Shintaro Iwasaki. (2020, July 7).
QiaoK/mpich alltoall1.0 (Version alltoall 1.0).
Zenodo. http://doi.org/10.5281/zenodo.3932426

↪→

↪→

↪→

↪→

Persistent ID: DOI: 10.5281/zenodo.3932435, GitHub
URL: https://github.com/QiaoK/mpich/tree/ad\_lus ⌋

tre\_tam2
↪→

↪→

Artifact name: Source code for TAM (modified ROMIO in

MPICH)↪→

Citation of artifact: Pavan Balaji, Dave Goodell, Ken
Raffenetti, William Gropp, Wesley Bland, Hui
Zhou, . . . Shintaro Iwasaki. (2020, July 7).
QiaoK/mpich: Two layer aggregation method
(Version tam1.0). Zenodo.
http://doi.org/10.5281/zenodo.3932435

↪→

↪→

↪→

↪→

↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: NERSC Cori and OLCF Summit super
computers

Operating systems and versions: Cray XC40 system and Red Hat
Enterprise Linux

Compilers and versions: module craype-mic-knl on Cori and de-
fault IBM Spectrum on Summit

Applications and versions: FLASH/IO, BTIO, E3SM-IO, S3D-IO

Libraries and versions: MPICH 3.3

Key algorithms: two-phase I/O
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