
Improving MPI Collective I/O for High
Volume Non-Contiguous Requests With

Intra-Node Aggregation
Qiao Kang , Sunwoo Lee , Kaiyuan Hou, Robert Ross, Ankit Agrawal,

Alok Choudhary, Fellow, IEEE, and Wei-keng Liao

Abstract—Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the

calling processes into a form that minimizes the file access costs. Asmodern parallel computers continue to grow into the exascale era,

the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed

from parallel jobs that run onmultiple compute nodeswith a high count of MPI processes on each node. To reduce the communication

cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among

processeswithin the same compute nodes. This approach can significantly reduce inter-node communication contention when

redistributing the I/O requests.We evaluate the performance and compare it with the original two-phase I/O onCray XC40 parallel

computers (Theta and Cori) with Intel KNL andHaswell processors. Using I/O patterns from two large-scale production applications and

an I/O benchmark, we show our proposedmethod effectively reduces the communication cost and hencemaintains the scalability for a

large number of processes.

Index Terms—Parallel I/O, MPI collective I/O, two-phase I/O, non-contiguous I/O

Ç

1 INTRODUCTION

THE message passing interface (MPI) standard defines a
set of programming interfaces for parallel shared-file

access, commonly denoted as MPI-IO [1]. Many large-scale
scientific applications adopt MPI-IO directly or indirectly
through parallel I/O libraries to obtain high I/O perfor-
mance [2], [3], [4], [5], [6]. There are two types of MPI-IO
functions: collective and independent. The collective func-
tions require all processes that collectively open the same
shared file to participate in the calls. Such a requirement
provides an opportunity for an MPI-IO implementation to
coordinate activities between processes to achieve better
performance. A well-known example is the two-phase I/O
strategy [7], which has become the implementation back-
bone for collective I/O in almost all MPI libraries.

Two-phase I/O conceptually consists of a communica-
tion phase and an I/O phase. A subset of the MPI pro-
cesses, defined as I/O aggregators, act as I/O proxies for
the rest of the processes. The aggregate access file region
of a collective I/O call is divided among the aggregators

into nonoverlapping regions, called file domains. In the com-
munication phase, all processes send their I/O requests to the
aggregators based on their file domain assignments. In the
I/O phase, aggregators make system calls to read from or
write the received requests to the file. The two-phase I/O
strategy has delivered high performance on parallelmachines
in the past two decades. The success of a two-phase I/O strat-
egy relies on a fast communication network by paying a rela-
tively small cost on exchanging request data among processes
to obtain a higher gain in file system access time. This trade-
off works effectively as the speed of I/O systems is much
slower than the communication systems. However, as the
scale of parallel computers grows, soon into an exascale com-
puting era, the number of processes running applications also
increases. The communication of the two-phase I/O exhibits
an all-to-many message exchange pattern, whose cost may
exceed the I/O phase for large parallel jobs when the number
of non-contiguous I/O requests is significant, due to the high
possible communication congestion on the I/O aggrega-
tors [8], [9].

In this paper, we present an improvement for MPI collec-
tive I/O, denoted as the two-layer aggregation method
(TAM), which adds an intra-node request aggregation layer
so that the communication in the two-phase strategy consists
of two layers of request aggregations. In the intra-node aggre-
gation layer, MPI processes running on the same compute
nodes perform a request aggregation to a subset of processes,
denoted as local aggregators. In contrast to local aggregators,
we denote the I/O aggregators in the original two-phase I/O
as the global aggregators. As communication takes place
among processes on the same node, the cost is expected to be
relatively small. This intra-node aggregation performs on all

� Q. Kang, S. Lee, K. Hou, A. Agrawal, A. Choudhary, andW.-k. Liao are with
the Department of Electrical and Computer Engineering, Northwestern
Univeristy, Evanston, IL 60208. E-mail: {qiao.kang, slz839, khl7265,
ankitag, choudhar, wkliao}@ece.northwestern.edu.

� R. Ross is with the Mathematics and Computer Science Division, Argonne
National Laboratory, Lemont, IL 60439.
E-mail: rross@mcs.anl.gov.

Manuscript received 31 Dec. 2019; revised 17 May 2020; accepted 2 June 2020.
Date of publication 5 June 2020; date of current version 19 June 2020.
(Corresponding author: Qiao Kang.)
Recommended for acceptance by R. Tolosana.
Digital Object Identifier no. 10.1109/TPDS.2020.3000458

2682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8552-6551
https://orcid.org/0000-0001-8552-6551
https://orcid.org/0000-0001-8552-6551
https://orcid.org/0000-0001-8552-6551
https://orcid.org/0000-0001-8552-6551
https://orcid.org/0000-0001-6334-3068
https://orcid.org/0000-0001-6334-3068
https://orcid.org/0000-0001-6334-3068
https://orcid.org/0000-0001-6334-3068
https://orcid.org/0000-0001-6334-3068
mailto:qiao.kang@ece.northwestern.edu
mailto:slz839@ece.northwestern.edu
mailto:khl7265@ece.northwestern.edu
mailto:ankitag@ece.northwestern.edu
mailto:choudhar@ece.northwestern.edu
mailto:wkliao@ece.northwestern.edu
mailto:rross@mcs.anl.gov

compute nodes independently and concurrently. Once
receiving the requests from local processes, the local aggrega-
tors coalesce them into fewer contiguous requests. After coa-
lescing non-contiguous I/O requests, the local and global
aggregators across compute nodes enter the traditional two-
phase I/O to complete collective read or write operations. In
this paper, we refer to the communication between local and
global aggregators as the inter-node aggregation. An advan-
tage of TAM is the reduction of the number of inter-node
communications at global aggregators since the number of
local aggregators is much less than the number of processes.
In the traditional two-phase I/O, each global aggregator may
receive requests from all other MPI processes, potentially
causing communication contention at the global aggregators
for large-scale applications with a significant number of non-
contiguous I/O requests. The intra-node aggregation allevi-
ates such a problem by breaking the all-to-many communica-
tion into two layers so that the global aggregators receive
requests only from the local aggregators.

We implement TAM in ROMIO, the implementation of
the MPI-IO functions used most frequently in HPC and pro-
vided by vendors as part of their MPI implementation [10].
Our performance evaluations are conducted on Theta, Cray
XC40 parallel computer with Intel KNL processors at the
Argonne National Laboratory, and Cori, a Cray XC40 super-
computer with Intel Haswell processors at the National
Energy Research Scientific Computing Center (NERSC).
Comparisons of TAM against the traditional two-phase I/O
from the latest implementation of ROMIO are presented
using three I/O benchmarks: E3SM-IO [5], S3D-IO [11], and
BTIO [12]. E3SM-IO and S3D-IO are I/O kernels of two
large-scale production applications E3SM and S3D, respec-
tively, while BTIO is a benchmark from NASA’s NAS Paral-
lel Benchmarks. These benchmarks contain a vast number
of non-contiguous I/O requests that result in inter-node
communication congestion for two-phase I/O as the num-
ber of nodes scale. From the experimental results, we
observe a significant time reduction in communication
costs. The intra-node communication cost, which is the extra
cost introduced by TAM, vanishes as the number of pro-
cesses increase, which matches our expectation. We analyze
how the choice of the number of TAM local aggregators
affects the performance from the inter-node communication
network utilization and congestion point of view. The over-
all performance improvements are up to 29 and 6.7 times
faster for collective write and read.

In Section 2, we discuss the two-phase I/O bottlenecks
and existing solutions. In Section 3, we propose our TAM
improvement for two-phase I/O in detail. Finally, we evalu-
ate the TAM in Section 4.

2 BACKGROUND

The implementation of two-phase I/O [13] in ROMIO selects
a subset of MPI processes, denoted as I/O aggregators, as
proxies to carry out the file access operations for the remain-
ing processes. The aggregate access file region of a collective
I/O call is divided among the aggregators into nonoverlap-
ping regions, called file domains. Each aggregator is respon-
sible for reading and writing for its file domain assigned to
the file.When rearranging the requests from non-aggregators

to aggregators, also known as the communication phase,
aggregators gather I/O requests that intersect its file domain.
In the I/O phase, aggregators coalesce the received requests
and read/write data from/to the file system.

Many MPI libraries such as MPICH [14] and Open-
MPI [15] adopt ROMIO as the implementation for MPI-IO
functions. For parallel jobs running multiple MPI processes
per compute nodes, ROMIO selects one aggregator per
node in its default settings. The selection of I/O aggregators
happens at file open time.

Due to the fact of I/O devices being the slowest hard-
ware component of a parallel computer system, the I/O
phase is often the bottleneck of collective I/O. Many strate-
gies have been proposed in the past decades to reduce its
cost. Ma improved MPI-IO output performance with active
buffering and threads [16]. A strategy that aligns the file
domains with the file locking protocol is presented in [17],
[18]. Chaarawi and Gabriel proposed an algorithm that
selects the number of aggregators automatically based on
the file view and process topology [19]. LACIO is developed
as a strategy to exploit the logical I/O access pattern among
processes and physical layouts of file access to optimize I/O
performance [20]. Two phases I/O pipelining that overlaps
the communication with file access is proposed in [21], [22].
With the emerging of the solid-state driver (SSD), the cost of
file access can be further reduced [23]. Burst buffering is
proposed to take advantage of faster SSD devices to
improve parallel I/O performance [24], [25]. Although SSD
cannot always replace traditional hard disks, hybrid usage
of both disks by placing requests with high I/O cost to a
small number of SSDs can achieve reasonably good I/O per-
formance [26], [27], [28].

Research has been conducted recently to reduce the tim-
ing cost of the communication phase. Tsujita et al. proposed
a method for overlapping the I/O phase with the communi-
cation phase with the help of multi-threading [29]. Cha and
Maeng applied a node reordering approach for reducing
communication costs with non-exclusive scheduling [30].
MPICH-G2 presents a multi-level topology-aware strategy
for MPI collective communication that can improve commu-
nication by considering reducing both intra-node and inter-
node traffic [31]. TAPIOCA proposes a topology-aware two-
phase I/O algorithm that takes advantage of double-buffer-
ing and one-sided communication to reduce the process idle
time during data aggregation [32], [33]. HierKNEM, a ker-
nel-assisted topology-aware collective framework, improves
communication performance onmulti-core systems by using
multiple layers of collective algorithms [34]. Chakraborty
et al. further improves the kernel-assisted collective techni-
ques by reducing communication contention [35]. Optimiza-
tions that consider the communication topology have
demonstrated their potentials for enhancing the two-phase
I/O performance.

The request rearrangement in the two-phase I/O exhibits
an all-to-many communication pattern, where for collective
write operations, all the MPI processes send their requests
to the I/O aggregators. Our recent study for the I/O perfor-
mance of E3SM [5] model has shown that the communica-
tion phase dominates the overall performance for writing
cubed sphere variables whose I/O pattern consists of a long
list of small and non-contiguous requests on every MPI

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2683

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

process. This communication pattern can cause network
contention as the number of processes scales.

3 DESIGN OF TWO-LAYER AGGREGATION METHOD

Our proposed new method consists of three steps for a col-
lective I/O operation: intra-node aggregation, inter-node
aggregation, and I/O phase. Focusing on communication
among processes running on the same node, the intra-node
aggregation gathers all requests into a subset of processes,
denoted as local aggregators. During this step, there is no
communication taking place across compute nodes. Once
the requests are received, the local aggregators coalesce the
requests into a potentially smaller number but larger contig-
uous requests. During the inter-node aggregation step, local
aggregators send the coalesced requests to the global aggre-
gators based on the assigned file domains. The I/O phase
remains the same as the original two-phase I/O: The global
aggregators fulfill the gathered I/O requests with the file
system. Thus, the proposed techniques are independent of
underlying file systems.

Both collective read and write distribute metadata of I/O
requests from all processes to local aggregators, followed by
local aggregators to global aggregators, and global aggrega-
tors to file systems. Data in collective write has the same
flow as its metadata of I/O requests. Data in collective read,
on the other, flows from file systems to global aggregators,
followed by global aggregators to local aggregators, and
local aggregators to all processes. Consequently, the data
communication pattern of collective read is the reverse of
the collective write data exchange pattern.

Let p be the number of processes that participate in collec-
tive I/O operations with process rank IDs ranging from 0 to
p� 1. For processes that are placed on the same node, we
also use local rank IDs, the ascending order of process rank
IDs on this node, to refer to them. For instance, a compute
node with three process rank IDs f2; 5; 7g placed on it has
local rank IDs f0; 1; 2g. Let k be the average number of I/O
requests per process. Let L be a set of local I/O aggregators,
and pl be the number of local aggregators in total. Let G be
the global aggregators selected in the original two-phase
I/O, and pg denote the number of global aggregators. We
keep the number of global aggregators the same as the origi-
nal two-phase I/O because the selection of global aggrega-
tors has been optimized for the I/O stage. However, our
approach does not limit the choice of global aggregators. For
the rest of this paper, we refer to the term communication

contention as the additional communication cost when there
are a large number of concurrent receive operations at global
aggregators. The defined terms are summarized in Table 1.

3.1 Intra-Node Aggregation

The intra-node aggregation selects one ormore localMPI pro-
cesses as local aggregators. Each local process sends its
requests to one of the local aggregators on the same node.We
partition local processes evenly into pl groups, so each local
aggregator receives from approximately the same number of
non-aggregators. A local aggregator gathers non-contiguous
I/O requests for processes with rank IDs higher than its rank
and smaller than the next local aggregator’s rank. Since each
non-aggregator sends its request to only one local aggregator,
the communication exhibits amany-to-one pattern.

Our design selects local aggregators based on a spread-
out principle. The selection of local aggregators depends
only on local rank IDs within a node, so the real rank IDs do
not have to be contiguous within a node. Formally, let q be
the number of MPI processes running on a compute node, c
be the number of local aggregators on the node, and
e ¼ ðqmod cÞ. We select processes with local rank IDs dqce � i
for i ¼ 0; 1; . . . ; e� 1 and dqceeþ bqcc i� eð Þ for i ¼ e; . . . ; c� 1
as local aggregators.

Sometimes a process rank can serve as both local and
global aggregators. Fig. 1 uses two examples to illustrate the
selection policy for local and global aggregators: one (Fig. 1a)
is when the number of compute nodes is equal to the global
aggregators, and the other one (Fig. 1b) is when there are
more compute nodes than the global aggregators. For both
cases, c ¼ 3 out of q ¼ 8MPI processes on each node are local
aggregators, so e ¼ 8mod 3ð Þ ¼ 2. Hence local rank IDs
f0; 3; 6g for every node are local aggregators. In the former
case, there are three global aggregators. The local aggregator
with the lowest rank ID per node also serves as a global
aggregator. In the latter case, only three out of six nodes con-
tain global aggregators, i.e., on nodes 0, 2, and 4, so rank IDs
0, 16, and 24 are both local and global aggregators.

We implement TAM in ROMIO. The current implemen-
tation of ROMIO stores the hostnames of all processes at
open time, so local rank IDs that allow us to compute the
rank IDs of local aggregators, are available without extra

TABLE 1
This Table Summarizes the Terms Used in This Article

Term Description

p number of processes in collective I/O
q number of processes per node in collective I/O
c number of local aggregators per node
k average number of I/O requests per process
L set of local aggregators
G set of global aggregators
pl number of local aggregators
pg number of global aggregators
v I/O amount in bytes

Fig. 1. (a) The placement of 12 local and three global aggregators on
three compute nodes while 8 MPI processes are running on each node.
This configuration illustrates the case when the number of nodes equals
the number of global aggregators. (b) The placement of 16 local and two
global aggregators on six nodes in the case the number of nodes is
more than the global aggregators. Blue circles represent global aggrega-
tors. Green circles represent local aggregators. A global aggregator can
also serve as a local aggregator. The placement policy for local and
global aggregators is to spread them out evenly among the available
resource to prevent possible communication contention.

2684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

communication cost. The input of MPI collective I/O has an
MPI Datatype that defines the file access regions from the
file view of the process. At the start of collective I/O, the
MPI Datatype is flattened into offset-length pairs that define
the non-contiguous regions of file access. For collective
write, every process first sends the number of its flattened
non-contiguous I/O requests and the size of its write data
to its corresponding local aggregator, followed by sending
the write data. For collective read, processes send their non-
contiguous I/O requests to local aggregators in the same
way as the collective write. Data exchange from local aggre-
gators to all processes, on the other hand, happens when
the local aggregators have received the read data from
global aggregators.

The proposed local aggregator selection policy takes advan-
tage of the possibility that non-contiguous I/O requests from
processes of adjacent ranks are likely contiguous,which allows
coalescing by the same local aggregator. Furthermore, the
input non-contiguous I/O requests to collective I/O are in
monotonously non-decreasing order according to the MPI
standard, so ROMIO implements two-phase I/O using this
fact. If TAM is implemented on the top of existing ROMIO
two-phase I/O, the local aggregators must sort all its requests
before entering the inter-node and I/O phases of two-phase I/
O because local aggregators are the providers of non-contigu-
ous I/O requests from two-phase I/O perspective. Once local
aggregators have gathered all non-contiguous I/O requests,
they sort non-contiguous I/O requests into a monotonously
non-decreasing order based on the file offsets. The offset-
length pairs received from a non-aggregator are already sorted
in monotonically non-decreasing order themselves, due to the
requirement by the MPI-IO standard [1]. We apply the heap
merge sort algorithm to merge and sort all non-contiguous I/
O requests gathered at each local aggregator. Its time complex-

ity is Oðp�kpl log ð
p
pl
ÞÞ. After sorting all non-contiguous I/O

requests, the aggregators coalesce any two consecutive
requests that are contiguous.

ROMIO implements the two-phase I/O communication ker-
nel with point-to-point MPI asynchronous functions MPI_I-

send and MPI_Irecv followed by MPI_Waitall, so we
adopt the same communication functions for the intra-node
and inter-node communications for TAM tomake a direct com-
parison with the current ROMIO implementation in the experi-
mental result section. Point-to-point communication functions
can avoid the necessity for constructing new sub-communica-
tors by reusing the input communicator. However, collective
communication functions, such as MPI_Alltoallw, may
improve communication performance.

The aggregated data size at local aggregators can exceed
the memory limit when the input file size is large. To
resolve this problem, we combine the intra-node aggrega-
tion phase with the original two-phase I/O that finishes in
multiple rounds. However, this implementation strategy
sacrifices the advantage of intra-node I/O requests coalesc-
ing, resulting in a larger metadata size exchanged in the
inter-node aggregation phase later.

3.2 Inter-Node Aggregation

Inter-node aggregation is essentially the communication
phase of the original two-phase I/O, but with participation

from only the local aggregators as the I/O requesters. In the
traditional two-phase I/O, the communication is an all-to-
many, between all p processes and pg global aggregators.
Figs. 2a and 2b illustrate the communication complexity of
two-phase I/O and TAM, respectively. It is clear to observe
the reduction of communication contention on the global
aggregators when TAM is used. The two-phase I/O can be
considered a special case of TAM when pl is equal to p. In
this case, the intra-node aggregation is skipped.

If the number of global aggregators is higher than the
number of compute nodes, there will be more than one
global aggregator placed on the same compute node. If the
number of global aggregators is less than the number of com-
pute nodes, then a subset of compute nodes is selected, and
one process on each of the selected compute nodes becomes
a global aggregator. In this case, some compute nodes do not
contain global aggregators. Our scheme spreads out global
aggregators across all ranks on a node because the method
may utilize hardware resources better when multiple CPUs
are on the same node. For example, eachHaswell node of the
supercomputer Cori has two CPUs with a total of 32 cores.
Processes with ranks from 0 to 15 are on the cores from the
first CPU, and processes with ranks from 16 to 31 are placed
on the cores from the second CPU by default. Spreading out
aggregators on the same node maximizes the utilization of
both CPUs on the same node. However, TAM can adapt to
any existing approach for global aggregator placements. For
example, Cray’s MPI-IO evenly distributes global aggrega-
tors across all nodes. Within a node, it assigns the lowest
ranks as global aggregators by default.

At the end of intra-node aggregation, every local aggre-
gator has p�k

pl
number of sorted offset-length pairs on average.

Fig. 2. Illustrations of communication pattern in a collective write opera-
tion for two-phase I/O in (a) and TAM in (b). Each square box represents
a compute node, and circles are MPI processes. The six green circles
are local aggregators, and the three blue ones are global aggregators.
Inter-node and intra-node communications are blue and green arrows,
respectively. A one-to-one mapping connects the global aggregators and
the file servers. In (a), there is no local aggregation phase. The all-to-
many (24-to-3) communication pattern shows a potential contention at
the global aggregators. In (b), the communication clearly shows a
reduced contention (6-to-3) at the global aggregators with the help of
local aggregation phase.

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2685

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

Every local aggregator computes lists of its non-contiguous
I/O requests to different global aggregators based on the file
domains assigned to them. For collective write, local aggre-
gators send their non-contiguous I/O requests to global
aggregators, which presents a many-to-many inter-node
communication. For applications with a high volume of non-
contiguous access requests, it is frequent that a global aggre-
gator has non-contiguous I/O requests from all processes
evenly. Thus, a global aggregator receives p�k

pl�pg number of

requests from every local aggregator. For collective read, the
inter-node data communication pattern is reversed, but
the metadata and data contents per communication remain
the same. Local aggregators receive data from global aggre-
gators in this stage. Therefore, the inter-node data communi-
cation pattern is pg to pl for collective read, instead of pl to pg
in the case of collectivewrite. Since pg is not necessarily equal
to pl, this asymmetry of communication patterns can cause a
difference in collective read andwrite performance.

For two-phase I/O, each global aggregator receives p�k
pg

number of requests on average from every process during
the inter-node aggregation. Sorting requests received from
local aggregators with heap merge sort algorithm can
improve performance since file requests can coalesce. This
approach can significantly reduce the I/O cost by avoiding
exchanging a large number of non-contiguous I/O requests
with file servers. However, sorting is not necessary if the
implementation chooses to apply data sieving, which is
enabled by default for collective read in ROMIO. If data
sieving is disabled, sorting a pl number of sorted arrays of
requests for the traditional two-phase I/O is Oðp�kpg log pÞ.
TAM has offset sorting operations at both intra-node aggre-
gation and inter-node aggregation. The total offset sorting
complexity of intra-node and inter-node aggregation phases

for TAM is O p�k
pl
log p

pl

� �
þ p�k

pg
log plð Þ

� �
. When pl � pg, TAM

has a smaller time complexity of sorting than two-phase I/
O for collective write. This assumption is valid for file sys-
tems that choose pg values based on available file servers
that are much less than the number of compute nodes.

3.3 I/O Phase

In our design, the I/O phase remains the same as the origi-
nal two-phase I/O implemented in ROMIO. Only global
aggregators enter this phase. In addition, two-phase I/O
and TAM have the same input and output at the I/O phase.

After inter-node aggregation, a global aggregator has
gathered non-contiguous I/O requestswithin its file domain.
When data sieving is enabled, a large chunk of data, with
start and end offsets defined by theminimum andmaximum
byte of the I/O requests gathered at a global aggregator, is
read from the file system. For collective read, data buffers for
I/O requests are filled using memory copy from this large
chunk of data. For collective write, a global aggregator
updates the data sieving chunk according to the I/O
requests. Later, the data sieving chunk is written back to file
servers as a contiguous chunk. If data sieving is not enabled,
the read and write for non-contiguous requests from file
servers are independent I/O.

Although different file systems store files differently, the
improvement of TAM over two-phase I/O is not limited to
a specific file system. As long as all global aggregators have

to receive high volumes of non-contiguous I/O requests
from a large number of processes, TAM can improve the
performance since the inter-node communication cost can
be reduced with the help of intra-node aggregation.

4 EXPERIMENTAL RESULTS

We conduct our experiments on Theta, a Cray XC40 parallel
computer system with Intel KNL processors at Argonne
National Laboratory and Cori, a Cray XC40 supercomputer
with Intel Haswell processors at the National Energy
Research Scientific Computing Center (NERSC). Each KNL
node contains one CPU with 64 CPU cores. Each Haswell
node contains two CPUs with a lower count of 16 CPU cores
on each CPU. Moreover, the bisection bandwidths of the
interconnect network of these two supercomputers are dif-
ferent. Running benchmarks on both systems enable us to
study whether TAM adapts to different hardware systems
and whether the communication contention of two-phase
I/O can occur on different hardware architectures. We set
the Lustre stripe size to 1 MiB and stripe count to 56, the
total number of available OSTs on Theta. All performance
results are presented in a strong-scaling evaluation. For
every parameter setting, we average timings from five inde-
pendent executions. Using four I/O benchmarks, E3SM-IO
(G and F cases), BTIO, and S3D-IO, we present a perfor-
mance comparison between TAM and the two-phase I/O
implementation in ROMIO.

The ROMIO library from the MPICH release version of
3.3 implements collective read and write differently for Lus-
tre file systems. By default, the implementation of Lustre
collective write driver differs from the implementation of
collective read driver in ROMIO in terms of the file domain
partitioning and collective buffer size. Collective read
adopts a static-cyclic file domain partitioning strategy. Each
global aggregator has a contiguous file domain that aligns
with lock boundaries. File domains of global aggregators
for collective write on Lustre file systems, on the other
hand, are group-cyclic. With our Lustre setting, each global
aggregator owns x

56MiB number of file domain chunks of size
1MiB for writing a file of size x. Two-phase I/O finishes
read and write in multiple rounds. pg is equal to Lustre
stripe size (56) by default for collective write to avoid lock
contention. The maximum size of any file domain handled
by ROMIO Lustre collective write driver per round is a con-
tiguous Lustre stripe, which is 56MiB in our Lustre setting.
For collective read, pg is equal to the number of compute
nodes, and the maximum data size handled per round by
each global aggregator is a contiguous chunk of 16MiB by
default for all file systems. Thus, the collective read driver
reads at most pg contiguous 16MiB file domains per cycle.
The difference in the implementations for collective read
and write creates a chance for us to evaluate the impact of
pg and collective buffer size on performance for TAM.

We customize the default ROMIO library into a version
that performs at least as well as the Cray MPICH library.
This customized version is used as the baseline of our evalu-
ations. TAM is implemented on top of this customized ver-
sion ROMIO. First, we modify the default MPICH ROMIO
to have the same global aggregator placement as Cray MPI
for collective write. Using the environmental variable

2686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

“MPICH_MPIIO_HINTS_DISPLAY,” we observe that Cray
MPI selects global aggregators from different compute nodes
in a round-robin fashion on Lustre file systems. For example,
to select four aggregators from 2 nodes, each running 64MPI
processes with contiguous ranks, Cray MPI picks processes
with rank IDs in the order of f0; 64; 1; 65g. Cray MPI library
is not open-source, sowe use experiments to analyze its algo-
rithms for collective read and write. According to our analy-
sis on Cray MPI library (compiler craype/2.6.1 and toolkit
cray-mpich/7.7.10) with Darshan DXT utility to dump file
offsets and lengths information for all MPI processes, Cray
MPI library selects the Lustre stripe size of global aggrega-
tors by default for collective read and write with the file
domain partitioning and collective buffer size identical to
the ROMIO collective write implementation. Such imple-
mentation of collective read has sub-optimal performance
compared with the ROMIO collective read implementation
given a large number of processes and nodes because collec-
tive read does not suffer from performance degradation of
Lustre lock contention [18]. Therefore, we adopt the current
ROMIO collective read implementation strategy to carry out
the evaluations of two-phase I/O and TAM for collective
read evaluation.

We replace all MPI_Isendwith MPI_Issend during the
aggregation. This change is critical for a large number of col-
lective I/O requests, where the two-phase I/O must be car-
ried out in multiple rounds. Posting asynchronous send
requests using MPI_Isend may be cached by the operating
system if the message size is small. In this case, at the end of
each round of two-phase, even though a call to MPI_Wai-

tall is made, processes may continue into the next rounds
and post more asynchronous send requests. Therefore, the
send requests accumulate in the message queue. A high
number of pending asynchronous send requests could seri-
ously hurt the communication performance, due to the pos-
sible overwhelming in the message queue processing.
Replacing MPI_Isend with MPI_Issend prevents non-
aggregators from continuing into the next round of two-
phase I/O, as MPI_Issend requires all pending send
requests to be received before MPI_Waitall returns.

4.1 E3SM-IO Case Study

E3SM [5] is an exascale earth system modeling program for
simulating atmosphere, land, and ocean behavior in high
resolution. It is an I/O module developed to use PIO
library [36], which is built on top of PnetCDF [37]. Writing
data at each checkpoint is through posting nonblocking
PnetCDF APIs that allow small requests to be aggregated
and flushed together. PnetCDF library is a high-level paral-
lel I/O library popular in the climate research community,
which is built on top of MPI-IO. Flushing pending non-
blocking requests are implemented by aggregating the
request data and combining the MPI file views before mak-
ing a single call to the MPI collective write function. In our
experiments, the cost of posting the nonblocking APIs is
negligible, and thus, we measure the timing of collective
write calls inside the PnetCDF flush API.

We evaluate two data decompositions used in E3SM pro-
duction runs, namely F and G cases [5]. The I/O kernel of
E3SM has been extracted for I/O study [38]. F case has
atmosphere, land, and runoff models components. The data

access pattern in the F case consists of 1.36 billion non-con-
tiguous write requests and a total write amount of 14 GiB.
The G case has active ocean and sea-ice components. G case
decomposition file has an MPAS grid data structure that
consists of pentagons and hexagons on top of a spherical
surface. The I/O pattern of G case contains a shorter list of
non-contiguous requests, 180 million in total, and a data
size of 85 GiB. The data request file offsets and lengths of
individual processes from the production runs are
recorded. In both F and G cases, the numbers of non-contig-
uous requests are different among processes, but the differ-
ence is small. To present the performance in a strong-
scaling, we assign requests of all processes from the produc-
tion run evenly among the processes used in our experi-
ments. The assignment is based on the units of processes. In
other words, the entire offset-length pairs from a process in
the production run is assigned to a process. The non-contig-
uous I/O requests in E3SM-IO do not have a subarray pat-
tern. Adjacent file offsets do not have a regular interval.
Thus, the file access patterns of E3SM-IO differ from BTIO
and S3D-IO.

Fig. 3 shows I/O bandwidth comparisons of TAM and
two-phase I/O in the strong-scaling evaluation from 256 to
16 K processes on KNL and Haswell nodes. We do not pres-
ent results beyond 16 K processes since the two-phase I/O
performance results show performance slow down towards
16 K processes already. Similar performance degradation is
expected as the number of processes scales further. We set
512 local aggregators for experiments on both KNL and
Haswell nodes. This setting of pl for TAM is not necessarily
the optimal value for all datasets. Nevertheless, we prove
the point that TAM improves the performance of collective
I/O without tuning parameters harshly. In general, the
results on Cori Haswell have higher bandwidth than
the results on Theta KNL. A study of communication and
I/O bandwidth on Cori also presents similar results [39].
Haswell node has more sockets and fewer cores (pro-
cesses) per node, so processes on the same Haswell node
share fewer resources compared with KNL nodes. Thus,
the contention is less significant on Haswell nodes. In
addition, performance degradation of write results is more
significant than the performance degradation of collective
read results for two-phase I/O on both Haswell and KNL
nodes, due to the differences in the implementations of
collective read and write mentioned earlier. Nevertheless,
two-phase I/O running on both systems drops its band-
width as the number of processes increases from 4 to 16 K.
TAM, on the other hand, does not encounter such perfor-
mance degradation, though two-phase I/O can outper-
form TAM for smaller jobs, due to the intra-node
aggregation overheads of TAM. From Fig. 3, we observe
that TAM maintains a good write/read bandwidth when
the number of processes increases.

We use the average number concurrent receive operations
at global aggregators for metadata exchanges to illustrate
communication contention for all datasets in Fig. 4. Thismet-
ric is equivalent to the average number of concurrent outgo-
ing and incoming communication requests at global
aggregators for collective read and write data exchange.
From Figs. 4a and 4b, we can observe that the degree of con-
tention of E3SM F and G cases using two-phase I/O scales

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2687

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

with the number of processes. TAM, on the other hand, has a
smaller degree of contention.

For intra-node aggregation, three components are contrib-
uting to the timing. The first component is the communication
for gathering metadata to local aggregators. The communica-
tion pattern is many-to-one, so the total number of MPI send
requests is p to be received by pl local aggregators. Each of the

p
pl
gathering operations within a node can thus run simulta-

neously. The second component is to merge-sort the request
file offsets at every local aggregator. The third component is
memory operation formoving the request data into a contigu-
ous space based on the sorted offsets. All three components
have timings proportional to request data amount and the
number of offsets. Therefore, as we increase the number of

Fig. 3. The I/O bandwidth comparisons of TAM and two-phase I/O in the strong-scaling evaluation from 256 to 16K processes on KNL and Haswell
nodes. Haswell nodes have 32 physical cores, and KNL nodes have 64 physical cores. We set the number of processes per node equal to the num-
ber of available physical cores. Setting pl ¼ p automatically degrades TAM to two-phase I/O. For our TAM in these comparisons, we set pl ¼ 512 (or
pl ¼ p if P < 512) based on empirical results. For I/O patterns with a large number of non-contiguous I/O requests, this strategy works well. We
explain why such pl yields better performance later.

Fig. 4. The degree of contention for all datasets is denoted as the average number of receive operations for metadata exchange at gobal aggrega-
tors. TAM has 512 local aggregators in the comparisons.

2688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

local aggregators pl, the data amount and the number of off-
sets per local aggregator decrease, so the time of intra-node
aggregation decreases proportionally. From Figs. 5 and 6, we
observe that the intra-node aggregation time decreases pro-
portionally with increasing number of local aggregators. Con-
sequently, the cost of the intra-node aggregation reduces and
becomes negligible when running TAM on a large number of
nodes.

In the strong-scaling study, the total read/write amount
stays the same regardless of the number of processes. On
the Lustre system, the number of global aggregators is fixed
for collective write, so the cost of the I/O phase is constant.
For collective read, pg is equal to the number of compute
nodes, so I/O phase cost vanishes as the number of com-
pute nodes increases if global aggregators have similar file
domain sizes. Thus, the bottleneck of the performance for
TAM is the inter-node aggregation phase.

For inter-node aggregation, five components are contrib-
uting to its timing. The first two components are flattening
the MPI file view into a list of offset-length pairs (calculating
my requests) and calculating others’ requests to identify the
global aggregators who are responsible for writing the

request (calculating other requests). In TAM, only local
aggregators make calls for calculating my requests. The
time complexity is proportional to the number of locally
aggregated non-contiguous I/O requests. Calculating other
requests involves a many-to-many inter-node communica-
tion from local aggregators to global aggregators. Its timing
depends on the number of non-contiguous requests and the
number of MPI requests, pl � pg. For collective write, the
third component is to merge-sort the offsets of the locally
aggregated non-contiguous I/O requests. The fourth com-
ponent is the construction of MPI derived datatypes at
every global aggregator for sending/receiving data from
local aggregators. The time complexities of the third and
fourth components are both proportional to the number of
I/O requests at local aggregators. The last component is the
inter-node communication between local aggregators and
global aggregators for data. In short, the execution time of
inter-node aggregation is a sum of computation cost that
depends on the number of I/O requests at local aggregators
and the inter-node communication for metadata and data.
Based on our experimental observations, inter-node com-
munication time is the dominant factor.

Fig. 5. Timing breakdown for E3SM F case with different number of local aggregators. The right-most bar in every subfigure is the two-phase I/O tim-
ing (p ¼ pg). (a)-(d): KNLwrite. (e)-(h): Haswell write. (i)-(l): KNL read. (m)-(p): Haswell read.

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2689

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

Inter-node communication performance depends on
whether the communication channels are under or over-uti-
lized. A typical trend is shown in Figs. 5a, 5b, 5c, and 5d, the
timing cost of E3SM F case KNL collective write. Initially, on
four nodes, the inter-node aggregation cost decreases as the
number of local aggregators increases. However, as the total
number of nodes increases from 4 to 256, this trend changes.
For example, Figs. 5b and 5c illustrate a convex curve of inter-
node communication time concerning the number of local
aggregators per node. Fig. 5d shows a monotonously increas-
ing trend of inter-node communication as the number of local
aggregators per node increases. The inter-node communica-
tion has a many-to-many communication pattern between
local aggregators and global aggregators. If global aggrega-
tors communicate data with a small number of local aggrega-
tors, the communication channels are under-utilized at
receiving nodes. Thus, the network channels of the nodes
where the global aggregators are placed are not saturated up
to the case when they communicate with all processes, which
explains the observation fromFig. 5a. On the other hand, com-
munication contentions occur if global aggregators exchange
data with an enormous number of local aggregators. In

Fig. 5d, communication contention starts at assigning
more than four local aggregators per node. In the original
two-phase I/O, every global aggregatormust prepare to com-
municate metadata and data with all other processes when
all-to-many communication occurs. Consequently, as the
number of processes increases, the communication contention
is expected to become worse at the global aggregators. We
should choose a pl that does not cause over-utilization and
under-utilization of communication channels. For example,
in Figs. 5b and 5c, pl ¼ 256 is a turning point that yields the
lowest inter-node communication cost.

Collective read and write have different turning points
and degrees of inter-node contention. For example, from
Figs. 5d and 5h, KNL read results for F case has turning
point at pl ¼ 1K. The turning point of the KNL write result,
on the other hand, occurs at pl ¼ 256. This difference is
expected since collective read and write have reversed
inter-node communication patterns. In general, we observe
the performance degradation for receiving data from a con-
siderable number of processes is more severe than the con-
tention for sending data to the same number of processes at
global aggregators. We set pl to be a constant 512 by default.

Fig. 6. Timing breakdown for E3SM G case with different number of local aggregators. The right-most bar in every subfigure is the two-phase I/O
timing (p ¼ pg). (a)-(d): KNLwrite. (e)-(h): Haswell write. (i)-(l): KNL read. (m)-(p): Haswell read.

2690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

However, the optimal choice of pl depends both on the
underlying hardware architecture and the degree of conten-
tion illustrated in Fig. 4. Determining the optimal pl based
on communication patterns and hardware systems can be
an interesting future study.

4.2 BTIO Benchmark

Developed by NASA Advanced Supercomputing Division,
BTIO is part of the benchmark suite NPB-MPI version 2.4
for evaluating the performance of parallel I/O [12]. BTIO
uses a block-tridiagonal partitioning I/O pattern over a
three-dimensional array. BTIO requires a square number of
MPI processes to run, which divide the cross-sections of a
global 3D array evenly. We set the global array size to
be 512� 512� 512. The total write amount is of size
8� 5123 � 5B ¼ 5GiB with five 8-byte double values per
variable. Unlike E3SM-IO, which has a near-constant size of
non-contiguous requests, the total number of non-contigu-
ous requests for BTIO increases along with the number of
processes, as shown in Table 2. This property allows us to
test TAM for data with a small I/O data size but a large
number of I/O requests.

Fig. 7 presents the breakdown timings of BTIOwith TAM.
With 16K processes, the size of non-contiguous requests is
512� 40� ffiffiffiffiffiffiffiffiffiffiffiffi

16384
p ¼ 1:34� 109. Two-phase I/O completes

data exchange in multiple rounds. Each has a file domain
size bounded by the Lustre stripe. Although the overall data
exchange pattern for BTIO is high, as shown in Fig. 4, not all

TABLE 2
Datasets Used in Our Evaluation

Dataset # non-contiguous requests I/O amount

E3SM G 1:72� 108 to 1:76� 108 85GiB

E3SM F 1:35� 109 to 1:37� 109 14GiB

BTIO 40� 5122
ffiffiffi
p

p
5GiB

S3D-IO 16� 8002x 61GiB

For E3SM F and G benchmarks, the non-contiguous requests are collected
from production runs using 21600 and 9600 MPI processes, respectively. As
we present the strong-scaling results, the non-contiguous requests are parti-
tioned among all p processes used in our experiments. BTIO and S3D-IO have
more significant numbers of non-contiguous requests, and the numbers
increase as the number of processes p. For S3D-IO, x, y, and z are the number
of processes used to partition X, Y , and Z dimensions. x � y � z is the total
number of processes.

Fig. 7. Timing breakdown for BTIO with different number of local aggregators. The right-most bar in every subfigure is the two-phase I/O timing
(p ¼ pg). (a)-(d): KNLwrite. (e)-(h): Haswell write. (i)-(l): KNL read. (m)-(p): Haswell read.

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2691

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

processes exchange data with global aggregators per two-
phase I/O round. Therefore, data exchange of BTIO in two-
phase I/O with a large number of processes does not show
the same degree of communication contention compared
with the metadata exchange of BTIO. Consequently, the
exchange of metadata is the bottleneck of two-phase I/O for
BTIO due to a high degree of communication contention,
though the number of bytes transferred in the metadata
exchange is less than the data exchange. Taking advantage of
the spatial locality property of BTIO, TAM reduces the cost of
metadata exchange at the inter-node aggregation stage by
reducing the number of offset/length pairs transmitted with
I/O request coalescing. The number of the coalesced requests

is 1
2

� � p
pl of the original request size. Furthermore, TAM can

reduce the degree of contention for metadata exchange, since
only local aggregators and global aggregators perform inter-
node communication.

4.3 S3D-IO Case Study

S3D-IO case study is the I/O kernel of a parallel turbulent
combustion application, named S3D, developed at Sandia
National Laboratories [11]. The I/O kernel is a checkpoint

of three-dimensional arrays, corresponding to a 3D Carte-
sian mesh. Four variables are written at every checkpoint:
mass, velocity, pressure, and temperature. Pressure and
temperature are 3D arrays, while mass and velocity are 4D
arrays with the fourth dimension sizes 11 and 3. Processes
partition the first three dimensions of every variable in a
block-block-block fashion. Thus, a process owns 16 non-
contiguous 3D subarrays. We set the global 3D array size to
800� 800� 800, the same as [18]. This setting results in a
total write amount of size 8� 11þ 3þ 1þ 1ð Þ � 8003B =
61GiB with 8-byte double type per value.

The block-block-block partitioning of the global 3D array
is expected to produce non-contiguous requests that mostly
can be coalesced at the local aggregators, a similar effect
observed in the BTIO benchmark. The number of non-con-
tiguous I/O requests after coalescing at intra-node aggrega-

tion phase is 1
2

� � p
pl of the original one. The total number of

non-contiguous requests for S3D-IO is 8002x. x is the num-
ber of processes in the first dimension. Nevertheless, inter-
node aggregation using two-phase I/O is still a bottleneck
of S3D-IO as the number of processes increase.

As shown in Fig. 8, TAM does not show a significant
improvement for reading S3D-IO collectively. With our

Fig. 8. Timing breakdown for S3D-IO with different number of local aggregators. The right-most bar in every subfigure is the two-phase I/O timing
(p ¼ pg). (a)-(d): KNLwrite. (e)-(h): Haswell write. (i)-(l): KNL read. (m)-(p): Haswell read.

2692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

Lustre setting for collective write in ROMIO, a process has
I/O requests that intersect with the file domains of all global
aggregators. Therefore, the communication pattern is all
processes to all global aggregators when two-phase I/O is
used. Collective read, on the other hand, does not have such
a communication pattern. File domains of global aggrega-
tors in ROMIO for collective read are contiguous blocks that
align with lock boundaries. Thus, a process only needs to
communicate with a subset of global aggregators with file
domains that overlap with the 3D subarrays owned by the
process. Hence the communication pattern of two-phase
I/O collective read does not cause a severe degree of con-
tention compared with collective write. In Fig. 4d, we can
confirm that the degree of contention of two-phase I/O
collective read is approximately 1,000, which is ten times
less than that of two-phase I/O collective write with 16 K
processes. As a result, TAM does not improve the perfor-
mance of the two-phase I/O collective read in the same way
as collective write for S3D-IO.

4.4 Limitation of TAM

The benchmarks and application kernels in our experi-
ments, though differ in detailed I/O pattern, have high
numbers of non-contiguous I/O requests. Thus, global
aggregators receive data that originated from all processes
at the inter-node aggregation phase. However, TAM is
designed for I/O patterns with a large volume of non-con-
tiguous requests that cause a high communication conten-
tion for global aggregators and all processes. If inter-node
communication contention is not severe, the intra-node
aggregation phase becomes redundant. In this case, MPI
collective I/O implementation can adopt the traditional
two-phase I/O strategy because the intra-node aggregation
stage is redundant given such a scenario.

5 CONCLUSION

In this paper, we have demonstrated the communication
cost of the two-phase I/O strategy can become the perfor-
mance bottleneck of the MPI collective I/O. Our proposed
TAM is designed to tackle the problem from the angle of
reducing communication contention at global aggregators.
Adding an intra-node aggregation effectively reduces the
communication contention at the global I/O aggregators
and thus allows collective I/O to scale up with more MPI
processes. Experiments show that TAM works well for
applications that make a large number of non-contiguous I/
O requests from every process. As the HPC community is
entering the exascale era, keeping MPI-IO implementation
scalable to higher numbers of MPI processes has become
increasingly important.

The design concept of TAM does not limit the first phase
aggregation to be within a compute node. We have illus-
trated that the cost of intra-node aggregation stage in
strong-scaling vanishes as the number of processes scales
up. When the total number of nodes scales much more mas-
sive than our experimental settings, the first phase aggrega-
tion across multiple nodes is expected to have a small cost
as well. Inter-node aggregation to global aggregators, on the
other hand, suffers from communication contention even if
there is one local aggregator per node, so the end-to-end

time can be lower if we reduce the number of local aggrega-
tors by performing the first phase aggregation across a small
number of compute nodes.

There are other opportunities to improve the collective
I/O performance further. One possibility is to overlap the
communication with the I/O as the pipelining approaches
proposed in [21], [22]. Moreover, the intra-node aggregation
in TAM is motivated by the scenario when the number of
MPI processes is significant, resulting in a high number of
messages sending to a small amount of I/O aggregators.
However, when the number of MPI processes is not signifi-
cant enough, such as assigning one communication process
per node in the MPIOpenMP programming model, TAM is
less effective compared with the applications that assign a
large number of MPI processes per node. Nevertheless, as
the number of nodes scales up in exascale computing, the
first phase aggregation across multiple nodes can still
improve the communication performance. Future work
includes the extension of a TAM to consider MPI processes
allocated at compute nodes that are physically near with
each other sharing the same communication hardware,
such as routers in the identical cabins.

ACKNOWLEDGMENTS

This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of EnergyOffice of Science and theNational
Nuclear Security Administration and in part by the DOE
Office of Advanced Scientific Computing Research. This
workwas also supported in part by the DOE award numbers
DE-SC0014330 and DE-SC0019358. This research used
resources of the National Energy Research Scientific Com-
puting Center, a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-
05CH11231, and the Argonne Leadership Computing Facil-
ity, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

REFERENCES

[1] MPI Forum, MPI: A Message-Passing Interface Standard. Version 3.1,
Jun. 4th, 2015. [Online]. Available: www.mpi-forum.org

[2] S. Habib et al., “HACC: Simulating sky surveys on state-of-the-art
supercomputing architectures,” New Astron., vol. 42, pp. 49–65,
Jul. 2015.

[3] R. Latham et al., “A case study for scientific I/O: Improving the
FLASH astrophysics code,” Comput. Sci. Discov., vol. 5, Mar. 2012,
Art. no. 015001.

[4] J. H. Chen et al., “Terascale direct numerical simulations of turbu-
lent combustion using S3D,” Comput. Sci. Discov., vol. 2, no. 1,
2009, Art. no. 015001.

[5] P. M. Caldwell et al., “The DOE E3SM coupled model version 1:
Description and results at high resolution,” J. Advances Model.
Earth Syst., vol. 11, pp. 4095–4146, 2019.

[6] K. Schuchardt, B. Palmer, J. Daily, T. Elsethagen, and A. Koontz,
“IO strategies and data services for petascale data sets from a
global cloud resolving model,” J. Phys.: Conf. Ser., vol. 78, 2007,
Art. no. 012089.

[7] J. del Rosario, R. Bordawekar, and A. Choudhary, “Improved par-
allel I/O via a two-phase run-time access strategy,” ACM
SIGARCH Comput. Archit. News, vol. 21, pp. 31–38, Dec. 1993.

[8] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. Lusk, “Non-data-
communication overheads in MPI: Analysis on blue gene/P,” in
Proc. Eur. Parallel Virt. Mach./Message Passing Interface Users’ Group
Meet., 2008, pp. 13–22.

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2693

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

www.mpi-forum.org

[9] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and
performance analysis of non-blocking collective operations for
MPI,” in Proc. ACM/IEEE Conf. Supercomput., 2007, Art. no. 52.

[10] R. Thakur, R. Ross, E. Lusk, and W. Gropp, “Users guide for
ROMIO: A high-performance, portable MPI-IO implementation,”
MCS dividion, Argonne National Lab., Lemont, IL, USA, Tech.
Rep. 234, May 2002.

[11] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law,
“Direct numerical simulations of turbulent lean premixed
combustion,” in J. Phys.: Conf. Ser., vol. 46, 2006, Art. no. 38.

[12] P. Wong and R. Der Wijngaart, “NAS parallel benchmarks I/O
version 2.4,” NASA Ames Research Center, Moffet Field, CA,
USA, Tech. Rep. NAS-03–002, 2003.

[13] J. M. Del Rosario, R. Bordawekar, and A. Choudhary, “Improved
parallel I/O via a two-phase run-time access strategy,” ACM
SIGARCH Comput. Archit. News, vol. 21, no. 5, pp. 31–38, 1993.

[14] Mpich3, 2017. [Online]. Available: http://www.mpich.org/
downloads/

[15] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proc. 11th Eur. PVM/MPI
Users’ Group Meet., 2004, pp. 97–104.

[16] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO output
performance with active buffering plus threads,” in Proc. Int. Par-
allel Distrib. Process. Symp., 2003, p. 10.

[17] W.-K. Liao and A. Choudhary, “Dynamically adapting file
domain partitioning methods for collective I/O based on underly-
ing parallel file system locking protocols,” in Proc. ACM/IEEE
Conf. Supercomput., 2008, Art. no. 3.

[18] W.-K. Liao, “Design and evaluation of MPI file domain partition-
ing methods under extent-based file locking protocol,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 2, pp. 260–272, Feb. 2011.

[19] M. Chaarawi and E. Gabriel, “Automatically selecting the number
of aggregators for collective I/O operations,” in Proc. IEEE Int.
Conf. Cluster Comput., 2011, pp. 428–437.

[20] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp,
“LACIO: A new collective I/O strategy for parallel I/O systems,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2011, pp. 794–804.

[21] S. Sehrish, S.W. Son,W. K. Liao, A. Choudhary, andK. Schuchardt,
“Improving collective I/O performance by pipelining request
aggregation and file access,” in Proc. 20th Eur. MPI Users’ Group
Meeting, 2013, pp. 37–42.

[22] Y. Tsujita, H. Muguruma, K. Yoshinaga, A. Hori, M. Namiki, and
Y. Ishikawa, “Improving collective I/O performance using pipe-
lined two-phase I/O,” in Proc. Symp. High Perform. Comput., 2012,
pp. 7:1–7:8.

[23] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving
unaligned parallel file access with solid-state drives,” in Proc.
IEEE 27th Int. Symp. Parallel Distrib. Process., 2013, pp. 381–392.

[24] K.-Y. Hou et al., “Integration of burst buffer in high-level parallel
I/O library for exascale computing era,” in Proc. Workshop Parallel
Data Storage Data Intensive Scalable Comput. Syst. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2018, pp. 1–12.

[25] D. Bin, S. Byna, K. Wu, H. Johansen, J. Johnson, and N. Keen,
“Data elevator: Low-contention data movement in hierarchical
storage system,” in Proc. IEEE 23rd Int. Conf. High Perform. Com-
put., 2016, pp. 152–161.

[26] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A cost-aware
region-level data placement scheme for hybrid parallel I/O sys-
tems,” in Proc. IEEE Int. Conf. Cluster Comput., 2013, pp. 1–8.

[27] S. He, X.-H. Sun, and B. Feng, “S4D-Cache: Smart selective SSD
cache for parallel I/O systems,” in Proc. IEEE 34th Int. Conf. Dis-
trib. Comput. Syst., 2014, pp. 514–523.

[28] S. He, Y. Wang, X.-H. Sun, C. Huang, and C. Xu, “Heterogeneity-
aware collective I/O for parallel I/O systems with hybrid HDD/
SSD servers,” IEEE Trans. Comput., vol. 66, no. 6, pp. 1091–1098,
Jun. 2017.

[29] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, and
Y. Ishikawa, “Multithreaded two-phase I/O: Improving collec-
tive MPI-IO performance on a lustre file system,” in Proc. 22nd
Euromicro Int. Conf. Parallel Distrib. Netw.-Based Process., 2014,
pp. 232–235.

[30] K. Cha and S.Maeng, “Reducing communication costs in collective
I/O in multi-core cluster systems with non-exclusive scheduling,”
J. Supercomput., vol. 61, no. 3, pp. 966–996, 2012.

[31] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and
J. Bresnahan, “Exploiting hierarchy in parallel computer networks
to optimize collective operation performance,” in Proc. 14th Int.
Symp. Parallel Distrib. Process., 2000, pp. 377–384.

[32] F. Tessier, V. Vishwanath, and E. Jeannot, “TAPIOCA: An I/O
library for optimized topology-aware data aggregation on large-
scale supercomputers,” in Proc. Int. Conf. Cluster Comput., 2017,
pp. 70–80.

[33] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka,
“Topology-aware data movement and staging for I/O accelera-
tion on blue Gene/P supercomputing systems,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2011, pp. 19:1–19:11.

[34] T. Ma, G. Bosilca, A. Bouteiller, and J. J. Dongarra, “Kernel-
assisted and topology-aware MPI collective communications on
multicore/many-core platforms,” J. Parallel Distrib. Comput., vol. 73,
no. 7, pp. 1000–1010, 2013.

[35] S. Chakraborty, H. Subramoni, and D. K. Panda, “Contention-
aware kernel-assisted MPI collectives for multi-/many-core sys-
tems,” in Proc. IEEE Int. Conf. Cluster Comput., 2017, pp. 13–24.

[36] J. Edwards, J. Dennis, M. Vertenstein, and E. Hartnett, “Parallel IO
libraries (PIO) - High-level parallel I/O libraries for structured
grid applications.” Accessed: May 23, 2019. [Online]. Available:
https://github.com/NCAR/ParallelIO.

[37] PnetCDF, 2019. [Online]. Available: www.mcs.anl.gov/parallel-
netcdf/

[38] Parallel I/O kernel case study – E3SM. Accessed: Mar. 06, 2019.
[Online]. Available: https://github.com/Parallel-NetCDF/E3SM-IO

[39] J. Liu et al., “Understanding the I/O performance gap between
Cori KNL and Haswell,” Lawrence Berkeley National Lab.
(LBNL), Berkeley, CA, USA, 2017.

Qiao Kang received the BS (first-class) degree in
computer science and statistics from the Univer-
sity of St. Andrews, St Andrews, United Kingdom.
He is currently working toward the PhD degree
with the Department of Electrical Engineering
and Computer Science, Northwestern University,
Evanston, Illinois. His research interests lie in high-
performance computing and spatiotemporal anom-
aly detection.

Sunwoo Lee received the bachelor’s and mas-
ter’s degrees in computer engineering from
Hanyang University, Seoul, South Korea. He is
working toward the PhD degree with the Depart-
ment of Electrical Engineering and Computer Sci-
ence, Northwestern University, Evanston, Illinois.
His research interests include high-performance
computing and machine learning.

Kaiyuan Hou received the BS and MS degrees in
computer science from the National TaiwanUniver-
sity, Taipei, Taiwan, in 2014 and 2016, respectively.
He is working toward the PhD degree with the
Department of Electrical Engineering and Com-
puter Science, Northwestern University, Evanston,
Illinois, since September 2016. His research inter-
est include parallel I/O.

2694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

http://www.mpich.org/downloads/
http://www.mpich.org/downloads/
https://github.com/NCAR/ParallelIO.
www.mcs.anl.gov/parallel-netcdf/
www.mcs.anl.gov/parallel-netcdf/
https://github.com/Parallel-NetCDF/E3SM-IO

Robert Ross received thePhDdegree in computer
engineering from Clemson University, Clemson,
South Carolina. He is a senior computer scientist
with Argonne National Laboratory, a senior fellow
with the Northwestern-Argonne Institute for Sci-
ence and Engineering, and the director of the DOE
SciDAC RAPIDS Institute for Computer Science
and Data. His research interests include system
software for high-performance computing systems,
distributed storage systems, and libraries for I/O
andmessage passing.

Ankit Agrawal received the PhD degree in com-
puter science from Iowa State University, Ames,
Iowa. He is a research associate professor with
the Department of Electrical and Computer Engi-
neering, Northwestern University. He specializes
in interdisciplinary big data analytics via high-per-
formance data mining, based on a coherent inte-
gration of high-performance computing and data
mining to develop customized solutions for big
data problems.

Alok Choudhary (Fellow, IEEE) received the PhD
degree in electrical and computer engineering from
the University of Illinois, Urbana-Champaign,
Champaign, Illinois, in 1989. He is the founder of
4C Insights, a data science and AI software com-
pany. His research over the last decades focused
on big data science, supercomputing, scalable
data mining, machine learning, AI, and their appli-
cations in sciences, medicine, and business appli-
cations. He is a fellow of the ACMand AAAS.

Wei-keng Liao received the PhD degree in com-
puter and information science from Syracuse Uni-
versity, Syracuse, New York, in 1999. He is a
research professor with the Department of Electri-
cal and Computer Engineering, Northwestern Uni-
versity. His research interests include the area of
high-performance computing, parallel I/O, data
mining, and data management for large-scale sci-
entific applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

KANG ETAL.: IMPROVING MPI COLLECTIVE I/O FOR HIGH VOLUME NON-CONTIGUOUS REQUESTS WITH INTRA-NODE... 2695

Authorized licensed use limited to: Northwestern University. Downloaded on September 05,2020 at 17:11:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

