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ABSTRACT
Scienti�c computing systems are becoming increasingly complex
and indeed are close to reaching a critical limit in manageability
when using current human-in-the-loop techniques. In order to ad-
dress this problem, autonomic, goal-driven management actions
based on machine learning must be applied end to end across the
scienti�c computing landscape. Even though researchers proposed
architectures and design choices for autonomic computing sys-
tems more than a decade ago, practical realization of such systems
has been limited, especially in scienti�c computing environments.
Growing interest and recent developments in machine learning
have spurred proposals to apply machine learning for goal-based
optimization of computing systems in an autonomous fashion. We
review recent work that uses machine learning algorithms to im-
prove computer system performance, identify gaps and open issues.
We propose a hierarchical architecture that builds on the earlier pro-
posals for autonomic computing systems to realize an autonomous
science infrastructure.

CCS CONCEPTS
• Computer systems organization → Architectures; • Gen-
eral and reference→Cross-computing tools and techniques;
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1 INTRODUCTION
Scientists frequently develop code and analyze data on laptops or
workstations, leveraging scienti�c software toolkits, and then run
large simulations on leadership-class systems. The HPC center was
previously the nexus of the scienti�c computing universe, both ad-
ministratively and computationally. Users brought their codes and
their data to computing facilities, and then operations teams con�g-
ured and monitored HPC systems to achieve required uptimes and
queue wait times, often by applying heuristics or experimentation
to tune parameters viewed as important for system performance.
Traditional low-level systems (storage systems, computer networks,
operating systems) do not make extensive use of machine learn-
ing. In most real-world use cases, data do not perfectly follow any
known pattern, and the engineering e�ort to build specialized solu-
tions for every use case is usually too high. Currently, computer
systems are �lled with heuristics for performance tuning that usu-
ally involves numerous iterations of benchmark cycles that are
slow and costly. For example, heuristics are used in compilers for
instruction scheduling, register allocation, and loop nest paralleliza-
tion strategies [52]; in networking for TCP window size and pacing
decisions, backo� for retransmits, and data compression [3]; and
in operating systems for process scheduling, bu�er cache inser-
tion/replacement, and �le system prefetching [67]. However, since
distributed teams and complex work�ows now span resources from
telescopes and light sources to fast networks, a single, centralized
administrative team and software stack that relies on heuristic con-
�guration cannot coordinate and manage all the resources. Each
facility has its own goal(s) and constraint(s). Resources must be-
gin to respond autonomically to meet facility goals, repairing and
tuning their behavior while servicing scienti�c work�ows.

The �rst decade of the 21st century saw considerable work on
architectures and design choices for autonomic computing sys-
tems [2, 16, 27, 28, 57, 73]. But the practical realization of such
systems has been limited, especially in scienti�c computing envi-
ronments. Recent years have seen a rapid growth of interest in
exploiting monitoring data and applying machine learning for au-
tomated management and performance analysis [8]. Such methods
have been applied in HPC for purposes including compute node
allocation, job scheduling, and power e�ciency [7]; in data transfer
nodes to determine optimal parameters so as to maximize perfor-
mance [42]; in job schedulers to determine which tasks/VMs to
colocate and which tasks to preempt [50, 60]; in processor chip
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design for physical circuit layout and test case selection [10]; in
automatic synthesis of specialized index structures, termed learned
indexes, with low engineering cost [32]; and in parallel distributed
�le systems for �le striping and avoidance of peer contention [36].

These examples have demonstrated that machine learning mod-
els can provide signi�cant bene�ts over heuristic approaches in
speci�c situations and for speci�c system con�guration problems.
Might many such models (with possibly con�icting goals) now be
combined to create an autonomous science infrastructure capable
of optimizing across many di�erent con�guration choices in order
to achieve higher-level goals? Building such a system is perhaps
analogous to the challenge of creating a self-driving car that must
simultaneously navigate, avoid accidents, obey tra�c laws, ensure
passenger comfort, avoid overloading vehicle components, and con-
serve fuel—although with many more con�guration choices and
much less training data. It is a challenging research problem. In this
paper we address this problem in three ways:
• Review the state of the art in the application of machine
learning to computer system optimization
• Summarize open issues and opportunities
• Propose a goal-based hierarchical architecture for autonomous
science infrastructure

2 STATE OF THE ART
In this section we review literature relevant to autonomous com-
puting systems. First we review the literature on architecture and
general concepts for autonomous computing systems. Then we
review the literature on autonomous capabilities for key elements
in scienti�c computing environments, namely, high-performance
computers, storage, network, data transfer nodes, and scienti�c
instruments.

2.1 Architecture and general concepts
In 2001 IBM released a manifesto observing that the main obstacle
to further progress in the IT industry is a looming software complex-
ity crisis. The manifesto pointed out that the di�culty of managing
today’s computing systems goes well beyond the administration
of individual software environments [29]. In 2003, a special issue
of the IBM Systems Journal [16] explored a broad set of ideas and
approaches to autonomic computing, presenting some �rst steps
toward creating self-managed computing systems. And in a 2003
article citing the IBM manifesto, Kephart and Chess [29] noted that
autonomic computing, while “perhaps the most attractive approach
to solving this problem,” also is a “grand challenge that reaches far
beyond a single organization . . . [whose] realization will take a con-
certed, long-term, worldwide e�ort by researchers in a diversity of
�elds.” In 2004, White et al. [72] described an architectural approach
to achieve the goals of autonomic computing. Their architecture
communicated interfaces and behavioral requirements for individ-
ual system components; described how interactions among compo-
nents are established; and recommended design patterns for self-
con�guration, self-optimization, self-healing, and self-protection.
Many of these ideas were validated in two prototype autonomic
computing systems. From another perspective, Tesauro et al. [69]
presented a decentralized architecture for autonomic computing
based on multiple interacting agents called autonomic elements.

They created a prototype showing how a collection of elements
self-assembles, recovers from certain classes of faults, and manages
the use of computational resources in a dynamic multiapplication
environment.

In 2005, Parashar et al. [57] surveyed related work and presented
an introduction to autonomic computing, its challenges, and oppor-
tunities. Salehie et al. [63] proposed a categorization of complexity
in IT systems and presented an overview of autonomic computing
research area. They summarized the major autonomic computing
systems that had been developed and outlined the research issues
and challenges. In 2006, IBM published its 4th edition of an archi-
tectural blueprint for autonomic computing [25]. In 2007, Nami et
al. [53] provided a thorough survey of autonomic computing. Based
on the survey, the authors claimed that autonomic computing still
is a new concept in large-scale heterogeneous systems with many
challenges and issues. Tesauro [68] used reinforcement learning
for autonomic computing. The case studies showed that standard
online reinforcement learning can learn e�ective policies in feasible
training times. In 2008, Huebscher et al. [23] described research that
had been seen as seminal in in�uencing a large proportion of early
work on autonomic computing. They claimed that autonomicity
is not a well-de�ned subject and that di�erent systems adhere to
di�erent degrees of autonomicity. They concluded that although
autonomic computing has become increasingly interesting and
popular, it remains a relatively immature topic. From another per-
spective, Litoiu et al. [38] tried to address this problem by porting
methods from adaptive control theory. They examined the control
theory approach, explained several control strategies with exam-
ples from both classical control theory and self-adaptive system
domains, and showed how the issues addressed by these strategies
can and should be seriously considered for autonomous systems.

2.2 High-performance computers
Here we discuss work on autonomousmodules for compute clusters.
We group this work into three categories: scheduling and resource
management, failure prediction (especially for large supercomput-
ers), and power e�ciency.

Scheduling and resource management. Dynamic scheduling of
tasks in large-scale HPC platforms usually is accomplished by us-
ing heuristics based on task characteristics and back�lling strategy.
De�ning heuristics that work e�ciently in di�erent scenarios is
di�cult, however, especially when considering a large variety of
task types and platform architectures. Machine learning has been
used to predict job execution time [17, 47] and to predict resource
demands [12, 21, 31] and job arrival time [4, 56]. Carastan-Santos
et al. [7] presented a methodology based on simulation and ma-
chine learning to obtain dynamic scheduling policies. Speci�cally,
by using simulations and a workload generation model, they de-
termined the characteristics of tasks that lead to a reduction in the
mean slowdown of tasks in an execution queue. They then used
a nonlinear function to model these characteristics and applied
the function to select the next task to execute in a queue. Their
approach resulted in performance improvements when the non-
linear function was applied to real workload traces from highly
di�erent machines, which proved the generalization capability of
the obtained heuristics.
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Stragglers, which are uncommon within a single job, are excep-
tionally slow tasks within a job that signi�cantly delay its comple-
tion. Systematically and rigorously identifying their root causes has
promising potential for optimizing the scheduler so that it avoids
machines predicted to perform poorly for a given task [60, 74].
Zheng et al. [75] proposed a statistical machine learning frame-
work to automatically identify recurring causes of stragglers and
concisely reveal sophisticated causes and provide domain insight
from traces of datacenter-scale jobs. The framework o�ers inter-
pretability, reliability, and scalability.

E�cient resource allocation, considering various constraints and
goals, is a fundamental requirement in HPC systems [24]. It plays
a vital role in performance improvement and user satisfaction with
a computer system.

Currently, a heterogeneous distributed environment with a mix-
ture of hardware devices such as CPUs and GPUs is commonly used
for training and inference with neural networks [50]. Mirhoseini
et al. [50] proposed a method that learns to optimize device place-
ment for TensorFlow [1] computational graphs. The key aspect of
their method is the use of a sequence-to-sequence machine learn-
ing model to predict which subsets of operations in a TensorFlow
graph should run on which of the available devices. The execution
time of the predicted placements is then used as the reward signal
to optimize the parameters of the sequence-to-sequence model.
Their method outperformed hand-crafted heuristics and traditional
algorithmic methods.

Based on the intuition that, in HPC, executions at a smaller scale
(in input problem size or node count) can be used to characterize
executions at a larger scale, Marathe et al. [46] presented an e�ec-
tive method to identify high-performing application con�gurations
when limited resources are available for collecting training perfor-
mance data. More speci�cally, a deep learning technique augmented
with domain transfer learning was used to capture the complex rela-
tionships between application-level and platform-level parameters
and dependent metrics such as execution time. Themodel combined
information from exhaustive observations collected at a smaller
scale with limited observations collected at a larger target scale.
The proposed approach can accurately predict performance in the
regimes of interest to performance analysts while outperforming
many traditional techniques.

Failure prediction. Today’s large-scale supercomputers encounter
failure on a daily basis. As they evolve to exascale systems, they
are likely to experience even higher failure rates due to increased
component count and operating frequency. The ability to accurately
predict failure becomes crucial. Autonomous systems need to have
a self-aware capability [42], so that they can take appropriate re-
medial action before failure.

A complement to the conventional checkpoint-restart strategy
is failure avoidance, by which the occurrence of a fault is predicted
and proactive measures are taken. Gainaru et al. [15] described the
problems and limitations faced in developing an accurate failure
predictor. The authors showed that a good way to achieve a viable
solution for failure avoidance and overcome current limitations is
to combine signal analysis, for shaping the normal behavior of each
event type and of the whole system and characterizing the way

faults a�ect them, and data mining, for analyzing the correlations
between these behaviors.

Lan et al. [33] presented an automated mechanism for node-level
anomaly identi�cation in large-scale systems by using conventional
statistical machine learning and data-mining techniques. Du et
al. [14] proposed a deep neural network (DNN) model that uses
the long short-term memory algorithm to model a system log as
a natural language sequence. The model can automatically learn
log patterns from normal execution and detect anomalies when
log patterns deviate from the model trained from log data under
normal execution.

Failure prediction and explanation for di�erent types of com-
puter systems, based on di�erent kind of information, are essential
steps toward an autonomous module that can proactively deal with
failure in an autonomous way.

Power e�iciency. As supercomputer systems get larger, power
consumption become a necessary consideration [35] to ensure sys-
tem stability, and a power-aware scheduler becomes crucial for
controlling system power consumption while minimizing the im-
pact on system utilization. Based on the key observation that HPC
jobs have distinct power pro�les, Wallace et al. [70] proposed a data-
driven scheduling approach for controlling the power consumption
of the entire system under any user-de�ned budget. The proposed
approach actively observes, analyzes, and assesses power behaviors
of the system and user jobs to guide scheduling decisions for power
management. Since the dynamic learner is on-line and can react to
changes in power pro�les as jobs execute and can schedule subse-
quent jobs accordingly, it is generally applicable to other systems
as long as the underlying platform has a power-monitoring facility
for which data are available for speci�c portions of hardware.

The DeepMind team collaborated with the data center operations
team at Google and used reinforcement learning to improve the air
conditioning knobs [11]. The energy usage for cooling for the data
center drops by about 30–35 percent after turning on the machine
learning control system. This is another promising area where
machine learning for computing systems can help.

2.3 Network
The research in autonomous aspects for networking broadly falls
into three categories: routing, energy e�ciency, and anomaly de-
tection.

Routing. The research community has considered the applica-
tion of arti�cial intelligence techniques to control and operate net-
works [48]. One notable example is the knowledge plane proposed
by Clark et al. [9] in 2003. However, such techniques have not been
extensively prototyped or deployed for practical use cases. Mestres
et al. [48] explored the reasons for the lack of adoption and proposed
that the rise of software-de�ned networking and network analytics
will facilitate the adoption of arti�cial intelligence techniques in
the context of network operation and control.

By taking advantage of recent breakthroughs in deep neural
networks applied to reinforcement learning, Stampa et al. [65] de-
signed and evaluated a deep reinforcement-learning-based agent
that adapts automatically to current tra�c conditions and proposes
tailored con�gurations to optimize software-de�ned networking
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routing (i.e., minimize the network delay). This work provides
important operational advantages with respect to traditional opti-
mization algorithms.

Energy. The bundle link is composed of several high-speed physi-
cal sublinks (SONET connections, Ethernet circuits, etc.) in order to
make them work together as a virtual connection. This technique is
widely used in current core networks to provide higher bandwidth
and more resilience. Liu and Ramamurthy [40] proposed a dynamic,
hybrid local heuristic threshold-based algorithm to achieve a trade-
o� between energy savings and congestion risk. Speci�cally, the
algorithm autonomously and dynamically shuts down and brings
up sublinks and their attached ports according to the tra�c de-
mand or estimation, thereby greatly increasing the link utilization
and saving a large amount of energy. Liu et al. [39] presented a
multilayer energy-saving technique for optical core networks by
powering o� components in di�erent layers of the network. Exper-
iments on Internet2 show that an average of 88.66% of energy can
be saved in an aggressive mode.

Anomaly detection. Nanda et al. [54] proposed using machine
learning algorithms, trained on historical network attack data, to
identify the potential malicious connections and potential attack
destinations. Their experimental results showed that machine learn-
ing algorithms can help in de�ning security rules for software-
de�ned networking controllers by accurately predicting the poten-
tial vulnerable host. They achieved an average prediction accuracy
of 91.68% with a Bayesian network.

2.4 Storage
We organize the work on autonomous tuning of storage systems
into two groups: performance and reliability.

Performance. Software-de�ned storage (SDS) is a new term for
data storage software that provides policy-based provisioning and
management of data storage independent of the underlying hard-
ware. Tinedo et al. [19] presented the �rst SDS architecture whose
core objective is to e�ciently support multitenancy in object stores.
The �exibility of developing control policy, such as by using the pop-
ular IFTTT (If-This-Then-That) service, provides an easier way to
develop application-aware storage systems; automatic parameters
tuning; and policy-based management, movement, and protection
of systems and information.

In the big data era, the gap between storage performance and
application I/O requirements is increasing [77]. I/O congestion
caused by concurrent storage accesses from improperly scheduled
applications can severely harm performance. Zhou et al. [77] pre-
sented an I/O-aware batch scheduling framework to alleviate the
I/O congestion on petascale computing systems.

Paul et al. [58] proposed a data-driven load-balancing approach
for the I/O servers of Lustre �lesystems. The proposed global map-
per runs on the metadata server, which gathers runtime statis-
tics from key storage components on the I/O path via a publisher-
subscribermodel and appliesMarkov chainmodeling and aminimum-
cost maximum-�ow algorithm to decide where data should be
placed.

To �nd the optimal values of tunable parameters in Lustre-
based storage systems, Li et al. [36] developed a modelless deep-
reinforcement, learning-based, unsupervised parameter-tuning sys-
tem driven by a deep neural network. Speci�cally, it takes periodic
measurements of lustre �lesystem’s state and trains a DNN that
uses Q-learning to suggest changes to the system’s current param-
eter values. Their evaluation of a prototype on a Lustre �lesystem
demonstrates an increase in I/O throughput up to 45% at saturation
point.

Reliability. One of the key requirements for storage systems is
data reliability. Recent studies based on data from Facebook [49]
and Google [64] report that 20–57% of solid-state drives experience
at least one sector error. Sector errors are partial drive failures
where individual sectors on a drive become unavailable. Sector
errors occur at a high rate in both hard disk drives and solid state
drives. Mahdisoltani et al. [45] explored a range of machine learning
techniques and showed that sector errors can be predicted with
high accuracy. Although the data in the a�ected sectors can be re-
covered through redundancy in the system (e.g. another drive in the
same RAID), data are lost if the error is encountered during RAID
reconstruction. An accurate prediction of sector error is valuable
to avoid such data loss. Surprisingly, the sector error is predictable
and the prediction is robust even when only little training data or
only training data for a di�erent drive model are available.

2.5 Data transfer node
Wide-area data transfer is central to distributed science [30]. Data
transfer time directly in�uences work�ow performance, and thus
transfer throughput estimation is crucial for work�ow scheduling
and resource allocation [44]. Data transfer nodes (DTNs) [22] are
compute systems dedicated to data transfers in science environ-
ments.

Wide area data transfers play an important role in many science
applications, but rely on expensive infrastructure that often delivers
disappointing performance in practice [41, 43] mostly due to the
poor tuning of parameters. To this end, Liu et al. [42] proposed
a smart data transfer node that uses deep reinforcement learning
to maximize DTN aggregated throughput by dynamically tuning
application-level parameters. They argued that such a system can
identify transfer parameter values that achieve higher overall per-
formance than simple heuristics can. Their results suggest that a
knowledge engine that implements such methods can indeed guide
a data transfer node to stable, sustained transfer performance.

3 OPEN ISSUES AND OPPORTUNITIES
The literature review in §2 suggests that a signi�cant lag exists
between the development of general autonomous computing con-
cepts and the practical realization of even autonomous subsystems.
Recent work suggests that machine learning methods have promise
as a means of creating autonomous modules for computer sys-
tems. Expensive science instruments such as large telescopes and
facilities such as colliders and synchrotrons also need autonomous
capabilities. For example, at beamlines associated with light source
facilities such as the Advanced Photon Source at Argonne National
Laboratory, autonomous methods may be used to optimize usage
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by increasing throughput and by proactively avoiding failures. Fail-
ure rates can depend on such factors as the data collection rate
and the load placed on other supporting devices and on the soft-
ware stack [18]. Scienti�c productivity can be improved by au-
tonomously tuning experiment parameters (e.g., collection rate and
s-ray dose) to maximize some combination of instrument availabil-
ity and throughput.

Coexistence of several autonomous modules is required in order
to handle multiple concerns, and it requires coordination mech-
anisms to avoid incoherent administration decisions, e.g., by us-
ing multi-agent game-based approach. Coordinating di�erent au-
tonomous modules to achieve higher-level goals is challenging and,
to the best of our knowledge, has not been well investigated. Gueye
et al. [20] investigated the use of control techniques in a coordina-
tion controller, in which they exercised synchronous programming
that provides formal semantics and discrete controller synthesis to
automate the construction of the controller.

Another issue is the limited availability (or lack) of annotated
performance data for training machine learning models. Data about
speci�c events, for example for training anomaly detection models,
are also lacking. Collecting data is tedious and time consuming but
essential in order to power machine learning models and foster
autonomous science infrastructure research.

As systems scale toward exascale, many resources will become
increasingly constrained [76]. While some resources have histori-
cally been allocated explicitly, others such as network bandwidth,
I/O bandwidth, and power are not. As systems continue to evolve,
we expect many such resources will need to be explicitly managed,
making autonomous management of resources and coordinating
autonomous resources to achieve higher-level goals even more
important.

4 ARCHITECTURE PROPOSAL
We introduce architectural concepts that we believe will prove
useful in future autonomous science infrastructures.

We note �rst that an autonomous science infrastructure will
need to be designed that optimizes scienti�c impact. A di�culty
here is that the nature of scienti�c impact and productivity may not
always be well de�ned. Many authors have proposed and discussed
methods for quantifying the impact of science [5, 6, 34, 59]. Each
funding agency assesses impact in its own way [55, 61]. In the case
of scienti�c facilities, funding agencies often set quantitative goals.
For a genome facility, the goal might be “X” billion DNA bases
sequenced in a year [26], while for a compute facility it might be
“Y” billion core-hours delivered.

Operators of scienti�c facilities may then de�ne subsidiary goals
designed to increase their chances of meeting those high-level
goals. For example, they might de�ne a goal of “M”% availability
for one system, “N”% utilization for another, and “O” operating
hours for a third. Funding managers, facility operators, and system
administrators currently use ad hoc methods and heuristics to set
and achieve these goals.

Our proposed architecture is a small step toward making this
process more autonomous than at present.

4.1 Science infrastructure
The science infrastructure (as depicted in Figure 2) is typically
made up of scienti�c facilities funded by government agencies.
government agencies fund these facilities, which in most cases are
operated by other institutions. The supercomputers and other user
facilities funded by the U.S. Department of Energy and National
Science Foundation are examples of this model. The facilities in
turn consist of a variety of resources such as high-performance
computers, scienti�c instruments, storage systems, and computer
networks.

4.2 Autonomous system
Figure 1 shows the architecture of an autonomous system. This
architecture follows the architecture of an autonomous system
proposed in a number of studies discussed in §2.1 (eg., MAPE-K
loop [62]). The target system in Figure 1 can be a compute node,
network, storage, instrument, or data transfer node dedicated for
data movement over a wide-area network. The literature reviewed
in §2.2–§2.5 focuses on adding di�erent autonomous capabilities to
these resources to form an autonomous science infrastructure.

Target System

Inference of 
Trained ML model

Train Machine 
Learning model

Policing Module
(filter abnormal actions)

Realtime

History 
Batch

Confidence
Action

State data Control / Config

Deploy

EnvironmentState data

Reject, 0 reward

Expose to Env.

Assigned Goal 

Figure 1: Architecture of an autonomous system. The
shaded area is the “Knowledge Engine (KE)” that provides
autonomous capabilities to the “Target System.”

4.3 Knowledge engine
The knowledge engine enables a system to achieve a speci�ed goal,
for example, maximize performance or minimize power consump-
tion, in an autonomous fashion. The state/performance data that
represent the state of the target system are collected by monitoring
modules. In real time, these data are the input of the knowledge en-
gine, and the output is the control command (decision). The pair of
control command and the corresponding change of system state can
re�ect the relationship between control command and system state
transition. Thus, the state-command-state data can be used to train
a machine learning model (e.g., a reinforcement machine learning
model such as Q-learning [71] or policy gradient [37]) so that the
machine learning model captures the relationship and makes better
decisions in the next runs. Speci�cally for reinforcement learning
that learns what to do—how to map situations to actions—so as
to maximize a numerical reward [66], there is a reward function,



AI-Science’18, June 11, 2018, Tempe, AZ, USA R. Ke�imuthu, Z. Liu, I. Foster and P. Beckman et al.

Facility M
(e.g., archival facility)

En
er

gy
 K

E

Pe
rfo

rm
an

ce
 K

E

…Facility E
(e.g., network 

facility)

Facility A
(e.g., computing 

facility)
KE

KE

Fa
ilu

re
 K

E

En
er

gy
 K

E

U
til

iza
tio

n 
KE

En
er

gy
 K

E

Re
lia

bi
lit

y 
KE

U
til

iza
tio

n 
KE

Ro
ut

in
g 

KE

U
til

iza
tio

n 
KE

Ro
ut

in
g 

KE

En
er

gy
 K

E

Pe
rfo

rm
an

ce
 K

E

En
er

gy
 K

E

U
til

iza
tio

n 
KE

Ro
ut

in
g 

KE

Fa
ilu

re
 K

E

Pe
rfo

rm
an

ce
 K

E

Facility B
(e.g., experimental 

facility)
KE

Science Funding Agencies
(e.g., National Science Foundation, Department of Energy etc)

KE

KEKE

…Cluster
/HPC KE Storage KEDTN KELAN KEWAN KELAN KEInstrum

ent KEDTN

Figure 2: Architecture of autonomous science infrastructure. Each node is equipped with a knowledge engine tomake optimal
decisions. The architecture of each node is shown in Figure 1. For example, the red dotted box is the autonomous module that
autotunes data transfer parameters to maximize the aggregated throughput of DTN, as presented in [42].

to maximize, that quantify rewards the system gets from the state
transition.

The knowledge engine can run on the target system itself (if
it has su�cient computing resources) or on an edge computer
that is attached to the target system. The training and inferencing
modules of KE can be separated, and the training (which is typically
more compute intensive than inferencing) can be done on a remote
computer; inferencing can be done on the target system or on a
lightweight special-purpose machine learning accelerator (e.g., the
recently announced Intel Movidius neural computing stick [51])
attached to the target system.

Policing modules with static rules (e.g., reference interval) will
verify decisions before applying to the actual system and will reject
abnormal decisions. In order to let the knowledge engine know that
the decision is abnormal, so as to discourage such decisions, the
policing module will feed back a zero reward for the decision to
the training module.

We note that Figure 1 shows only a high-level architecture. Al-
though the architecture is generic for di�erent systems, the KE
model will be di�erent for di�erent systems. Even the same type of
system (e.g., storage) may have a di�erent KE for di�erent products
(e.g., GPFS, Lustre). In fact, even for the same product, we may need
di�erent KEs for di�erent goals.

4.4 Autonomous science infrastructure
As discussed in §4.2, Figure 2 shows the hierarchical structure of
the science infrastructure. Government agencies create scienti�c fa-
cilities with an overarching goal to advance science. These agencies
set some higher-level goals and guidelines for each facility, but the
facilities are typically operated by other institutions such as a uni-
versity, supercomputer center, or a national laboratory. Within the
guidelines of the funding agencies, these institutions operate the

scienti�c facilities to achieve the higher-level goals set by the fund-
ing agencies and other goals of national interest deemed important
by them.

Our vision for autonomous science infrastructure is one in which
there is a hierarchy of autonomous elements that takes goals from
their parent and autonomously tune either the goals of their chil-
dren (applies to nonleaf nodes) or their own tunable parameters
(applies to leaf nodes) to achieve their goals. Administrators can
set goals as well, and these will take higher priority than the ones
set by the parent. The topmost autonomous element (one without
a parent) takes goals only from its administrator. We expect that
administrators will set goals for the autonomous elements at the
root of each administrative domain.

Our vision of the architecture for an autonomous science infras-
tructure is presented in Figure 2. We represent the infrastructure
as a tree, with the funding agency as an autonomous element at
the root; facilities as autonomous elements at the next level below;
systems such as high-performance computers, storage systems,
networks, and instruments as autonomous elements under facili-
ties (note that facilities are heterogeneous); and the modules that
achieve a low-level goal, such as “99.9% uptime for a storage system,”
as autonomous elements at the leaf level. The autonomous elements
are architected as shown in Figure 1. The ‘Target System” for the
KE of the autonomous elements at leaf nodes is the physical system
(such as a high-performance computer, storage system, or network).
Thus, the “Action” output of the KE on these nodes is a new set of
values for the con�guration parameters of the system. The “Target
System” for the KE of the autonomous elements at nonleaf nodes
is one or more of their children’s KE. Thus, the “Action” output
of the KE on these nodes is a new set of goals for KE(s) on their
child(ren). Each autonomous element operates autonomously to
achieve the goal (set by a parent element or a human administrator).
We note that the autonomous elements can be designed to support
multiple tiers of goals (as proposed in [13]) so that they can satisfy a
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weaker goal if it is not possible to saitsfy the desired goal in certain
circumstances (e.g., due to failure of components).

We use the example of an autonomous data transfer node to
illustrate how the proposed hierarchical autonomous system would
work in practice. Figure 3 shows an autonomous DTN with two
autonomous modules—one that autonomously achieves a perfor-
mance goal (Figure 4a) and one that autonomously achieves a power
consumption goal (Figure 4b). Let’s say that the goal of DTN is to
minimize the price-performance ratio. To achieve such a goal, it
assigns a power consumption goal to the KE shown in Figure 4b
and data transfer performance goal to KE shown in Figure 4a. The
KE of the power module strives to achieve its goal autonomously by
learning the relationship between the system parameters that a�ect
the power consumption, environmental conditions, and the amount
of power consumed. The KE of the performance module does a
similar job to achieve its goal. We note that minimizing power con-
sumption and maximizing performance are two con�icting goals.
The KE of the DTN needs to learn the tradeo� between them for
varying environmental conditions in order to achieve its goal.

DTN’s autonomous 
performance module

Inference of 
Trained ML model

Train Machine 
Learning model

Policing 
Module

(filter abnormal actions)

Realtime

History 
Batch

Confidence
Action

State data

Deploy

EnvironmentState data

Reject, 0 reward

Expose to Env.

Cost/performance goal 
assigned by institute KE 

HPC state
Storage state
Network state
… … 

Power goal
Performance goal
… … 

Power goal
Performance goal
… … 

DTN’s autonomous power 
module

Figure 3: Illustration of a hierarchical autonomous system
showing how an autonomous data transfer node achieves
its goal by tuning the goals of the underlying autonomous
modules (shown in Figure 4a and Figure 4b).

5 CONCLUSION
Autonomous systems have been talked about for a long time, and
signi�cant progress has occurred in areas such as self-driving ve-
hicles. Practical realization of autonomous systems in scienti�c
computing environments has been limited, however. Nevertheless,
with the latest advancements in machine learning, researchers have
expressed considerable interest in applying machine learning to au-
tonomously optimize individual aspects of a system. We reviewed
recent work in this space for systems that form a key part of sci-
enti�c computing infrastructure. Challenges remain in coordinat-
ing individual autonomous modules to achieve higher-level goals.
Building on previous work on autonomous computing systems, we
proposed a hierarchical architecture for an autonomous science
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(a) Autonomous performance module for data transfer nodes.
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(b) Autonomous power module for data transfer nodes.

Figure 4: The underlying autonomous modules of an au-
tonomousDTN as shown in Figure 3. Thesemodules achieve
their goal by tuning the parameters of hardware/software-
tools on the data transfer node.

infrastructure that spans administrative boundaries. We view our
work as a step toward making autonomous systems practical.
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