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ABSTRACT
Geostatistical interpolation is the process that uses
existing data and statistical models as inputs to pre-
dict data in unobserved spatio-temporal contexts as
output. Kriging is a well-known geostatistical inter-
polation method that minimizes mean square error
of prediction. The result interpolated by Kriging
is accurate when consistency of statistical proper-
ties in data is assumed. However, without this as-
sumption, Kriging interpolation has poor accuracy.
To address this problem, this paper presents a new
filtering-based clustering algorithm that partitions
data into clusters such that the interpolation error
within each cluster is significantly reduced, which
in turn improves the overall accuracy. Comparisons
to traditional Kriging are made with two real-world
datasets using two error criteria: normalized mean
square error(NMSE) and χ2 test statistics for nor-
malized deviation measurement. Our method has
reduced NMSE by more than 50% for both datasets
over traditional Kriging. Moreover, χ2 tests have
also shown significant improvements of our approach
over traditional Kriging.

Keywords
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1. INTRODUCTION
Geostatistical interpolation is the process that uses ex-

isting data and statistical models as inputs to predict data
in unobserved spatio-temporal contexts as output. Krig-
ing[7] is a well-known geostatistical interpolation method
that minimizes mean square prediction error. Everyday
weather forecasting, environmental hazard prediction and
mineral mining are all its application domains. For example,
Holdaway[5] has modelled variogram for predicting monthly
U.S temperature. Noel[11] has modelled Piezometric-Head
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data in the Wolfccamp Aquifer for predicting heavy metal
pollution level.
Kriging interpolation algorithm requires statistical assump-

tions about data. Firstly, Kriging interpolation assumes in-
trinsic stationarity in data. It means that semivariogram, a
function of covariance between two points, depends on the
displacement vector between them rather than their abso-
lute coordinates. If data is not intrinsic stationary, Krig-
ing interpolation will have poor accuracy.[14] Another com-
monly used assumption for Kriging is isotropy. Isotropic
data implies that covariance functions with respect to dis-
tance between data points in all directions are the same,
which in turn simplifies computation of Kriging interpola-
tion. Unfortunately, real-world datasets usually do not obey
these two assumptions, so Kriging interpolation accuracy is
poor if these two properties are blindly assumed. A strat-
egy that improves Kriging interpolation accuracy is to apply
non-parametric analysis of data using randomized subsam-
pling[3] when a dataset does not hold these two properties.
However, this approach requires human interaction. More-
over, because non-parametric analyses with subsampling use
only a subset of data, there are still concerns for final Krig-
ing interpolation accuracy.
In this paper, we present a filtering-based data clustering

algorithm that is designed to improve Kriging interpolation
accuracy when data does not obey essential statistical prop-
erties. Input data points are divided into clusters based on
the similarity function of Kriging interpolation error with re-
spect to semivariogram models specified by users. Because
only data within the same cluster are used to interpolate
results, Kriging interpolation accuracy does not suffer from
invalid statistical assumptions for the overall dataset. Our
clustering algorithm will find the number of clusters with-
out user interaction. The algorithm has two phases: filter-
ing and reinforcement. Clusters are formed by minimizing
clustering-based Kriging interpolation accuracy, while max-
imizing number of points in individual cluster. Maximizing
individual cluster size not only prevents the algorithm from
producing trivial results, but also ensures that clustering-
based Kriging uses as much data as possible for interpola-
tion.
We use two real world datasets to evaluate our algorithm.

Comparisons to traditional Kriging are made using two er-
ror criteria: normalized mean square error(NMSE) and χ2

test statistics for normalized deviation measurement. Our
clustering-based Kriging has reduced NMSE by more than
50% for both datasets compared to NMSE produced Krig-
ing without clustering. Moreover, only our clustering-based

2209

http://dx.doi.org/10.1145/2983323.2983668


Kriging has χ2 test statistics less than 1% significance level
while Kriging without clustering has the χ2 test statistics at
least greater than 10% significance level.
The rest of this paper is arranged as the follows. Firstly,

we present the ordinary Kriging interpolation algorithm in
section 2. Secondly, we illustrate the design of our pro-
posed filter-based clustering algorithm in section 3. Thirdly,
we discuss the implementation of proposed algorithm us-
ing both caching and heuristics for improving computational
performance in section 4. Finally, we demonstrate evalua-
tions of the proposed algorithm with two real world datasets
using two error measurements in section 5.

2. KRIGING ALGORITHM
There are three variants of Kriging: Simple Kriging, ordi-

nary Kriging and universal Kriging.[12] The type of Kriging
used in this paper is ordinary Kriging. In this section, we
describe ordinary Kriging presented in [14] based on vari-
ogram function.
Given n input data points consist of k dimensional coor-

dinates S = {s1, ..., sn}, their associated physical attributes
{z1, ..., zn}, a variogram model γ for covariance between
data points, Kriging algorithm is a mapping Z : Rk → R

that predicts the physical attribute Z(s0) by
n∑
i=1

wiZ(si)

at a new location s0, whereas Z(si) = zi∀si ∈ S by in-
put definition. Weights W = {w1, ..., wn} are assigned such
that the mean square error (MSE) of Ẑ(s0) is minimized

subject to constraint
n∑
i=1

wi = 1. With intrinsic station-

arity assumption, semivariogram function has the property
γ(h) = 1

2E(Z(s + h) − Z(s))∀h ∈ Rk. As a result, we can
formulate a dual optimization problem with the following
Lagrange function.

L(S,W, λ) = MSE(Ẑ(s0))− λ(
n∑
i=1

wi − 1)

= 2
n∑
i=1

wiγ(s0 − si)− λ(
n∑
i=1

wi − 1)

−
n∑
i=1

n∑
j=1

wiwjγ(si − sj)

Solving the Lagrange function with first order condition,
we can have the following linear system.

dL

dwi
= 2wiγ(s0 − si)− 2

n∑
j=1

wiγ(sj − si)− λ

dL

dλ
= 1−

n∑
i=1

wi

Setting the derivatives equal to zero, we can obtain a lin-
ear system of n+ 1 equations. Let Γ be an (n+ 1)× (n+ 1)
dimension matrix, where Γ[i, j] = γ(si − sj) ∀i, j ∈ [n] ,
Γ[n+1, n+1] = 0 , and the rest of entries are 1. Letm be an
n× 1 dimensional column vector with m[i] = γ(s0 − si)∀i ∈
[n] andm[n+1] = 1 . Let w = (w1, ..., wn,

λ
2 )T . Sherman[14]

formulates the linear system as Γw = m, so assigning Krig-
ing interpolation weights is reduced to solving the linear

system and retrieving weights w. The variance of Kriging is
wTm.

2.1 Spatio-temporal Kriging
Although Kriging was originally formulated for the pur-

pose of predicting physical attributes of spatial data, spatio-
temporal data interpolation such as weather forecast can
also apply Kriging. For example, in [5], a spatio-temporal
variogram model is formulated to interpolate future tem-
peratures in St. Paul metropolitan area using recent tem-
peratures of all cities in Minnesota State by Kriging. The
inputs are spatio-temporal coordinates of cities in Minnesota
State {si = (xi, yi, ti)} for location (xi, yi) and time stamp
ti, next day’s time stamp, and the spatial coordinates of
St. Paul metropolitan area. Moreover, each si is associated
with an attribute zi, representing temperature at location
(xi, yi) and time stamp ti. The output is the estimated next
day’s temperature in St. Paul metropolitan area. An effi-
cient implementation of real-time spatio-temporal Kriging
for solving this type of problem is in [15].

2.2 Clustering-based Kriging
Abedini, Nasseri and Ansari exploit data preprocessing

using K-means clustering algorithm for Kriging interpola-
tion.[1] Firstly, the algorithm separates data points into clus-
ters by using K-means clustering. Then, the prediction for
physical attribute Ẑ(si) of a data point si is interpolated via
other members in the same cluster. Finally, the accuracy of
the algorithm is evaluated by using normalized mean square
error (NMSE), which is defined as the following equation.

1
s2n

n∑
i=1

(Ẑ(si)− Z(si))2.

s2 is the sample variance. NMSE not only measures the
actual square error, but also takes the sample variance into
account.
K-means clustering-based Kriging has two challenges to

be addressed. Firstly, the algorithm requires the number
of clusters to be determined in advance. For large spatio-
temporal datasets, trying a large number of parameter k is
expensive. Human effort is also required to compare dif-
ferent types of error measurements for choosing an optimal
k. Secondly, the algorithm only considers distance between
pair-wise data points without taking the covariance of phys-
ical attributes into account. Thus, the algorithm may not
necessarily minimize the Kriging interpolation error.

3. DESIGN
We propose a top-down based clustering algorithm that

improves Kriging interpolation accuracy within each out-
put cluster. A cluster that does not violate an error con-
straint specified by users is called consistent cluster, which
is formally defined in definition 3.1. The algorithm is an
optimization problem that maximizes the size of individ-
ual clusters without violating consistent constraint for clus-
ters. Maximizing size of clusters avoids trivial output, which
means that one data point corresponds to one cluster. More-
over, it ensures that clustering-based Kriging uses as much
consistent data as possible for interpolation, which in turn
maintains precision for Kriging interpolation.
Kriging requires fitted variogram model to be specified in

advance. In [2], it has been shown that weighted least square
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Algorithm 1: Filtering-based clustering algorithm
Data: s1, ..., sn, Z(s1), ..., Z(sn), a threshold, and a

variogram model M
Result: A queue of clusters Q, each point si belongs

to a unique cluster.
1 C ←{s1, ..., sn};
2 Q←{C};
3 while (C ←− next_element(Q)) 6= ∅ do
4 C′ ←−new cluster;
5 converge←− false;
6 while converge == False do
7 converge←− true;
8 for s ∈ C do
9 converge←−

converge ∧ Filter(s,C,C′,threshold,M);
10 end
11 end
12 converge←− false;
13 while converge == False do
14 converge←− true;
15 for s ∈ C do
16 converge←− converge ∧

Reinforce(s,C,C′,threshold,M);
17 end
18 end
19 Remove all elements in C′ from C;
20 if !is_empty(C′) then
21 Insert(Q,C′);
22 end
23 end

Algorithm 2: Filtering
Data: point s, cluster C, where s ∈ C, C′, a

threshold, and a variogram model M
Result: if the point is consistent to the cluster

1 Remove(s, C);
2 t←− normalized_kriging_error(s,C,M);
3 if |t| > threshold then
4 Add(s, C′);
5 Return False;
6 else
7 Add(s, C);
8 Return True;
9 end

(WLS) is feasible for most common models such as exponen-
tial model and spherical model. The algorithm assumes that
a predefined variogram model remains invariant.
Initially all data points are inserted into a single cluster.

Starting from line 3, the algorithm iteratively separates data
points into clusters with two phases: filtering phase and re-
inforcement phase. Points that are inconsistent to the rest of
points in the same cluster are filtered out at filtering phase.
A new cluster will be initialized to hold the filtered points.
Because the algorithm checks consistency by using all re-
maining data point in the original cluster, it may remove
points that are consistent to the original cluster at the end
of filtering phase. Therefore, it has to reinforce the clus-

Algorithm 3: Reinforcement
Data: point s, cluster C, where s ∈ C, C′, a

threshold, and a variogram model M
Result: if the cluster is consistent

1 Add(s, C);
2 if consistent(C,threshold,M) then
3 Remove(s, C′);
4 Return False;
5 else
6 Remove(s, C);
7 Return True;
8 end

ter by adding falsely removed points back at reinforcement
phase. Figure 1 illustrates the two phases.

3.1 Filtering Phase
The first inner while loop from line 6 to line 11 of algo-

rithm 1 iteratively filters out any point that have large dis-
crepancy between its Kriging interpolated physical attribute
based on other points in the same cluster and its actual
physical attribute. Points are removed from the cluster in
a Gauss-Seidel style, which iterates through cluster and re-
moves points without taking previously removed points into
account.
Algorithm 2 (filter function) returns a Boolean. It calls

the function normalized_kriging_error. This function uses
other elements in C to predict the physical attribute of s by
the Kriging interpolation described in section 2. Then the
difference between the predicted value and the actual value
of Z(s) is normalized by dividing Kriging variance. The re-
sult is referred as normalized Kriging error. Consequently,
the threshold can be chosen from a significance value in stan-
dard normal distribution. Selecting threshold from a stan-
dard distribution has the advantage of controlling the degree
of confidence that a user requires for clustering-based Krig-
ing interpolation accuracy. If the threshold is exceeded, the
algorithm will return false and the convergence variable is
set to be false. In this case, another round of filtering for
cluster C will be triggered because the cluster has not con-
verged yet.

3.2 Reinforcement Phase
In the second inner while loop from line 13 to line 18

of algorithm 1, the algorithm iteratively attempts to add
removed points back to the original cluster if the consistency
constraint is not violated. Hence the size of the cluster is
maximized subject to the Kriging consistency constraint.
Kriging cluster consistency, defined in definition 3.1, states
that the normalized Kriging error should be less than the
threshold for every point in all clusters explicitly.
Algorithm 3 (reinforce function) returns a Boolean. It

inserts a point s back to a cluster C and test the Kriging
consistency of C. This process computes the normalized
kriging error for all points in C. If any of the points has
normalized Kriging error exceeding the threshold, the con-
sistency test fails and the point is rejected to be inserted
back to the cluster C for current round of reinforcement.

3.3 Convergence Analysis
Clustering is defined to be a partition of objects into
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Figure 1: An illustration of filter algorithm. The left side contains
clusters that are filtered and reinforced. The right side shows how
a cluster is filtered and reinforced. The remaining points at the
end of the process enter the next round.

groups such that objects within every group are as correlated
as possible and objects between groups are as less correlated
as possible. The term correlation defined for our clustering
algorithm is based on Kriging interpolation accuracy: Any
point within a cluster should be estimated by Kriging in-
terpolation using other points in the same cluster with low
normalized Kriging error.

Definition 3.1. A cluster C is consistent if and only if
the Kriging interpolation of any element in C using the rest
of elements in C does not have a normalized Kriging error
greater than the threshold.

Definition 3.2. A converged set of clusters Q = {C1, ..., Ck}
satisfies: For any 2 ≤ j ≤ k and Ci ∈ Q such that j > i, Ci
is not consistent if any of points in Cj is inserted into Ci.

Proposition 3.3. The output of algorithm 1 is a converged
set of clusters.

Proof. It is possible to prove this statement by induction on
the number of iterations for the loop at line 3.
Base case: At the end of first iteration, C has been filtered

and reinforced. ∀s ∈ C′, because reinforcement phase is
finished, it is impossible to put s back to C, which is the
only element in Q.
Inductive assumption: Suppose that at the end of kth step,
∀s ∈ C′, @A ∈ Q such that A is consistent after s is inserted
into it.
Inductive step: Consider the (k+1)th step, C is the cluster

created in the last iteration. Because we cannot filter more
number of elements than the number of elements in C, C′
at the end of this iteration strictly contained in the input
C. By inductive assumption, s ∈ C′ is inconsistent with
rest of the clusters in Q. However, because the way how
the algorithm reinforces the cluster C, any element in C′

must not be consistent with C in the end. Otherwise they
would have been put back to C. As a result, the inductive
assumption is true at (k + 1)th step.

Despite the fact that we have shown the final result is a
stable solution for maximizing cluster size subject to thresh-
old constraint, a question remains is that how the order of

data affects rate of convergence. The strategy used in our
implementation is to shuffle data in advance. However, in
the future, it is interesting to find out how to align data so
that filtering and reinforcement are faster.

3.4 Complexity Analysis
Kriging interpolation algorithm is the core of filtering and

reinforcement phases. In section 2, we have shown that
Kriging interpolation algorithm can be reduced to solving
a linear system of equations. In our implementation, we
use lower upper permutation (LUP) approach to solve the
linear system. The solution is exact, but the complexity is
bounded by O(n3). However, other solvers can speed up
performance. For example, in [10] and [9], there are Kriging
solvers that solve the linear system reduced from Kriging
interpolation algorithm efficiently. In the following analy-
sis, we treat this computation as Kernel function and focus
on analysing the complexity of Algorithm 1 at high level,
namely the number of calls to the kernel functions normal-
ized_kriging_error and consistent.
A round of filtering and reinforcement at least reduces the

size of data to be filtered by 1. Otherwise the outer loop at
line 3 breaks, so the outer loop is executed at most by n− 1
times. Consider filtering phase, the worst case is that we
filter 1 point per round from C to C′, which costs O(n2).
For reinforcement phase, it is also possible that points are
reinforced back to the C 1 point per round. which costs
O(n2). Therefore, the overall complexity is O(n3).

4. IMPLEMENTATION
We designed two approaches for improving computational

performance: Caching and Heuristics. These two approaches
do not change the result of experiments. Hence there is no
accuracy loss. The entire algorithm was implemented in C
language.

4.1 Caching for Kriging Interpolation
When the filtering phase is converging, only a few points

in the cluster are filtered out per round. Therefore, many
points in the cluster still have the same neighbours as be-
fore. Thus, there is no need to compute normalized Kriging
error again during the next round of filtering for those points
if we can store the result of normalized_kriging_error for
each data point. If no neighbours have been filtered out in
the previous round by checking the number of neighbours,
the algorithm can simply read out the result of normal-
ized_kriging_error without computing it again.
Similarly for reinforcement, when a point is put back into

C, which is the cluster it has been filtered out from, the
algorithm can check consistency of the cluster using cached
results for points that have the same neighbours as before.
In addition, if reinforcement succeeds for a point, the cached
result can be used for next round of reinforcement. Other-
wise the caches of points that belongs to the neighbour of
the reinforced point should be poisoned for correctness.

4.2 Heuristics for Reinforcement
During reinforcement, the algorithm checks if C is consis-

tent after adding a point from C′ to C. Checking consistency
requires computing normalized Kriging error for each point
in the cluster, which is equivalent to a Jacobi style filtering
phase. A trick can be used to report inconsistency faster.
We can check the consistency of points that are more likely
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to violate the threshold constraint first. If they violated the
constraint, there is no need to check the rest of points.
Firstly, a point that violates the threshold constraint is

likely to be the point that is reinforced because it has been
filtered out in the filtering phase at current iteration. We
can treat this point as a special case and revise its con-
sistency to the cluster before all other points. Secondly,
we can wisely use the caching information in the previous
round. For those points that already have high errors, their
errors are likely to exceed threshold than points with low
errors when a new point is inserted to the cluster that they
belong to. This estimation is a heuristic because the cached
result may not be correct due to cache poisoning. However,
it provides a raw approximation for normalized Kriging er-
rors cheaply given the cluster size is large. We can sort the
order of reinforcement in descending order based on cached
normalized Kriging error and check consistency of points in
this order. The extra cost is O(nlogn) on average for quick
sort. However, it may save many O(n3) operations for solv-
ing linear systems.

5. EXPERIMENTAL RESULTS
We used two datasets in different applications to evaluate

our algorithm. The first SOCR dataset is a classical dataset
for testing Kriging interpolation accuracy. We will com-
pare our filtering-based Kriging to K-means clustering-based
Kriging and Kriging without clustering in terms of accuracy.
The second IGRA dataset is a spatio-temporal dataset with
regular time interval. We will fit a variogram model step by
step and justify that our clustering-based Kriging produces
lower errors.

5.1 Quality Measurements
There are two measurements for evaluating the quality of

spatio-temporal clusters in the following experiments. The
first measurement is NMSE value, which is defined in sec-
tion 2.2. It is a ratio between sum of squared leave-one-out
cross-validation error and sample variance. The second mea-
surement is χ2 test statistics. We compute the normalized
Kriging error (ŝi−si)

σ
using leave-one out cross-validation for

all points in every cluster. The sum of squares of these er-
rors is the χ2 test statistics. For both measurements, the
smaller the values, the better the quality of clusters.

5.2 SOCR Data
SOCR dataset 1 contains 85 data points, distributed near

the south border of United States. Each data point has
a 2 dimensional coordinate and a physical attribute that
describes the water pollution level at the location. Because
the dataset contains strong anisotropy[11], it is a challenging
spatial dataset for Kriging. The dataset also contains nugget
effect, which indicates that the covariance of two points that
are very close to each other is a constant greater than 0.
Noel[11] fitted the parameters for NE-SW direction and

NW-SE direction with geometrical anisotropy model derived
by Journel and Huijbregts[6]as the following.

γ(h, φ) = 14000 + 38h2 cos2(π4 − φ) + 15h2 cos2(π4 + φ)

The output of algorithm 1 successfully divided the data
points into 5 clusters. The last two clusters contain only
1http://wiki.stat.ucla.edu/socr/index.php/SOCR_061708_
NC_Data_Aquifer

three points, so they are treated as noise. The experimen-
tal results are shown in Table 1. The t-test p-value is a
paired sample t-test for absolute Kriging errors between each
of Kriging interpolation methods and Kriging interpolation
without clustering at every data point. We reproduced K-
means clustering-based Kriging with k=6 in [1], which is
the best result they claimed, using K-means implementa-
tion in [8]. Our filter algorithm reduced NMSE more than
the K-means algorithm presented in [1]. Furthermore, al-
though K-means clustering-based Kriging reduced NMSE,
there is no significant improvement for both absolute errors
and normalized errors by observing t-test p-value column
and χ2 column respectively. In addition, the 1% lower tile
of χ2 distribution with degree of freedom 85 is 57.63. As a
result, only our filtering-based clustering algorithm has re-
duced errors that pass both χ2 test and paired sample t-test
with high confidence level.

Table 1: SOCR Dataset Results

Method cluster size NMSE χ2 t-test
p-value

Unclustered 1 0.24 197.75 0.5
K-means 6 0.11 161.88 0.3252
Filtering 5 0.048 22.53 9.541E−9

5.3 IGRA Data
IGRA dataset2 contains sensor data collected by 67 NOAA

stations across United States in real time. Every data point
contains two dimensional spatial coordinates for longitude
and latitude, a physical attribute for atmosphere tempera-
ture, and a time stamp. The update interval for atmosphere
temperature between two time stamps is 12 hours for all
stations. This dataset is challenging because of anisotropy.
An illustration of anisotropy with maximum Kriging range
equals 30 is shown in Figure 2a. The variogram in East
direction appears to be different from other directions.
Similar to [5], we consider the monthly temperature of all

stations. The semi-variance plot for average of all stations in
January 2014 with 4620 data points is shown in Figure 2b.
In Figure 2b, when h > 30, the variogram oscillates as

h increases. This oscillation indicates that the atmosphere
temperatures between two locations that are far from each
other are weakly correlated. Similar to [4], which uses near-
est neighbors for Kriging interpolation, we apply local Krig-
ing based on spatial range. The limit for maximum distance
is set to be 30. There is also a sign of nugget effect for
semivariance, starting from approximately 50. Using geoR
[13], we fitted an exponential variogram model illustrated in
Figure 2c.

γ(h) = 54.84102 + 153.71639exp(−0.05462576‖h‖)

Setting threshold to be 0.6, which is the threshold that
gives reasonable size and number of clusters by several tri-
als, we apply our clustering algorithm to IGRA atmosphere
data at 67 stations in January 2014. The result is compared
with Kriging without clustering. At every time stamp, the
number of clusters is at most 6, with the last one or two
clusters containing noise filtered in the end. Therefore, the
results are reasonable because the algorithm does not reduce
errors by dividing stations into trivial partitions.
2http://www.ncdc.noaa.gov/data-access/weather-balloon-
data
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a b c d

Figure 2: (a) IGRA data variogram in four directions. The vertical axis shows the averaged covariance between points at a particular
distance. Different lines show the variograms in different directions. (b) January IGRA data variogram. The vertical axis shows the
averaged covariance between points at a particular distance. (c) Fitted model of the variogram curve bounded by distance 30. (d)
Horizontal axis represents time in hours. Vertical axis shows the χ2 IGRA Kriging error for Kriging with clustering and Kriging without
clustering. The χ2 statistics of clustering-based Kriging is lower than Kriging without clustering across all time stamps.

In Figure 2d, the χ2 test statistics for both filtering-based
clustering and Kriging without clustering are illustrated.
For any given time stamp, Kriging with clustering has χ2

test statistics much smaller than Kriging without cluster-
ing. Moreover, the NMSEs span from 0.08 to 3.8. However,
the high NMSEs are resulted from noisy clusters filtered in
the end. If we do not consider clusters with size less than 5,
the NMSE is on average 0.27, with some outstanding time
stamps at 1 or 2 for small clusters. Kriging without cluster-
ing has NMSE spanning from 6 to 18. These results indicate
that Kriging interpolation accuracy based on clusters pro-
duced by our algorithm is better than Kriging interpolation
accuracy without clustering.

6. SUMMARY AND FUTURE WORK
In this paper, we propose a filtering-based clustering al-

gorithm that improves Kriging interpolation accuracy. The-
oretical proofs have shown that the final clusters have con-
sistency and convergence characteristics. We have proposed
two implementation techniques, caching and heuristics, that
help to improve the performance of proposed algorithm.
Furthermore, experimental results have shown that the filtering-
based clustering algorithm has significantly improved Krig-
ing interpolation accuracy compared to traditional Kriging
approach and K-means clustering-based Kriging.
The future work consists of at least two directions. The

first direction is to derive theorems that can bound the rate
of convergence of algorithm 1 given ground truth about data.
The second direction is to speed up the performance of filter
algorithm by using parallel programming.
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