
PACT HDL: A C Compiler Targeting ASICs and FPGAs with 
Power and Performance Optimizations*

Alex Jones  Debabrata Bagchi  Satrajit Pal  Xiaoyong Tang  Alok Choudhary  Prith Banerjee 
Center for Parallel and Distributed Computing 

Department of Electrical and Computer Engineering 
Technological Institute, Northwestern University 
2145 Sheridan Road, Evanston, IL 60208-3118 
Phone: (847) 491-3641   Fax: (847) 491-4455 

Email: {akjones, bagchi, satrajit, tang, choudhar, banerjee}@ece.northwestern.edu 
 

ABSTRACT 
Chip fabrication technology continues to plunge deeper into sub-
micron levels requiring hardware designers to utilize ever-
increasing amounts of logic and shorten design time.  Toward that 
end, high-level languages such as C/C++ are becoming popular 
for hardware description and synthesis in order to more quickly 
leverage complex algorithms.  Similarly, as logic density 
increases due to technology, power dissipation becomes a 
progressively more important metric of hardware design.  PACT 
HDL, a C to HDL compiler, merges automated hardware 
synthesis of high-level algorithms with power and performance 
optimizations and targets arbitrary hardware architectures, 
particularly in a System on a Chip (SoC) setting that incorporates 
reprogrammable and application-specific hardware.  PACT HDL 
is intended for applications well suited to custom hardware 
implementation such as image and signal processing codes.  By 
making the compiler modular and flexible, optimizations may be 
executed in any order and at different levels in the compilation 
process.  PACT HDL generates industry standard HDL codes, 
such as RTL Verilog and VHDL, which may be synthesized and 
profiled for power using commercial tools.  This is the first paper 
on the PACT compiler project in a series.  The compiler 
framework and introductory optimizations are presented.  Later 
papers will focus on these and other optimizations in detail. 

Categories and Subject Descriptors 
B.5.2 [Register Transfer Level Implementation]: Design Aids – 
automated synthesis, hardware description languages, and 
optimization 

General Terms 
Algorithms, Design 

Keywords 
compiler, HDL, VHDL, Verilog, FPGA, ASIC, SoC, synthesis, 
low-power, high-performance, FSM, pipelining, levelization, IP 

1. INTRODUCTION 
As chip fabrication processes progress deep into the sub-micron 
level and Integrated Circuits (ICs) and Field Programmable Gate 
Arrays (FPGAs) can support larger and larger amounts of logic, 
system designers require increasingly high-level tools to keep up.  
Recently, industry has targeted C/C++ and variants as potential 
long-term replacements for Hardware Description Languages 
(HDLs) such as VHDL and Verilog currently employed for 
today’s hardware design.  Also, as technologies increase in 
density in both the fabricated and reconfigurable areas, power-
consumption becomes a progressively more important problem.  
While some work has been done in targeting C/C++ as an HDL 
and considering power-consumption in hardware synthesis, 
combining the two tasks creates a new challenge. 
This paper presents PACT HDL, a compiler targeting the C 
language that produces synthesizable HDL usable for either 
FPGA designs or Application Specific ICs (ASICs) with a 
framework for both power and performance optimizations.  PACT 
HDL supports arbitrary target architectures and allows for both 
power and performance optimizations at the C level or at an HDL 
level.  The compiler uses a back-end to generate synthesizable 
Register Transfer Level (RTL) HDL codes, such as VHDL and 
Verilog, current industry standards.  It can be easily extended to 
support new HDL codes as they are developed.* 

1.1 PACT 
PACT HDL is part of the PACT (Power Aware Architecture and 
Compilation Techniques) project.  The objective of PACT is to 
develop power-aware architectural techniques and associated 
compiler and CAD tool support that will take applications written 
in C and generate efficient code that runs on power-aware 
systems.  The end goal is to generate power savings at all levels in 
the design process toward an overall high aggregate power 
savings.  This is the first in a series of papers on the PACT 
compiler project.  The compiler framework and introductory 
optimizations are presented.  Later papers will focus on these and 
other optimizations in detail.  The PACT compiler targets a 
System on a Chip (SoC) style architecture consisting of 
reprogrammable components (FPGAs), application-specific 
components (ASICs), and a general-purpose processor (ARM).  
This paper focuses on the method for generating the descriptions 

                                                                 
* This research was supported by DARPA under contract F33615-

01-C-1631 and by NASA under contract 276685 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CASES 2002, October 8-11, 2002, Grenoble, France. 
Copyright 2002 ACM 1-58113-575-0/02/0010…$5.00. 
 

188



for the hardware components of the SoC and describes some 
initial power optimizations.  PACT HDL integrates with a top-
level hardware/software partitioner and a power optimizing 
general-purpose processor compiler to make up the larger PACT 
compiler.  PACT HDL is designed with signal and image 
processing algorithms in mind.  Often these sorts of problems 
would be handed by application-specific hardwares in the SoC 
setting.  The flow of the PACT Compiler is illustrated in Figure 
1.1. 

1.2 Related Work 
Recently, there has been a lot of work in the use of the C 
programming language and other high-level languages to generate 
synthesizable HDL codes or hardware implementations.  
Galloway at the University of Toronto has developed the 
Transmogrifier C compiler.  This compiler uses a subset of the C 
language and targets a Xilinx 4000 series FPGA[18]. Micheli et 
al. have developed HardwareC, a C like language that contains 
many HDL extensions.  The Olympus Synthesis System 
synthesizes digital circuit designs written in HardwareC[14].  The 
Esterel-C Language (ECL) developed at Cadence Berkeley 
Laboratories is an HDL and compilation suite based on the C 
language[15].  CoWare, Inc. has developed the N2C layer for 
existing languages, C in particular, by adding clocking and cycle 
information to allow hardware modeling[4].  CynApps, Inc. has 
developed a suite of tools based on macro and library extensions 
for C/C++.  These macros allow coding in C++ with an HDL 
style and the tools generate RTL HDL codes[12].  SystemC is 
another C-like language developed by Synopsys to allow C-like 
HDL coding that is particularly popular.  The suite of tools 
associated with it can generate hardware directly[29].  Adelante 
Technologies (formerly Frontier Design) has a tool called A|RT 
Builder that takes a subset of C and generates VHDL[1]. Celoxica 
has developed a compiler that takes a version of C called Handle 
C and generates VHDL for FPGAs[8]  Maruyama and Hoshino 
have developed a method for translating C loop structures into a 
pipelined FPGA implementation[25]. 
Of particular interest in the synthesizable C community is the 
handling of pointers and other derived constructs.  At Stanford, 
Séméria and De Micheli have done work to handle the problem 
by attempting to eliminate the loads and stores generated by 
pointers in C through special control flow[32].  C Level Design 
Inc. has developed the System Compiler™ that claims to handle 

the entire C/C++ language, including pointers, arrays, and higher-
level constructs [35]. 
Some related work has been to target other high-level languages 
for hardware generation.  Superlog® is a language based on both 
Verilog and C by Co-Design Automation, Inc [11].  The MATCH 
group at Northwestern University has built a synthesizable RTL 
VHDL compiler from the MATLAB programming language[7].  
Xilinx, Inc. targeted Java as an HDL for its Forge-J HDL 
compiler[13]. 
As the proliferation of battery powered portable electronics has 
increased, so has the work on power-optimized hardware.  Many 
of these approaches are applicable toward automated power 
optimizing compilers.  At UC-Berkeley, power optimization work 
has been done in conjunction with the wireless research center 
dealing at the CMOS level[10] and using computational 
transformations in high-level synthesis with HYPER-LP[9].  
Additional work on power-optimized synthesis has been done at 
Polytechnic University of Catalonia [27] and Princeton University 
[21][22]. 
In contrast to many of the C based synthesis tools, PACT HDL 
targets unmodified ANSI C as its source language.  While many 
of these tools are also platform specific, PACT HDL is target 
architecture independent.  PACT HDL generates power-aware 
HDL designs as compared to performance and area metrics that 
dominate many of these related tools.  The main contribution of 
PACT HDL is to develop a C to VHDL/Verilog compiler with 
power optimizations for FPGAs and ASICs in arbitrary 
architectures. 

1.3 Outline 
The remainder of the paper is outlined as follows: Section 2 
describes the PACT HDL Compiler infrastructure.  All stages of 
the compilation are discussed from the front-end C parsing to the 
back-end code generation.  Implementation issues and the 
suitability for optimizations at different phases are discussed.  
Section 2.5 explains the synthesis flow for both ASICs and 
FPGAs using the compiler’s output code.  Specific optimizations 
for power and performance at different compiler levels are 
discussed in Section 3.  Section 4 presents some initial results as 
well as ongoing work.  Section 5 discusses some conclusions and 
Section 6 relates some future work.  References are listed in 
Section 7. 

2. PACT HDL 
PACT HDL is a fully modularized three-stage C to HDL 
compiler.  In the first stage, the C code is parsed into a high-level 

Figure 1.1.  PACT Compiler Flow 

Figure 2.1. PACT HDL Compiler Flow 

C Program

SUIF

VHDL to
FPGA Synthesis

Binaries for
FPGAs

VHDL to
ASIC Synthesis

Chip layouts
(0.25 µm TSMC)

C to RTL
VHDL/VerilogSUIF to GCC

Object code for
StrongARM

GCC compiler for
embedded

C Libraries
on various Targets
C Libraries
on various Targets

Directives and
Automation
Directives and
Automation

HW / SW
Partitioner

PACT HDL COMPILER

ARCH

HDLAST

HDL2
VHDL

HDLAST

VHDLAST

ARCH Files

S2HDL

SUIFAST

HDLAST

Power & 
Performance 
Optimizations

SUIFAST

Power & 
Performance 
Optimizations

HDLAST

VHDL

HDL2
Verilog

HDLAST

VLOGAST

VerilogVerilog

SUIF
C

189



C type Abstract Syntax Tree (AST).  At this stage, both power 
and performance optimizations may be executed.  In general, 
these optimizations will not require specific information about an 
HDL representation or about the target architecture, such as 
precision analysis, constant-propagation, or loop unrolling.  
During the second stage, the C AST is converted into a Finite 
State Machine (FSM) style HDL AST.  Target architecture 
specific information is inserted into the AST in this phase. Again, 
power and performance optimizations can be executed.  In 
general, these optimizations require specific information about 
clocks, cycles, or the target architecture, such as memory 
pipelining, and clock-gating.  Finally, RTL code is generated in 
the back-end phase.  This phase is not designed for optimization; 
however, if language-specific issues arise they are handled in this 
phase.   
The PACT HDL compiler leverages the SUIF C Compiler 
Version 1 from Stanford University [37] as its C front-end.  SUIF 
was chosen for its flexible AST representation that retains high 
and low level information simultaneously easing the development 
of AST passes and optimizations that operate at this level.  SUIF 
is not designed to handle very large, complex codes such as 
operating system kernels.  This limitation is tolerable since the 
classes of problems PACT HDL targets are computationally 
complex rather than algorithmically complex.  The PACT HDL 
compiler flow is shown in Figure 2.1. 

2.1 HDL AST 
Rather than directly translating the SUIF C like AST into a 
VHDL or Verilog-specific AST, an interim level of abstraction 
was created.  This approach is very different than the related 
MATCH project, which directly translates the high-level 
language, in that case MATLAB, to a VHDL specific AST.  All 
optimizations for hardware generation are done at the VHDL AST 
level[7].  In contrast, the HDL AST is designed to model the RTL 
HDL concept and be suitable for HDL optimizations without 
being language-specific.  The synthesizable subset of both RTL 
VHDL and Verilog are similar enough to make this abstraction 
possible and allow optimizations that would require separate 
implementations to be designed only once. 
As previously mentioned, PACT HDL is based on a FSM style 
intermediate AST.  The top-level entity node corresponds to an 
entire C code possibly consisting of multiple C files and 
directories.  The entity node contains a global symbol table and 
one or more process nodes.  Each process node corresponds both 
to the C style function and a VHDL style process.  The process 

also contains a local symbol table and a FSM node.  The global 
symbol table may contain only VHDL-style signals so that they 
may be globally visible across processes.  The local symbol table 
may hold either VHDL signals or variables for the different 
concurrency properties.  VHDL style signals in a local symbol 
table are treated as visible only locally even though they are in 
fact visible globally.  The FSM node describes the behavior of the 
C function through a list of one or more state nodes.  The AST 
hierarchy is shown in Figure 2.2. 
The core HDL AST node is the state node.  A state contains one 
or more statements.  Since the FSM requires explicit control flow, 
a default and alternate exit are defined.  Normally, the default exit 
is taken.  The alternate is only required when an if statement is 
present.  In that case, then and else correspond to the default and 
alternate exit, respectively.  For this reason, each state is limited 
to one if statement, and the if statement can only be used for 
control flow.  Each state node also has a unique identifier within 
each process.  The state node is shown in Figure 2.3. 
The rest of the AST nodes are built out of generally well-
understood types of structures.  For simplicity there are only five 
types of statements: assignments, ifs, sets, reads, and writes.  
Statements are built from unary, binary, and primary expressions 
and operators.  Most symbols are some sort of variable symbol, 
however, some other types exist such as label symbols. 
The HDL AST does not maintain direct facilities for retaining 
high level C structure information such as loops.  If this 
information is required it is stored in the associated HDL AST 
nodes using annotations.  The HDL AST is described in more 
detail in Jones[19]. 

2.2 SUIF to HDL Translation 
During the conversion from the SUIF AST to the HDL AST there 
are two major passes.  The first pass converts instructions into 
states and statements; the second does a control flow pass for the 
explicit control flow required by the FSM.  The first pass is by far 
the most complex.  During this phase, each type of possible SUIF 
instruction must be handled, temporary variables generated for 
communication of data between instructions, and HDL AST 
nodes generated and added to the AST.  The second pass connects 
the states together using explicit control flow.  It is during this 
phase that the state exits described in Section 2.1 are set.  Details 
on the conversion are discussed in Jones[19]; however, some 
notable issues are described here. 
PACT HDL supports pointers and arrays through memory address 
translation.  SUIF converts pointer and array accesses into 
memory reads and writes.  PACT retains these statements and 
uses a memory scheduler to initialize the memory addresses.  For 
access to multi-dimensional arrays, Horner’s Rule is used to limit 
the number of multiplication cycles to on the order of the number 

Figure 2.2. HDL AST Hierarchy 

Figure 2.3. HDL AST State Node 

Entity

State

State

State

FSM

Process

…

Local 
Symtab

Symbol 1

Symbol 2

Symbol 3

Symbol N
:

State

State

State

FSM

Process

Local 
Symtab

Symbol 1

Symbol 2

Symbol 3

Symbol N
:

Global 
Symtab

Symbol 1

Symbol 2

Symbol 3

Symbol N
:

Signals

Signals or
Variables

State ID

Statement One
Statement Two

:
Statement N

(If Statement)

Next State Alternate

190



of dimensions in the array.  Currently the array size must be 
known at compile time.  While this is acceptable to the class of 
problems currently of interest, a method for handling dynamic 
arrays is being investigated. 
In an effort to levelize instructions, SUIF uses temporary 
variables to pass data between instructions.  PACT HDL retains 
this structure using temporaries to pass data between statements.  
The notion of a temporary variable is not very concrete in SUIF.  
Thus, PACT HDL generates concrete temporaries during code 
conversion.  SUIF instructions are also maintained in hierarchical 
expression trees.  This allows the compiler to maintain a scope for 
each level in the SUIF expression trees.  As the compiler moves 
into and out of each scope, temporaries can be reused and created 
based on need.  An example of temporary creation and reuse is 
displayed in Figure 2.4. 
PACT HDL supports function calls in a slightly different way 
from that of a traditional compiler.  Rather than using a stack, 
parameters are passed using VHDL style signals because of their 
global properties.  A global begin and end signal are created for 
each process.  When a function is called, the caller process copies 
the appropriate values into the callee’s parameter list.  When 
completed, the begin signal for that process is set by the caller 
process and the caller waits for the end signal before proceeding.  
The callee process, upon receiving its begin signal, begins 
execution.  Upon completion, the callee sets a return value and its 
end signal.  If necessary, the caller stores the return value and 
then proceeds.  This method mimics the behavior of function calls 
in C, using a process model that proceeds in parallel. 

2.3 Target Architecture Independence 
Hardware designs often need to interface with pre-designed 
components.  These components may be optimized hardware 
cores or specialty hardware in the target.  In the target class of 
problems, this principle is of particular importance with RAM 
components; however, it is applicable to other hardware 
components such as functional units.  For PACT HDL to be an 
effective method for automating the process of generating 
hardware, this architecture specific information must be 
incorporated in the design creation.   
In PACT HDL, interface descriptions are included in the 
compilation process through architecture files.  The signals file 
specifies input and output signals for interfacing with the outside 
hardware components.  A file is created for each method of 
accessing the hardware component.  In the case of a RAM, a read 
and write file are created.  Each file describes pseudo-states for 

accessing the device.  Placeholders are used for items that require 
run-specific information such as memory addresses or data 
values. 
Many core features of a hardware design are target-specific.  
Some examples include global clock and reset signals, and main 
memory.  All HDL read and write instructions are converted into 
architecture specific memory reads and writes during an AST 
pass.  When a statement is identified for expansion, the 
appropriate architecture file is parsed and the statement is 
expanded.  This approach is not limited to memory components.  
Architecture files may be annotated with power and latency 
information for use by the compiler.  More specific details on 
how architecture files are used in pact may be found in Jones[19]. 

2.4 Backend 
Hardware codes in the HDL AST are of little use if that case is 
not synthesizable by commercial tools.  For PACT HDL this 
means backends are necessary to generate synthesizable forms of 
industry standard hardware codes such as VHDL and Verilog.  
The HDL AST has been designed with this in mind, utilizing only 
a philosophy compatible with the synthesizable subset of both 
target languages.  As a result, PACT HDL can generate any 
combination of VHDL, Verilog, and PACT HDL pseudo-code. 
Backend code generation requires a language-specific AST for 
each target language.  These ASTs are much simpler than the 
HDL AST because the only AST pass required is traversal for 
code generation.  The language-specific AST is created during a 
traversal of the HDL AST generated by the compiler for a specific 
input code.  This newly created AST is then immediately 
traversed to generate the appropriate code.  Details on the VHDL 
backend may be found in Jones[19].  The Verilog code generation 
follows a similar method to the VHDL code generation and has 
been added to PACT HDL more recently. 

2.5 Synthesis Flow 
To prove correctness and investigate the effect of compiler 
optimizations, output of PACT HDL is tested with several targets: 
the WILDSTAR™ multi-FPGA using Xilinx Virtex components 
from Annapolis Micro Systems[1], standalone Xilinx Virtex 
FPGAs[38], a 1.5 micron process ASIC library shipped with the 
Synopsys Design Compiler[33], and a 0.25 micron process ASIC 
library from Leda Systems[23].   
A combination of commercial tools is used to verify, synthesize, 
and analyze output of the PACT HDL compiler.  All designs are Figure 2.4. Temporary Creation Example 

Figure 2.5. Synthesis Flow 

+ -

+

b c

a ed

b c

a ed+

+

*

-

New ScopeNew Scope

+T1 +T1

+T2 +T2

- T2- T2- T2- T2

Synopsis
Tools

Xilinx
ToolsSynplicity

Synthesis

ModelTech
Compiler

Xilinx
Place & Route

Xilinx
Power Estimator

PACT
HDLSUIF

CC .spd RTL
VHDL

Synopsis
Design 

Compiler
Synopsis

Design 
Power

FPGA

ASIC Synthesized NetlistSynthesized Netlist

Power ModelPower Model

Power
Model
Power
Model

FPGA
Bitstream

FPGA
Bitstream

.edf.edf

.vcd.vcd

191



simulated using Model Technology’s ModelSim[26].  FPGA 
designs are synthesized using Synplicity by Synplify[34], placed, 
routed, and profiled for power consumption using Xilinx 
Foundation Tools.  ASIC designs are synthesized and profiled for 
power Synopsys Design Compiler and Design Power. 
The power profiling requires data from an input testbench set.  
This is done using ModelSim for the Xilinx tools, and is done 
implicitly within the Synopsys tools.  Both the Xilinx and 
Synopsys tools output power consumption statistics based on a 
simulation of the synthesized design’s power model.  The 
synthesis flow is outlined in Figure 2.5.  More details on the 
synthesis flow may be found in Jones[19]. 

3. OPTIMIZATIONS FOR POWER AND 
PERFORMANCE 
Many projects have studied automated generation of hardware 
codes from high-level languages, see Section 1.2.  For these 
projects, the criterion for success has been execution speed while 
neglecting other potentially important factors such as power 
consumption.  Thus optimizations have focused on improving 
performance.  Generating power-efficient hardware has also been 
studied, mainly in low-level circuits for applications in portable 
and remote devices.  Unlike these other projects, PACT HDL 
attacks the power issue at the high-level using a series of 
optimizations geared toward improving power consumption while 
maintaining a good performance. 
Power dissipated in a standard CMOS circuit is governed by the 
formula P = CeffVdd

2fclk where P is the power, Ceff is the effective 
switching capacitance, Vdd is the supply voltage, and fclk is the 
clock frequency[31].  Reducing the supply voltage has the 
greatest impact on power consumed due to its squared 
relationship.  Unfortunately, reducing the voltage term also 
increases the delay of the resultant circuit thus decreasing the 
throughput[10].  A PACT HDL power optimization may then 
strive to reduce the critical path of the circuit so that the voltage 
may be decreased and the throughput vis-à-vis performance will 
be unaffected. 

3.1 Functional Unit Pipelining 
Consider the case where a functional unit is used extensively in a 
hardware design but takes several clock cycles to complete its 
operation.  Many multi-cycle functional units used in hardware 
designs are pipelined, allowing multiple requests to the unit to be 
issued at regular intervals before the first completes.  The result 
from the functional unit is returned at the same interval, but after 

a certain initial latency.  To utilize this capability of a functional 
unit, software pipelining techniques can be used to decrease the 
total number of cycles required to execute the code.  The 
pipelined code may now run with a reduced voltage and maintain 
the original throughput thus reducing power consumed without 
sacrificing performance from the original non-pipelined design.   
Typical signal and image processing applications contain loops 
with a high incidence of memory accesses compared to relatively 
few computations.  These loops also account for a significant 
proportion of the run time of the algorithm.  Pipelining memory 
accesses may significantly decrease the number of cycles required 
to execute such an algorithm for multi-cycle pipelined memories.  
Since many FPGA targets and vendor supplied RAM designs 
utilize pipelined memories a pipelining framework was developed 
for PACT HDL.  The loop is pipelined in two different ways.  
Computations are scheduled during memory accesses from later 
loop iterations.  Memory accesses are re-ordered within a loop 
iteration to take advantage of pipelined memory units. 
Loops meeting the following criteria are scheduled for pipeling: 

• Arrays are mapped to an external pipelinable memory 

• There is a single memory port  

• There are no backward loop carried dependencies 
In general pipelining problems, calculating the loop iteration 
interval (II) is NP complete[1],[23].  The assumption of a single 
memory port enforces a minimum II of M where M is the number 
of memory accesses in the loop.  Non-memory operations can be 
pipelined considering traditional issues such as data 
dependencies. 
The II of M refers to read and write instructions before they are 
expanded to reflect the target architecture as described in Section 
2.3.  After these instructions are expanded these memory accesses 
may be rather expensive, and incur stiff penalties in terms of 
clock cycles required when switching between read and write 
modes.  With a pipelinable memory, these costs may be greatly 
reduced by minimizing transitions from read to write.  In many 
cases consecutive reads or writes may have a throughput of one 
clock cycle while switching may require a delay of as many as 
five or ten cycles. 
Before pipelining begins, an appropriate loop is selected from the 
input code AST that meets the appropriate pipelining criteria.  
This loop is converted from into a data-flow graph (DFG).  PACT 
HDL then pipelines this loop in several stages, first scheduling the Figure 3.1. An example DFG and a possible schedule 

Figure 3.2.  Two potential schedules of a loop 

R1

W2

W1

R2

R1

W2

W1

R2

R1

W2

R2

W1

R1

W2

R2

W1

Schedule 1 Schedule 2

Memory

Non 
Memory

Dataflow Graph

II = 3

F

ED

A B C A

B

C

ED

F

A

B

C

ED

F

A

B

192



memory accesses, and then expanding the memory accesses with 
ARCH files, and finally scheduling non-memory computation.  
Figure 3.1 shows and example DFG and a possible pipeline 
schedule. 
Figure 3.2 displays two different schedules of a loop with four 
memory operations.  Schedule one results in four transitions 
between read and write.  Schedule two is an optimal schedule and 
results in only two transitions, which is much preferable to 
schedule one.  During the first pipelining stage, memory accesses 
from the DFG are separated into queues, one each for read and 
write.  A queue is selected based on the memory operation that is 
topologically first in the DFG.  Memory operations are scheduled 
from this queue as long as no dependencies are violated.  Then 
operations are selected from the other queue.  This continues 
switching only when a queue is empty or a dependency is 
violated.  The result is an optimal schedule such as schedule two. 
Once both queues are empty, these operations are expanded with 
target architecture information in a second stage.  During the third 
stage each non-memory operation (e.g. addition, multiplication, 
etc.) is scheduled.  These operations correspond to the gray nodes 
in both Figure 3.1 and Figure 3.2.  Each non-memory node is 
analyzed against the current schedule for memory operations.  
The as soon as possible (ASAP) and as late as possible (ALAP) 
times are determined where ASAP = 0 can occur before all 
scheduled operations and ALAP = ∞ can occur after all scheduled 
operations.  These operations are ordered with least flexible (e.g. 
minimum of ALAP – ASAP) first.  The top item is scheduled and 
the ASAP and ALAP labels are recomputed. 
In some cases pipelining a loop can result in overlapped loop 
iterations reusing the same register.  This can cause incorrect 
execution if the registers are not distinguished.  The modulo 
variable expansion technique is used to differentiate these 
overlapping registers through a renaming and duplication 
scheme[1],[23].  Conditionally executed code inside a loop can be 
a barrier to pipelining.  PACT HDL solves this problem using 
predicated execution.  Both targets of the conditional branch are 
executed resulting in a new loop that is the union of both 
branches.  The code resulting from the branch not taken is 
ignored.  What were originally conditional dependencies have 
been converted to data dependencies and the loop may be 
pipelined[1],[23].  More details on the implementation in PACT 
HDL may be found in Bagchi[6]. 

3.2 Reverse Code Levelization 
The SUIF compiler is designed to target general-purpose 
processors, particularly load-store architectures like MIPS.  The 
resultant SUIF AST focuses on the three-operand style 
instruction.  For code to be stored in this format, it is necessarily 
levelized to fit into the two source operand one destination 
operand structure.  While it is necessary for machine code 
generation, code levelization can have a significant power impact 
when targeting hardware designs. 
Fully levelized code has the advantage of a regular structure 
within the FSM.  Resources may be shared between states 
reducing the design’s area and power consumed.  The clock 
period may remain very short allowing for scaling of power 
factors described in Section 3.  Unlevelized code may 
significantly increase the clock period for only few states with 
long control paths.  Unlevelized code may also require the 

synthesis of additional functional units that could be shared with 
fully levelized code.  The reduction in the number of states from 
fully levelized code can be significant, thus decreasing the 
complexity of FSM control logic. 
The degree of code levelization becomes a tradeoff between the 
complex control logic with a shorter clock period and additional 
functional unit requirements and longer clock period.  These 
factors impact not only the power consumed by the hardware 
code, but its performance and area requirements.  The goal is to 
find an acceptable compromise between fully levelized and 
unlevelized code. 
Consider the case of the following C statement:  

a=3*b+4*c–d; 

e=a+2; 

If the statement were levelized we might have the following HDL 
pseudo-code: 

State1: 

  Temp1 = 3 * b; 

State2: 

  Temp2 = 4 * c; 

State3: 

  Temp3 = Temp1 + Temp2; 

State4: 

  a = Temp3 – d; 

State5: 

  e = a + 2; 

The control path for this code reads from two registers, sends the 
result through one functional unit, and stores the value in a third 
register.  The code requires five clock cycles to execute.  
Additionally, only one multiplier and one adder/subtractor need 
be instantiated.  If the code remained completely unlevelized, it 
would require only two clock cycles to complete.  The first 
statement including two multipliers, one adder, and one subtractor 
in the critical path would dominate the clock period.  It would be 
necessary to instantiate two multipliers and two adder/subtractors.  
The PACT HDL Compiler explores the power relation between 
these two representations in a reverse levelization optimization. 
Immediately following conversion from SUIF to HDL code, the 
code is fully levelized.  Additionally, one notable side effect from 
the load-store architecture emphasis is unfortunately retained; 
constants are stored in temporary variables before being used in 
statements.  The reverse levelization optimization attempts to 
unlevelize the code as much as possible, with the by-product of 
simultaneously accomplishing constant propagation. 
The first stage of the optimization performs data flow analysis on 
the code.  The compiler creates a control flow graph (CFG) from 
the HDL AST.  From this CFG, reaching definition analysis is 
done using the iterative method[28].  Reaching definition analysis 
keeps track of which definitions of a particular variable may reach 
a particular use of that variable.  This information is annotated to 
the AST using definition-use (DU)-chains[28].  DU-chains are a 
sparse representation of the results of reaching definition analysis.  
States with variable definitions store a linked list of nodes that use 
that variable definition.  This information is stored as annotations 
to the appropriate HDL AST nodes. 

193



Once the data-flow analysis is completed, this annotated 
information is used in the second stage of the optimization to 
actually do reverse code levelization.  The DU-chain at a variable 
definition is consulted to find out where that variable is used.  The 
variable is then replaced by the definition.  Once all of the uses of 
the variable have been updated, the definition can be removed 
from the AST. 

3.3 IP Core Integration 
Many vendors supply hand optimized Intellectual Property (IP) 
logic cores specific to different hardware targets such as different 
makes of FPGAs or an ASIC process.  While these IP Cores are 
generally designed for a hardware designer to use when writing 
HDL codes by hand, PACT HDL provides an automated 
framework for inclusion of cores that correspond to intrinsic 
operators such as multipliers, adders, and dividers.  This 
framework leverages the architecture file technique to describe 
the core interface as well as some profiling information.  The 
hope is that the vendor supplied IP Cores will have favorable 
statistics for power, among other things, when compared to the 
default operators instantiated by the backend synthesis tools.  In 
order to save power, these logic cores may be clock-gated to 
eliminate switching power consumed while the included logic is 
not in use.   
Users currently specify which IP Cores are to be included through 
the use of compiler directives or on the compiler command line.  
The directives allow for default bindings as well as bindings for 
each operation in the code.  The compiler scheduler in 
development will handle binding the operator cores automatically 
under a set of constraints such as power and throughput.  The IP 
Core framework is described in detail in Jones[20]. 

4. RESULTS 
The PACT HDL compiler has been tested with several 
benchmarks and has been shown to generate correct VHDL and 
Verilog code.  A benchmark suite of appropriate image processing 
codes and kernels was selected for testing and profiling of 
optimizations.  These codes correspond to functions a hardware-
software partitioner might select for execution on a reconfigurable 
or application specific hardware resource in a SoC environment.  
The benchmarks include: 

• Vectorsum 
• Matrix Multiplication 
• FIR Filter 
• Laplace Transform 
• Sobel Transform 

Vectorsum is a simple benchmark that calculates the sum of all 
the elements of an array.  It is mainly used to check for 
correctness and debug the design flow all the way from C to 

ASIC and FPGA implementation.  Matrix multiplication is an 
)( 3nO operation used in a variety of image and signal processing 

operations.  The Finite Impulse Response (FIR) filter is a band 
pass filter used in image and signal processing.  The Laplace 
transform benchmark uses the Laplace operator 

( ) 2

2

2

2
2 ,

y
f

x
fyxf

∂
∂

+
∂
∂

=∇  to determine the gradient used for edge 

detection in images.  The Sobel transform is another method to 
determine the gradient using two-dimensional linear convolution.  
The initial results are very promising. 
To prove correctness of each generated benchmark, the original C 
code and generated HDL code was tested with a set of random 
inputs.  The outputs of both were compared and shown to match 
for bit-true behavior.  The hardware implementations were tested 
through behavioral simulation, gate-level simulation, and in some 
cases execution on an FPGA target.  An exhaustive testing 
mechanism was not used; however, work towards a more 
thorough test generation scheme is planned.  All of the 
benchmarks were synthesized and profiled for power and area 
requirements using the commercial tools described in Section 2.5 
targeting both the Xilinx XCV400 Virtex FPGA[38] and a 0.25 
µm process ASIC using libraries from Leda Systems[23].   

Table 4.1. Statistics for benchmark application synthesis 
without optimization targeting a Xilinx Virtex FPGA and a 
0.25 µm ASIC process.  Power is in mW and frequency is in 

MHz. 

Figure 4.1. Effects of the pipelining optimization on the hardware 
codes generated for the benchmark suite for the 0.25 µm ASIC 

process 

Figure 4.2. Power comparison of benchmarks with optimizations 
for the 0.25 µm ASIC process at 50 MHz and 2.75V 

Vsum FIR Matmul Laplace Sobel
ASIC Frequency 50 50 50 50 50
ASIC Power 9.47 51.67 67.31 62.98 85.70
FPGA Frequency 94 38 22 24 25
FPGA Power 201 227 182 193 252

0

10

20

30

40

50

60

70

80

90

Po
w

er
 (m

W
)

Vectorsum FIR Filter Matrix Multiplication Laplace Transform Sobel Transform
Benchmark

ASIC Power Comparison

Not Optimized Pipelined Reverse Levelized

-10%

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 C

ha
ng

e

Vectorsum FIR Filter Matrix
Multiplication

Laplace
Transform

Sobel
Transform

Benchmark

Effect of Pipelining Optimization - ASIC

Performance Improvement Area Pow er Reduction Before Voltage Scaling

194



A summary of the synthesis results for the benchmark suite is 
displayed in Table 4.1.  The results are from a direct translation 
without any optimizations.  The synthesis results use the VHDL 
back-end. 

4.1 Pipelining Results 
The memory pipelining in PACT HDL did not significantly 
impact the code size or the length of the critical path.  While the 
number of functional units required may increase due to resource 
conflicts arising from multiple loop iterations occurring in 
parallel, the number of cycles required to execute the loop is 
reduced.  This reduction allows the throughput to increase at a 
similar operating frequency.  With a reduced frequency resulting 
from scaled voltage, the throughput of the design can be made to 
match the unoptimized design at the higher voltage, but the 
optimized design will consume less power.   
Figure 4.1 shows some of the effects of the pipelining 
optimization on the hardware codes generated by PACT HDL for 
the ASIC process.  Most notably, the design’s performance has 
improved dramatically, nearly 50% in some cases.  As predicted, 
the area has increased in some of the designs due to resource 
replication, although control logic was reduced which tended to 
offset this disadvantage. 
It is important to note that while the power dissipated has 
decreased, voltage scaling described in Section 3 has not been 
done.  The power savings in the designs is due to a reduced 
number of states created when overlapping computation and 
memory access, reducing the control logic considerably.  Because 
of the squared relationship between supply voltage and power it is 
expected that the power savings after voltage scaling will be 
significant.  The power results for the ASICs and FPGAs are 
shown graphically in Figure 4.2 and Figure 4.3 respectively.   
The FPGA results shown in Figure 4.3 show slight power 
increases for some of the benchmarks before voltage scaling.  
These power increases are most likely due to tradeoffs required 
due to FPGA area constraints and differences in algorithms used 
by the different synthesis tools for things like resource sharing 
and control extrapolation.  For example, the Sobel Transform 
benchmark has generated the largest power increase with the 
optimization and has the largest logic requirement to fit into the 
FPGA.  In most cases after voltage scaling is taken into account, 

it is expected that with constant throughput the optimized design 
will consume less power. 

4.2 Reverse Levelization Results 
Unlike pipelining, the optimization target is reduction in code size 
(e.g. number of FSM states) with a tradeoff of a potentially 
increasing critical path.  For this optimization to reduce power, 
voltage scaling is not required.  In cases where throughput is 
increased, voltage scaling may be applied to the design as a 
method of amplifying the power savings. 
The power impact of the reverse levelization optimization is 
displayed in Figure 4.2 and Figure 4.3.  This comparison is 
between the non-optimized code, the pipelined code and a 
completely reverse levelized code.  As expected, some of the 
benchmarks show power improvement while others actually 
increase the power consumed.  Here again a disparity between the 
FPGA and ASIC results is clear.   
For the ASIC flow the FIR filter was able to put a relatively high 
number of operations in one state increasing the critical path quite 
a bit but with a minimal total state reduction.  This required 
significant resource replication, particularly of area and power 
hungry multipliers.  The Sobel Transform was much more 
successful since it had nested loops and the effective reduction of 
states in runtime was significant.  The resource requirements were 
affected but the ASIC was able to use more area.  The state 
reduction power reduction far outweighed the extra power 
requirements for the additional area.   
The results for FPGA have a different dynamic.  Since the FIR 
filter was originally a relatively small design, the design was able 
to grow into existing FPGA resources without increasing the 
power required significantly.  Since the design has no nested 
loops, the relative control savings were much less than the ASIC 
version of the Sobel Transform.  Like the ASIC version, the 
FPGA version of the Sobel transform increased significantly in 
size for the reverse levelization optimization and was unable to be 
fit onto the FPGA due to resource constraints.  As a result, the 
power results were not available for reverse levelization on this 
benchmark. 

Figure 4.3: Power comparison of benchmarks with 
optimizations for the Xilinx Virtex XCV400 FPGA at 2.5V 

Figure 4.4: Power savings for designs containing IP Cores with 
and without clock-gating on a Xilinx XCV400 FPGA Target 

using Xillinx Coregen Logic Cores 

0

50

100

150

200

250

300

350

400

Po
w

er
 (m

W
)

Vectorsum FIR Filter Matrix Multiplication Laplace Transform Sobel Transform
Benchmark

FPGA Power Comparison

Baseline Pipelined Reverse Levelized

Power Reduction by Clock Gating

-10%

0%

10%

20%

30%

40%

50%

60%

Filter Matrix Multiplication Laplace Transform Sobel Transform Least Mean Squares

Benchmark

R
ed

uc
tio

n

Parallel Pipelined Sequential Hybrid

195



4.3 IP Core Results 
As expected, inclusion of specific different IP Cores for various 
operations had a significant impact.  Figure 4.4 shows how the 
clock-gating optimization affected the power consumed in a 
variety of benchmarks with several different types of IP Cores.  
For this study, the Vectorsum benchmark was removed in favor of 
a Least Mean Squares algorithm since the former contains no 
multiply operations and the latter contains both multiply and 
divide operations.  The Least Mean Squares algorithm would not 
be directly synthesizable using commercial synthesis tools 
because of the divide operation.  PACT HDL solves this problem 
by utilizing an appropriate divider core. 
In the figure, the key refers to the multiplier core used for all of 
the multiply operations including a parallel, pipelined, sequential, 
and hybrid parallel/sequential multiplier core.  For Least Mean 
Squares a 32 cycle pipelined divider was used for all the designs.  
The initiation interval of the divider was one cycle, one cycle, 
eight cycles, and four cycles for the parallel, pipelined, sequential, 
and hybrid implementations respectively.  A study of the effects 
of several different logic cores for various operations such as 
multiplication and division is studied in Jones[20]. 

5. CONCLUSIONS 
PACT HDL, a functional C to HDL compiler, has been presented 
in this paper.  An abstracted HDL code layer appropriate for 
targeting synthesizable hardware codes and performing code 
analysis and optimization is discussed.  The compiler has been 
shown to be target architecture independent and incorporate 
arbitrary backends for industry standard HDL codes.  Compiler 
generated designs have been verified for correctness through bit 
accurate simulations between the C level behavioral simulations 
and RTL level VHDL and Verilog simulations for both the FPGA 
and ASIC design paths.  PACT HDL is well suited for 
development of power and performance optimizations.  The HDL 
pseudo-code level allows AST passes at this level to affect all 
potential compiler backends. 
Three power emphasized optimizations have been presented: 
functional unit pipelining, reverse code levelization, and power-
aware IP Core operator integration.  These optimizations have 
been implemented and examined with an appropriate test 
benchmark suite of algorithms used in image and signal 
processing codes.  The results for these optimizations show a 
potential for significant power improvements, particularly in 
larger designs, over an unoptimized code.  There is also an 
interesting power/performance tradeoff, which may be tuned 
based on desired power and performance requirements.  The 
successful implementation of these optimizations in PACT HDL 
proves the validity of abstracting the design to a target generic 
HDL level for power and performance optimization. 

6. FUTURE WORK 
While PACT HDL is a functional tool, there is still interesting 
work to be completed.  Three optimizations are presented here, 
however, there are a fair amount of potential optimizations to be 
explored for power impact.  Some examples are: exploring bit-
width analysis on storage and functional unit size and power 
requirements, exploring loop-independent code motion and 
voltage scaling, and common sub-expression elimination. 
Currently, PACT HDL assumes the processor with single memory 
paradigm.  Although this assumption may be sufficient for a 

standalone FPGA or ASIC, it is not adequate within a SoC 
environment.  General solutions for multiple memories and 
streaming data from other processors and devices need to be 
explored. 

7. REFERENCES 
[1] Adelante Technologies, A|RT Builder, 

www.adelantetechnologies.com 

[2] Allan, V. H. Jones, R. B. Lee, R. M. Allan, S. J. Software 
Pipelining.  ACM Computing Surveys, Vol. 27, No. 3, Sep 
1995. 

[3] Annapolis Micro Systems. WILDSTAR.  Xilinx Virtex Based 
Multi-FPGA Board.  www.annapmicro.com. 

[4] Arnout, G. C for System Level Design.  Design, Automation, 
and Test in Europe Conference and Exhibitions 1999. 

[5] Ashenden, P. The Designer’s Guide to VHDL.  Morgan 
Kaufmann. 1995. 

[6] Bagchi, D. Jones, A. Pal, S. Choudhary, A. Banerjee, P., 
Pipelining Memory Accesses on FPGAs for Image 
Processing Algorithms Technical Report: Center for Parallel 
and Distributed Computing, Northwestern University, 
CPDC-TR-2001-12-002, December, 2001. 

[7] Banerjee, P. Shenoy, N. Choudhary, A. Hauck, S.  MATCH: 
A Matlab Compilation Environment for Configurable 
Computing Systems.  Submitted to IEEE Computer 1999. 

[8] Celoxica Inc., Handle C compiler, www.celoxica.com. 

[9] Chandrakasan, A. P.  Potkonjak, M. Mehra, R. Rabaey, J. 
Brodersen R. W.  Optimizing Power Using Transformations.  
IEEE Transactions on Computer Aided Design of Integrated 
Circuits and Systems 1995. 

[10] Chandrakasan, A. P.  Sheng, S.  Brodersen, R. W. Low 
Power CMOS Digital Design.  IEEE Journal of Solid-State 
Circuits 1992. 

[11] Co-Design Automation, Inc.  Superlog Website.  
www.superlog.org. 

[12] CynApps Suite.  Cynthesis Applications for Higher Level 
Design.  www.cynapps.com. 

[13] Davis, D. Edwards S. Harris J.  Forge: High Performance 
Hardware from Java.  Xilinx Whitepaper, www.xilinx.com. 

[14] De Micheli, G. Ku D. Mailhot, F. Truong T.  The Olympus 
Synthesis System for Digital Design.  IEEE Design & Test of 
Computers 1990. 

[15] Esterel-C Language (ECL). Cadence website. 
www.cadence.com. 

196



[16] Fraser, C. W. Hanson, D. R. A Retargetable Compiler for 
ANSI C.  SIGPLAN Notices 1991. 

[17] Free Software Foundation GNU C Compiler. 
www.gnu.org/software/gcc. 

[18] Galloway, G.  The Transmogrifier C Hardware Description 
Language and Compiler for FPGAs.  IEEE Symposium on 
FPGAs for Custom Computing Machines (FCCM) 1995. 

[19] Jones, A., Bagchi, D., Pal, S., Banerjee, P., Choudhary, A.  
“PACT HDL” appears in Power Aware Computing.  
Graybill, R., Melhelm, R.  Kluwer, Boston. 

[20] Jones, A. Banerjee, P. An Automated and Power-Aware 
Framework for Utilization of IP Cores in Hardware 
Generated from C Descriptions, Technical Report: Center 
for Parallel and Distributed Computing, Northwestern 
University, CPDC-TR-2002-04-002, April 2002. 

[21] Lakshminarayana, G. Jha, N. K.  Technical Report No. CE-
J97-003: Synthesis of Power-Optimized Circuits from 
Hierarchal Behavioral Descriptions.  IEEE Design 
Automation Conference (DAC) 1998. 

[22] Lakshminarayana, G. Raghunathan, A. Khouri, K. S. Jha, N. 
K. Dey, S. Common-Case Computation: A High-Level 
Technique for Power and Performance Optimization.  
Proceedings of the Design Automation Conference (DAC) 
1999. 

[23] Lam, M.  Software Pipelining: An Effective Scheduling 
Technique for VLIW Machines.  Proceedings of the 
SIGPLAN ’88 Conference on Programming Language 
Design and Implementation, June 1988. 

[24] Leda Systems. .25 um Process Standard Cell Libraries.  
www.ledasystems.com. 

[25]  Maruyama, T. Hoshino, T. A C to HDL compiler for 
pipeline processing on FPGAs, IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2002. 

[26] Model Technology.  ModelSim.  HDL Simulator. 
www.model.com. 

[27] Musoll, E. Cortadella, J.  High-level Techniques for 
Reducing the Activity of Functional Units.  Proceedings of 
the International Symposium on Low Power Design 1995. 

[28] Muchnick, S. S. Compiler Design and Implementation. 
Morgan Kaufmann. 1997. 

[29] Overview of the Open SystemC Initiative.  SystemC website.  
www.systemc.org. 

[30] Pitas, I.  Digital Image Processing Algorithms and 
Applications. John Wiley & Sons. 2000. 

[31] Rabacy, I. Digital Integrated Circuits: A Design Perspective.  
Prentice Hall Electronics and VLSI Design Series, 1996. 

[32] Séméria, L. De Micheli, G. SpC: Synthesis of Pointers in C: 
Application of Pointer Analysis to the Behavioral Synthesis 
from C.  IEEE/ACM International Conference on Computer-
Aided Design (ICCAD) 1998. 

[33] Synopsys. Design Compiler. Synthesis and Power Estimation 
Toolset.  www.synposys.com 

[34] Synplicity. Synplify. Synthesis Toolset. www.synplicity.com. 

[35] System Compiler: Compiling ANSI C/C++ to Synthesis-
ready HDL.  Whitepaper.  C Level Design Incorporated.  
www.cleveldesign.com. 

[36] Thomas, D. E. Moorby, P. R. The Verilog® Hardware 
Description Language: Fourth Edition.  Kluwer Academic.  
1998. 

[37] Wilson, R. P. French, R. S. Wilson, C. S. Amarasinghe, S. P. 
Anderson, J. M.  Tjiang, S. W. K. Liao, S. W. Tseng, C. W. 
Hall, M. W. Lam, M. S. Hennessy, J. L.  SUIF: An 
Infrastructure for Research on Parallelizing and Optimizing 
Compilers.  SIGPLAN Notices 1994. 

[38] Xilinx.  Foundation Tools.  Place and route tools for Xilinx 
FPGAs.  www.xilinx.com. 

[39] Zeidman, B.  Verilog Designer’s Library.  Prentice Hall.  
1999. 

 

197


