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Abstract. In collective I/O, MPI processes exchange requests so that
the rearranged requests can result in the shortest file system access time.
Scheduling the exchange sequence determines the response time of par-
ticipating processes. Existing implementations that simply follow the
increasing order of file offsets do not necessary produce the best perfor-
mance. To minimize the average response time, we propose three schedul-
ing algorithms that consider the number of processes per file stripe and
the number of accesses per process. Our experimental results demon-
strate improvements of up to 50% in the average response time using
two synthetic benchmarks and a high-resolution climate application.

1 Introduction

Parallel I/O systems have always faced challenges to efficiently store and retrieve
the ever-growing amount of data. Over the past two decades, researchers have
proposed different solutions, such as MPI I/O, to improve the performance. MPI
collective I/O requires the participation of all processes that open a shared file.
This requirement provides a collective I/O implementation an opportunity to
exchange access information and reorganize I/O requests among the processes.
Several process-collaboration strategies have been proposed, such as two-phase
I/O [1], disk directed I/O [2], and server-directed I/O [3].

Two-phase I/O is a representative collaborative I/O technique that runs in
the user space. Its idea is to reorganize the requests among processes, so that
the rearranged requests incur the minimal overhead from the underlying file
system. The request reorganization is referred to as the communication phase
while the read/write system calls constitute the I/O phase. ROMIO, a popular
MPI-IO implementation [4], adopts the two-phase I/O strategy [5], which first
identifies the aggregate access region and picks a subset of MPI processes as the
I/O aggregators, the only processes making I/O calls to the file system. The
aggregate access region is a minimum contiguous file region covering all the I/O
requests. The region is partitioned into disjointed sub-regions denoted as file
domains, and each is assigned to a unique I/O aggregator.
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MPI collective operations only require the participation of all processes, which
should not be confused with the process synchronization. Essentially, once a pro-
cess participates in a collective operation, it can return from the call without
waiting for the completion of other processes. Hence, an optimal request schedul-
ing method for a collective operation should minimize the average response time
of all processes. The I/O request scheduling is a key component of the com-
munication phase in the collective I/O implementation. Let us take ROMIO’s
implementation for the Lustre file system as an example to examine the impor-
tance of a scheduling strategy. At the file open, the Lustre driver chooses an
equal number of I/O aggregators as the number of the file servers, referred to as
Object Storage Targets (OSTs) in Lustre. All stripes of a file are assigned to the
aggregators’ file domains in a round-robin fashion in order to produce a one-to-
one mapping between the aggregators and file servers [6]. Because Lustre adopts
an extent-based locking protocol, such assignment can optimally minimize the
lock request from each aggregator to the file system [7,8].

access patterns of 4 MPI processes
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Fig. 1. (a) Collective I/O example with 4
MPI processes and 3 OSTs. (b) Average re-
sponse time is 4.25t when P3’s requests are
served last. (c) Average response time is 4t
when P3’s requests are served first.

In the current ROMIO implemen-
tation, each aggregator handles the
requests exchange for all the stripes
in its file domain. That is, it sched-
ules one stripe at a time in the in-
creasing file offset order of the stripes.
We argue that such service scheduling
strategy does not necessarily result in
the best response time for the non-
aggregators. The example in Figure
1(a) shows a collective write from 4
MPI processes to 3 aggregators. The
service scheduling using the increas-
ing file offset order is shown in Figure
1(b), where the requests from P3 are
served last as they have the highest
offsets. In this case, the average re-
sponse time is (4t× 3 + 5t)/4 = 4.25t.
In Figure 1(c) where P3’s requests are
served first, the average response time
is reduced to (t + 5t× 3)/4 = 4t. The
faster response time means the processes can return earlier from the call and
proceed to the successive tasks. This example shows that a different request
scheduling order can result in a different average response time and serves as the
motivation of our work.

We propose three alternative algorithms for request scheduling: Most Degree
First (MDF), Locally Weighted MDF (LW-MDF), and Globally Weighted MDF
(GW-MDF). These algorithms prioritize the file stripes based on their access
degree, the number of accessing processes. The MDF schedules the stripe with
the highest degree to be served first. The LW-MDF assigns a weight to each
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process using its total number of requests to individual aggregators. The GW-
MDF assigns the weight based on all the local weights of a process across the
aggregators. The weighted schemes are used to calculate the priority scores for
the stripes. Our experiments on the Cray XT4 parallel machine and Lustre file
system at the National Energy Research Scientific Computing Center show that
the average response time is reduced by 30% for a fixed uneven workload, 50%
for a random workload, and 20% for a large-scale climate simulation application.

2 Design and Implementation

Our objective for developing the three alternative scheduling algorithms is to
minimize the average service response time, Tc, of all the MPI processes in a
collective I/O. We take into consideration the accessing degree of a file stripe,
which is defined as the number of processes accessing it. The proposed algorithms
do not change the I/O amount on the aggregators and if the cost of I/O phase
dominates the collective I/O, then the time on the aggregators will not change
significantly. What the proposed algorithms intend to improve is the response
time mainly on the non-aggregators. We assume the same cost for the I/O phase
irrespective of the stripe permutations carried out to the file system. The request
size per aggregator is same as the stripe size, which is between 1MB and 4MB.
The stripe size is a multiple of the disk sector size (512 bytes), hence, it will
not affect the disk seek time. Based on our experiments on Lustre, the I/O
for different stripe permutations costs approximately the same, as long as each
aggregator only accesses the same server.

Most Degree First (MDF). Among all the stripes in an aggregator’s file
domain, the MDF method schedules the stripe with the highest degree first.
Intuitively, if the stripes with larger degree stripes are serviced first, then more
non-aggregator processes will complete their collective I/O earlier. In ROMIO, at
the beginning of a collective I/O, the request information of all processes is made
available to all the aggregators. Hence, with MDF each aggregator can calculate
and sort the stripes in its file domain independently from other aggregators.
Once the scheduling is determined, the two phases are carried out alternatively,
one stripe at a time.
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Fig. 2. An example access pattern and the
weight score assignment by the LW-MDF
method

Solely utilizing the access degree
may not always give the minimal Tc.
For example, the first three stripes of
a file are written by P0 and each of the
successive 12 stripes is written by P1,
P2 and P3, in an interleaving manner.
If there are three aggregators, then
each has a file domain consisting of
5 stripes in which the access degree is
1 for the first stripe, and 3 for the re-
maining four stripes, as illustrated in
Figure 2(a). In the MDF algorithm,
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P0’s requests are served last and Tc = (5t + 3 × 4t)/4 = 4.25t. However, if P0’s
requests are served first then Tc = (t + 3 × 5t)/4 = 4t. Hence, solely depending
on the stripe’s degree is not sufficient to achieve the best response time. We
propose two additional algorithms with weighted schemes.

Locally Weighted Most Degree First (LW-MDF). As the assumption in
the MDF method that each process has equal contribution to the stripe schedul-
ing priority may not produce the best result, the LW-MDF method is designed
to assign a weight to each process based on its number of requests in an aggrega-
tor’s file domain. In each aggregator, the weight of a process is set to the inverse
of the number of stripes accessed on that aggregator. For example, in Figure 2,
the weight is 1 for P0, and 0.25 for the others. The priority score of a stripe is
then calculated as the sum of all process weights on that stripe. Note that the
scores only depend on the local data access pattern on the aggregators. As a
result, the LW-MDF method assigns the higher priority to stripe S0 than other
stripes.

In the LW-MDF method, the weights are calculated using only the local in-
formation on each aggregator. Consider a case that process P0 accesses only
two aggregators, for instance two stripes on aggregator A0 and six stripes on
aggregator A1. The weights assigned to P0 on both aggregators will be 1

2 and
1
6 , respectively. If A0 schedules P0’s stripes first but A1 schedules P0’s stripes
later, then P0’s collective I/O will not complete until the six stripe requests on
A1 are processed. In order to deal with this problem, we propose another variant
of MDF algorithm that considers the weights of a process across all aggregators.

Fig. 3. An example access pattern and the
weight score assignment by the GW-MDF
method

Globally Weighted Most De-
gree First (GW-MDF). When
a process has a higher number
of accesses to an aggregator, it
makes little sense to schedule its
requests first on other aggrega-
tors, as the response time of a
process is determined by the slow-
est aggregator that serves its re-
quests. The GW-MDF method
selects the minimum of local
weights of a process across all the
aggregators to calculate the prior-
ity scores for stripes.

Consider the example case presented in Figure 3. Process P0 accesses two
stripes on aggregator A0, and six on aggregator A1, the weight of P0 on A0 is 1

2
according to LW-MDF and 1

6 according to GW-MDF. There is another process
P1 that only accesses 4 stripes on aggregator A0, the weight of P1 on A0 is 1

4 . In
GW-MDF, the weight of P1 is higher than P0’s weight (1

6 ), thus, P1’s requests
are served first. The average response time Tc = (6t + 4t)/2 = 5t. However, in
LW-MDF, P0 and P1 will complete at the same time, and Tc = (6t+6t)/2 = 6t.
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Therefore, GW-MDF achieves the optimal scheduling in this case. One thing to
note, if the processor doesn’t have any stripe to access, its score is assigned to
zero rather than infinity. Our score algorithm only needs to consider the positive
values to exclude the processes with zero score. For highly irregular or unbalanced
data access patterns, it is anticipated that GW-MDF can outperform the other
two MDF methods. However, in order to find the global minimums, there is an
extra communication for gathering the local weights of all processes on every
aggregator. This global communication among aggregators adds an overhead to
the overall performance.

3 Performance Evaluation

All the proposed scheduling algorithms are implemented in the ROMIO library
released along with MPICH version 1.3.2p1. By using two artificial benchmarks
and a climate simulation application, our evaluation was carried out on Franklin,
a Cray XT4 supercomputer at NERSC. Franklin consists of 9572 computer
nodes, each of which runs a 2.3 GHz quad-core AMD Opteron processor and
8 GB memory. The parallel file system is Lustre version 2.2.48 with total of
48 OSTs. In our experiments, the stripe size was configured to 1 MB and the
numbers of OSTs are set to 8 and 40 for the artificial benchmarks and GCRM
evaluation, respectively. The performance results of MPI collective write opera-
tions are presented in this work.

Fixed Uneven Workload. We assign the first half of the processes twice the
write amount as the other half. The access pattern is illustrated as an example
shown in Figure 4(a), where the first half of the 128 processes write 40 MB of
data each, and the second half writes 20 MB. The write amount on each process
is further partitioned into 160 smaller pieces whose offsets are interleaved among
all processes. For each piece in the first 64 processes, the size is 1

4 MB, and for
each piece in the second 64 processes is 1

8 MB. This setting produces multiple
noncontiguous file regions for each process to access and each stripe is accessed
by more than one process. In addition, each process accesses the same number
of stripes on each aggregator. This pattern implies that all MDF methods have
the same weights and should have similar performance. The results presented
in Figure 4(b) clearly demonstrate that the proposed scheduling methods out-
perform the traditional scheduling of the increasing file offset order. With the
experiments running on up to 1024 processes, we observe that all four scheduling
methods have the same wall time for the slowest processes. The slowest process is
one of the aggregators whose file domain has the most stripes. All MDF methods
show the similar improvement as the weights of a process, which contribute to
the priority are the same for all stripes. In this case, the priorities are determined
by the local access degrees. A reduction of up to 30% in average response time
is obtained.

Random workload. Given a fixed file size, the random workload partitions the
entire file into pieces with arbitrary lengths which are then assigned to processes
based on the Gaussian distribution. Figure 5(a) shows the random workload
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Fig. 4. Access pattern and performance results for the fixed uneven workload

distribution among 128 processes, and Figure 5(b) shows the corresponding his-
togram. Each process has a random amount of data to write and the processes
with ranks close to the median are assigned more workload. Figure 5(c) and (d)
illustrate the number of stripes per process and stripe access degree per process,
respectively. Each piece of write segment is randomly assigned to a process such
that the number of stripes accessed by a process obeys the Gaussian distribution.
The stripe degree is also random because the size of each piece is arbitrary. The
results in Figure 5(e) indicate that both LW-MDF and GW-MDF perform better
than MDF by up to 50%. MDF does not have a noticeable improvement over
the original scheduling as the number of stripe accesses in this random pattern
varies significantly with the number of processes.

Global Cloud Resolving Model (GCRM). The GCRM is a climate ap-
plication framework designed to simulate the circulations associated with large
convective clouds [9]. Its I/O uses Geodesic Parallel I/O (GIO) library [10], which
interfaces parallel netCDF (PnetCDF) [11]. In our experiments, we enable the
PnetCDF non-blocking I/O option to aggregate multiple grid data variables into
large-sized collective writes. Non-grid variables are excluded from our evaluation,
as they are written individually, which does generate uneven file access degrees.
There are 11 grid variables and each variable is approximately evenly partitioned
among all the processes. We collected results for 3 cases: 640 processes with res-
olution level 9, 1280 processes with level 10, and 2560 processes with level 11.
Resolution levels 9, 10, and 11 correspond to the geodesic grid refinement at
about 15.6, 7.8, and 3.9 km, respectively. Figure 6(a) and (b) show the I/O pat-
tern for the 1280-process case and indicates about 80% of the processes access
13 file stripes. The majority of the processes have the same request length, and
only a few processes have smaller request lengths. There are two peaks of stripe
access degree in Figure 6(c) at stripe ID 0 and 1441 because a few small sized
grid variables (40 MB each) are written at these file offsets. Since each variable
is evenly partitioned among 1280 processes, there are 32 processes accessing the
same stripe, as shown by the right-most bar in the histogram chart, Figure 6(d).
The histogram also shows that more than half of the stripes are accessed by 6
distinct processes, while others have even higher degrees.

Both MDF and LW-MDF yield similar performance in Figure 6(e) because
more than 80% of the processes have the same request count and hence share
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Fig. 5. Access pattern and performance results for the random workload

the same weights. Improvement in the average response time is approximately
20%. Compared with the random workload distribution, GCRM’s access pat-
tern is relatively regular. As described earlier, GW-MDF requires an additional
global communication for finding the minimal weights. However, the benefit of
using the global weights is not significant enough to outperform the communi-
cation overhead. The similar results between the MDF and the original methods
attribute to the balanced I/O workload in the GCRM.

4 Related Work

Scheduling parallel I/O operations has been studied by many researchers to ad-
dress the speed gap between the CPU and I/O systems. Three off-line heuristics
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Fig. 6. Access pattern and performance results of GCRM

based on graph coloring algorithms are developed to formalize the simultaneous
resource scheduling problem [12]. Based on this work, a distributed randomized
version using edge coloring method is proposed in [13]. Distributed I/O schedul-
ing in the presence of data replication is presented in [14]. Decentralized I/O
scheduling strategies between computer nodes and I/O servers for parallel file
systems are developed in [15]. [16] has proposed three different techniques to
increase the write bandwidth for collective I/O. The first technique is similar to
two-phase collective I/O which aggregate I/O requests from participating pro-
cesses such that the number of I/O operations provided to the underlying par-
allel file systems can be minimized. The second technique is to use a designated
root process gathering data from all the processes, thus, the communication
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parallelization can be better utilized in some degree. In the third method, each
process writes out data independently. However, there is no I/O scheduling al-
gorithm employed in any of the proposed methods.

5 Conclusion

In collective I/O operations, different I/O request scheduling strategies can give
different response time. We use the stripe access degree and request count per
process on the I/O aggregators to develop algorithms that improve the average
response time of collective I/O operations. Reducing the average response time in
collective I/O operations equivalently increases the computational resource uti-
lization in high-performance computing systems. Our performance results show
significant improvement in average response time for various data access patterns
in collective write operations. In the future, we plan to apply similar approaches
for read operations and develop different scheduling methods for different parallel
file systems.
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