
284 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  11,  NO.  2,  MARCH/APRIL  1999
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Abstract—High-performance servers and high-speed networks will form the backbone of the infrastructure required for distributed
multimedia information systems. A server for an interactive distributed multimedia system may require thousands of gigabytes of
storage space and high I/O bandwidth. In order to maximize system utilization and, thus, minimize cost, it is essential that the load
be balanced among each of the server’s components viz., the disks, the interconnection network, and the scheduler. Many
algorithms for maximizing retrieval capacity from the storage system have been proposed in the literature. This paper presents
techniques for improving server capacity by assigning media requests to the nodes of a server so as to balance the load on the
interconnection network and the scheduling nodes. Five policies for request assignment£round-robin (RR), minimum link allocation
(MLA), minimum contention allocation (MCA), weighted minimum link allocation (WMLA), and weighted minimum contention
allocation (WMCA)£are developed. The performance of these policies on a server model developed earlier is presented. We also
consider the issue of file replication, and develop two schemes for storing the replicas, the Parent Group Based Round-Robin
Placement (PGBRRP) scheme, and the Group Wide Round-Robin Placement (GWRRP) scheme. The performance of the request
assignment policies in the presence of file replication is presented.

Index Terms—Parallel input/output, media-on-demand server, dynamic resource allocation, real-time data retrieval, file replication.
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1� Introduction

1.1 Motivation
IGITALIZATION of traditionally analog data such as video
and audio, and the feasibility of obtaining networking

bandwidths above the gigabit-per-second range are two
key advances that have made possible the realization, in the
near future, of interactive distributed multimedia systems.
However, a number of problems need to be solved for de-
veloping cost-effective systems. These problems arise be-
cause contemporary computers have been designed to pro-
cess predominantly unimedia (text) type of data, which
differs greatly from multimedia data. The most important
differences are the diverse data sizes of multimedia data
types, and the need to provide real-time guarantees for
playback of multimedia data such as video and audio. One
of the most pervasive applications of the coming interactive
age is media-on-demand which refers to the possibility of a
consumer interactively retrieving multimedia data (e.g.,
movies, songs, images, digitized encyclopedias, etc.) over
high-speed networks from geographically distributed me-
dia servers, and viewing the data at home or work.

A 90-minute long MPEG-1 [2] digitized movie requires
nearly 1 gigabyte of storage. It is anticipated that a distrib-
uted media-on-demand (MOD) system will be built in a

hierarchical manner, with high-capacity metropolitan serv-
ers interconnected by a high-speed network, and less pow-
erful neighborhood servers connected to a metropolitan
server (Fig. 1). The clients interact with the neigbourhood
server to store and retrieve data. This hierarchy of servers is
similar to the memory hierarchy in a computer system. In
the latter, the hierarchy consists of processor register mem-
ory, cache memory, main memory, secondary storage, and
finally, tertiary storage. When the processor issues a request
for data, the penalty (in terms of time) for retrieving the
data is directly proportional to the hierarchical distance of
the data from the processor, which constitutes the apex of
the hierarchy. In a MOD system as shown in Fig. 1, the
analogous hierarchy consists of client terminal (set-top
box), neighborhood server, metropolitan server, and archi-
val server. A similar relationship exists in this case with
regard to the time delay for data retrieval by a client.

On account of the stringent real-time and storage capac-
ity requirements of multimedia data, the servers are high-
end machines with gigabytes of storage space and high I/O
bandwidth. Moreover, higher up the hierarchy is the server,
the higher its storage and I/O capacity. In order for the en-
tire system to be cost effective, each server must be cost
effective. Hence, it is very important to optimize the utili-
zation of each resource type of the server. This paper deals
with techniques to maximize the utilization of one of the
resource types of a MOD server.

1.2 Related Work
Researchers have proposed various approaches for the
storage and retrieval of multimedia data. Anderson et al. [1]
have proposed file system design techniques for providing
hard performance guarantees. Reddy and Wyllie [3], [4]
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have proposed a disk arm scheduling approach for multi-
media data, and characterized the disk-level trade-offs in a
multimedia server. Rangan and Vin [5] and Rangan et al. [6]
have proposed a model based on constrained block alloca-
tion, which is basically noncontiguous disk allocation in
which the time taken to retrieve successive stream blocks
does not exceed the the playback duration of a stream
block. Storing a stream on a single disk restricts the re-
trieval bandwidth to the data transfer bandwidth of the
disk. Ghandeharizadeh and Ramos [7] get around this
problem by striping media data across several disks in
a round-robin fashion. The effective retrieval bandwidth is
then proportional to the number of disks used. Our server
model is similar to this model in using data striping, round-
robin distribution of successive stream fragments and con-
tiguous allocation within a given fragment. Vin et al. [8]
categorize real time clients into two classes, those that
require hard- and soft-performance guarantees, respec-
tively. For the latter class, the worst case assumptions made
in admitting new users are relaxed based on the ob-
served server load to increase the number of users that can
be supported.

Issues in designing MOD servers are discussed in [9],
[10]. Most previous work has concentrated on minimizing
disk rotational and seek overheads in retrieving data. It is
only now that the issues in dealing with higher level as-
pects of MOD servers are being addressed. Various striping
trade-offs have been studied in [7], [11], [12], [13], [14].
Freedmann and De Witt [15] and Ozden et al. [16] studied
efficient memory allocation and utilization techniques to
maximize the number of supported users. Freedmann and
De Witt [15] also studied cost trade-offs and scalability is-
sues in high-performance MOD servers. Techniques for im-
proving reliability and availability of the storage subsystem
are studied in [17]. Interserver [18], [10] and intraserver [19]

caching techniques for tuning server performance based on
user access patterns have also been proposed. However,
little work has been reported on instrumentation of I/O
traffic in a MOD server. We have performed a component-
wise instrumentation of the delays in a MOD [20], where
we showed that variable delays become performance bot-
tlenecks at high loads.

1.3 Our Research Contributions
A substantial body of research has been directed towards
trying to match the disparity between available and re-
quired data retrieval bandwidth from secondary storage,
for the most part in the form of magnetic disks, in a
MOD server. Techniques for balancing the load on the stor-
age devices of a MOD server were developed in [21]. Given
the fact that a high-performance MOD server consists of
multiple processors (nodes) connected by an intercon-
nection network, not much work has been reported on
efficient use of the interconnection network so as to maxi-
mize server capacity. Techniques for doing so are the sub-
ject of this paper.

From an application-level perspective, the most impor-
tant metric for evaluating an on-demand server is the
maximum number of streams that it can source simulta-
neously. From a data storage organization perspective,
various striping trade-offs exist for achieving parallelism
of data retrieval. After briefly examining these trade-offs,
we investigate how file replication can improve the perform-
ance of one of the striping alternatives with respect to the
maximum number of streams that can be supported. Lastly,
from an operating systems perspective, it is essential to bal-
ance the workload on the subsystems of a server, viz., the
processor nodes, the interconnection network, and the stor-
age subsystem.

Fig. 1. Block diagram of a hierarchical media-on-demand (MOD) system.
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In this paper, we design and evaluate various policies for
assigning stream requests to server nodes, so as to mini-
mize traffic on the interconnection network. Five strategies

1)� round-robin (RR),
2)�minimum link allocation (MLA),
3)�minimum contention allocation (MCA),
4)�weighted minimum link allocation (WMLA), and
5)�weighted minimum contention allocation (WMCA)

are developed. These policies differ in that some of them
attempt to balance the load on the nodes that source data to
the outside world (RR), some attempt to minimize load on
the interconnection network (MLA, MCA), while the others
attempt to do both. We have developed and implemented a
logical model for a MOD server [19], [20]. Performance re-
sults of the five policies under this model implemented on
the Intel Paragon parallel computer are presented. We also
consider the subject of file replication to alleviate the
workload imbalance on the storage subsystem due to
skewed data access patterns. Two schemes£the Parent
Group Based Round-Robin Placement (PGBRRP) scheme
and the Group Wide Round-Robin Placement (GWRRP)
scheme£for storing the replicas of a file are developed.
Performance results of the stream assignment strategies
when files are replicated are presented.

The rest of this paper is organized as follows: Section 2
presents a brief overview of the server model. In Section 3,
we explain the data organization, access and scheduling
policies. In Section 4, we develop the five allocation
strategies. We present and analyze performance results in
Section 5. Two schemes for storing replicated files, and
their performance evaluation, are presented in Section 6. In
Section 7, we discuss future work, and Section 8 summa-
rizes the paper.

2 SERVER MODEL

At the heart of the system is a high-performance server op-
timized for fast I/O. A parallel machine is a good candidate
for such a server because of its ability to serve multiple cli-
ents simultaneously, its high disk and node memory, and
the parallelism of data retrieval that can be obtained by
data striping. In this model, we assume that:

�� The server is connected to clients by a high-speed
wide area network, for example, using ATM switches
and a fiber optic network. The wide area network de-
livers data to clients reliably and at the required
bandwidth, consequently, it is eliminated from further
discussion in the rest of this paper.

�� Clients have hard deadlines i.e., they cannot tolerate
jitter in delivered data. Although client display sta-
tions may have a few megabytes of main memory and
tens of megabytes of secondary memory, the storage
space is not sufficient to store most multimedia files
(which are of the order of a few gigabytes in size) in
their entirety. Consequently, the server must retrieve
and supply data to clients at almost the same rate as
its consumption by clients.

�� The data are stored at the server in compressed digital
form. The decompression of the data is done at the
remote client’s multimedia terminal.

Fig. 2 shows the data model of the MOD server. It con-
sists of multiple nodes interconnected by a network. Each
node is a computer in its own right, with a CPU, RAM and
secondary storage. In addition, each node has an interface
with the interconnection network. It consists of two types of
nodes, interface (I) nodes and storage (S) nodes connected
by a high-speed interconnection network. In addition, there

Fig. 2. Logical architecture of server.
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is a third type of node, called the object manager (O) node
(not shown in the picture). The object manager receives
all incoming requests for media objects. It has knowledge
of which storage nodes an object resides on and the work-
load of the interface nodes. Based on this knowledge, it
delegates the responsibility of serving a request to one of the
interface nodes. The interface nodes are responsible for
scheduling and serving stream requests that have been ac-
cepted. Their main function is to request the striped data
from the storage nodes, order the packets received from the
storage nodes, and send the packets over the high-speed
wide area network to the clients. An interface node can also
use its local secondary storage to source frequently accessed
data objects. Storage nodes actually store multimedia data
on their secondary storage devices in a striped fashion, and
retrieve and transmit the data to an interface node when
requested to do so.

The assumption about the architecture of the intercon-
nection network is that any node can transfer data to and
from any other node with approximately the same latency,
under conditions of light load. For the purposes of this pa-
per, we assume that the interconnection network is a direct
network. In this architecture, each node has a point-to-
point, or direct, connection to some number of other nodes,
called neighboring nodes. Direct networks have become a
popular architecture for constructing parallel computers
because they scale well [23] with the number of nodes. Ex-
amples of popular direct networks are n-dimensional
meshes and k-ary n-cubes; these are popular because their
regular topologies simplify routing.

3 DATA ACCESS AND SCHEDULING

3.1 Data Organization
As mentioned earlier, the data is compressed and striped
across the storage nodes in a round-robin fashion. The
number of nodes across which an object1 is striped is called
the stripe factor (SF). The collection of SF storage nodes that
store an object is called a striping group. The data stored at a
storage node consists of chunks of the object. The collection
of chunks is called a subobject. Note that the collection of
chunks of a subobject do not constitute a contiguous por-
tion of the object; however, the data within a chunk is a
contiguous part of the entire object. This contiguous data is
called a stripe fragment. Fig. 3 illustrates these concepts.

1. The term object refers to the stored multimedia data, when the data is
being retrieved and sourced to the client, it is called a stream.

With reference to the figure, object M1 consists of four (SF =
4) subobjects stored on storage nodes S1 through S4. The
subobject on node S1 consists of stripe fragments M1.1,
M1.5 etc.; that on node S2 consists of stripe fragments M1.2,
M1.6, etc.; that on node S3 consists of stripe fragments M1.3,
M1.7, etc.; and that on node S4 consists of stripe fragments
M1.4, M1.8, etc. Note that each storage node may have a
single high-performance disk, or an array of slower, but
cheaper disks. The point to note is that a storage node rep-
resents a virtual disk to an interface node. Since the stripe
fragments on any given storage node’s disk are not con-
secutive fragments, it is not necessary to store them con-
tiguously. Disk scheduling algorithms to optimize retrieval
from the disk surface have been proposed [3], [24], [15], and
can be used in our model. We are concerned with harness-
ing the parallelism provided by striped storage and bal-
ancing the load across the server subsystems.

An important factor that affects retrieval time is the
placement of each stream’s media data relative to that of
other streams, i.e., the manner in which the data is parti-
tioned across multiple disks has a critical effect on the re-
trieval time seen by any one stream; this is so because some
or all of the data of other streams that are being served may
overlap with the data of the observed stream on the storage
nodes. This overlap results in queueing delays for the ob-
served stream’s retrievals from the storage nodes. For un-
derstanding the data partitioning strategy used we define a
term called the degree of overlap (DoO). This is a positive
integer, 0 � DoO � SF (SF is the stripe factor) and denotes
the distance between the ith subobject of object j and the ith
subobjects of object j + 1, in terms of the number of storage
nodes. The concept of DoO is illustrated in Fig. 3.

Another factor that affects retrieval time is the stripe
factor. We differentiate between wide striping, in which a
media object is striped across all the storage nodes of a
server, and narrow striping, in which an object is striped
across a fraction of the total storage nodes in a server. Each
approach has its advantages and disadvantages. In the lat-
ter case, a striping group containing a frequently accessed
object can become a bottleneck for the server in the absence
of object replication. For example, in a video-on-demand
case, it is but natural that some videos will be more fre-
quently accessed than others: Newly released videos are
likely to be more frequently accessed than older videos.
Wide striping avoids the formation of such bottlenecks by
striping an object across all the storage nodes, which has
the effect of balancing the load across all storage nodes
even for skewed access patterns. However, wide striping

Fig. 3. Degree of overlap (DoO). This figure shows three objects, M1, M2, and M3 striped across six storage nodes, with a DoO of 2.
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also has some drawbacks. In wide striping, there is only
one striping group; this complicates system reconfigura-
tion. Since each storage node has some data for all ob-
jects stored in the server, most of the chunks of all the ob-
jects may have to be moved. This may lead to an unde-
sirable reconfiguration load on all storage nodes. In con-
trast, in narrow striping, only the storage nodes in the
striping group where the object is stored incur the penalty.
Secondly, the larger the size of a striping group (i.e., the
wider the striping), the lower is the reliability, and also the
availability, of the entire system [17], [14] in the event of a
single disk failure.

3.2 Parameters Used and Scheduling Constraints
Table 1 shows the parameters used by our model. dI is the
time for which a packet sent by an I node to a client will last
at the client. Hence, this is also the deadline by which the
next packet from the I node must be received at the client.
Its value is given by:

d I =
P
R

I

pl
          (1)

Once the requested SF stripe fragments from the S nodes
have arrived at the destination I node, the latter arranges
them in the proper sequence and continues sending pack-
ets of size PI to the client no less than every dI secs. The
buffer at the I node will last for dS time, before which the
next set of stripe fragments must have arrived from the S
nodes. The average time to retrieve PS bytes from a S node
is given by

d d d d d dio rg avg avg tr nwseek rot PS PS
= + + + +     (2)

where drg is the time delay for a request from an I node to
reach a S node,

d avgseek

and
d avgrot

are the average seek and rotational latencies for the disks
being used,

d trPS

is the disk data transfer time for Ps bytes, and
d nwPS

is the network latency to transport Ps bytes from a S node
to an I node.

Thus, if the playout of an I node buffer is started at time
t, then the latest time by which the requests for the next set
of stripe fragments must be issued to the S nodes is:

tmax = t + dS - dio . (3)

Note that (2) uses average seek and rotational latencies for
disk accesses. Since these latencies are variable, there will
be boundary conditions when the time to retrieve PS bytes
is much more (less) than the average value. However, the
effect of this deviation from the average value on the over-
all service time depends on the relative magnitudes of the
other components of the service time. Our approach is
based on the fact that when the granularity of data read
from disk is large, the effect of random disk seek and rota-
tional overheads is reduced. While it is true that doing so
increases buffering requirements, contemporary computers
have large main memories, and using such machines as
server nodes is well worth the gain obtained in making disk
service time more predictable. Of course, if some clients
require strict performance guarantees, then one can catego-
rize users into those requiring hard and soft deadlines, and
use the maximum values of the disk overheads for admit-
ting users of the latter kind.

4 STREAM ASSIGNMENT POLICIES

The motivation for these policies is that in a given server
configuration, only a finite number of nodes would be
connected to the high-speed wide area network; these
nodes are the interface nodes. Moreover, their position in
the server architecture would be fixed a priori. Sec-
ondly, since the secondary storage capacity for a given
server configuration is finite, only a finite number of media
objects can be stored in the secondary storage system at a
time. In order to maximize the pool of potential clients,
there would exist a tertiary storage system from which the
most frequently requested objects are materialized2 on the
secondary storage subsystem [12]. For example, a movie on
demand server with a secondary storage capacity of 100 giga-
bytes would be able to store about 100 MPEG-1 encoded

2. The assumption is that the penalty of retrieving data from archi-
val storage is too high for the high-bandwidth requirements of multime-
dia data.

TABLE  1
THE PARAMETERS USED IN THIS PAPER
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movies, but have a catalog of 400 titles to maximize clien-
tele. However, the number of movies stored on secondary
storage would be a slowly changing set, changing every
two or three days or maybe weekly. Consequently, over a
short period of time (say one day) the data distribution on
secondary storage would be more or less static. Given the
fact that the position of the I nodes and the storage pattern
of data on S nodes is fixed.3 the problem is one of assigning
accepted media requests to I nodes so as to minimize the
incremental workload due to the new requests on the
server’s resource types. This allows the server to maximize
the number of streams that it can source. We now present
and evaluate five schemes that differ in the workload they
impose on the interconnection network when assigning
requests to interface nodes.

The communication time over the network is the sum of
two factors:

1)� the network latency in the absence of blocking, and
2)� the blocking time due to link contention in the inter-

connection network i.e.,

d d dnw nw nwPS comm bl
= + .       (4)

For a given message size and interconnection network, the
former is fixed; while the latter depends on the network
traffic. There is another variable delay in the retrieval time:
When multiple requests arrive at a S node, only a finite
number of them can be served at a given time; this causes a
queuing delay at the S nodes. If

d SQ

denotes this queueing delay, (2) requires to be modified to:

� = + + + + + +d d d d d d d dio rg seek rot tr nw nw SPS comm bl Q4 9  .  (5)

We have studied the effect of the variable delays
d nwbl

and
d SQ

on total retrieval time at various workloads [20]. While
most admission control policies for accepting stream re-
quests in a MOD server have concentrated on storage de-
vice parameters such as seek and rotational latencies
(which are bounded), a dynamic admission control policy
was proposed in [20] that takes these variable (and poten-
tially unbounded) delays into account. At heavy work-
loads, these blocking delays become the limiting factors on
stream sourcing capacity. Any mechanism that reduces ei-
ther or both of these quantities improves performance. In
this paper, we show that techniques that reduce

d nwbl

by minimizing link contention translate into the ability to
support more streams simultaneously.

3. Redistribution of data on the fly is expensive in terms of operating
system overhead on account of disk I/O and the large size of typical mul-
timedia objects.

4.1 Round-Robin (RR) Assignment Policy
This is the simplest policy and will be used as the baseline
policy for comparison purposes. If n is the total number of
interface nodes, and the ith request was assigned to inter-
face node k, then the (i + 1)th request will be assigned to
interface node (k + 1) mod n. The greatest merit of this pol-
icy is that it is simple, requiring O(1) time to execute. It also
balances the workload in terms of number of streams
served per I node equally among the I nodes: The maxi-
mum difference among the number of streams that any two
I nodes server at a given time is at most 1. However, this
policy does not balance or minimize the load imposed on
the interconnection network.

4.2 Minimum Link Assignment (MLA) Policy
This policy aims to minimize the total number of links that
the data for an object has to travel from the SF storage
nodes on which it is stored to the I node which sends it to
the outside world. If

lI Si j

denotes the number of links between interface node Ii and
storage node Sj, then the cost of assigning a stream request
to interface node Ii under this policy is:

CA I lMLA i
j

SF

IiSj
( ) =

=
Ê

1

.    (6)

This policy will assign a request to interface node p, where

p = i : (min(CAMLA(Ii)) i = 1, 2, ..., n)   (7)

i.e., the request is assigned to that interface node which is
closest in terms of the total number of links that need to be
traversed from the S nodes to the I node. Since (6) has to be
evaluated for all n I nodes in the server, the worst case exe-
cution time of this algorithm is O(n * SF * d) where d is the
maximum time to determine the number of links between
any two nodes in the server.

This policy tries to minimize the number of streams us-
ing a given link. However, it does not take into account the
pre-existing load on a link. Nor does it balance the total
stream load among all the interface nodes.

4.3 Minimum Contention Assignment (MCA) Policy
In this policy, state information is maintained about the
usage of each link by all objects being retrieved. Specifically,
whenever a new request assigned to an interface node, the
load imposed on the interconnection network by data traf-
fic due to that stream is calculated and the total load on the
network due to all streams is updated. When a stream ter-
minates, the load due to it is decremented from the total
network load.

If
C kI Si j

[ ]

is the cost of using the kth link on the path from storage
node Sj to interface node Ii, then the cost of assigning a
stream request to interface node Ii under this policy is:

CA I l kMCA i
k

l

j

SF

IiSj

IiSj

( ) [ ]=
==
ÊÊ

11

 .          (8)
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This policy will assign a request to interface node p, where

p = i : (min(CAMCA(Ii)) i = 1, 2, ..., n) .     (9)

The cost of using a link is directly proportional to the traffic
that the link carries. The link traffic due to accepting a new
request is updated as follows:

for (j = 1 to SF)

for k to lI Sp j
=�� ��1

C k C k ldI S I Sp j p j
[ ] [ ]= +           (10)

where ld is a scalar that reflects the load imposed by the
new stream on link k. Its value is implementation-
dependent: It depends on the network, the size of pack-
ets being transferred (PS) and the playback rate of the
stream Rpl.

The basic premise behind this policy is that the load
should be distributed evenly over the interconnection net-
work. Otherwise, if some links are more heavily used than
others, contention in these links increases network blocking
effects, which in turn degrades server performance. Note
that since the traffic pattern in the interconnection network
for data packets consists of storage nodes sending data to
interface nodes, there is a possibility of hot spots develop-
ing at the links around the interface nodes. This policy tries
to prevent the formation of such hot spots by allocating
requests to interface nodes so that aggregate link traffic is
distributed as evenly as possible over the entire intercon-
nection network. This policy is more computationally ex-
pensive than the other two, as it requires accessing the load
data structure for each link. Its worst case running time is
O(n * SF * maxl), where maxl is the maximum number of
links between two nodes in the network.

Note that when a stream relinquishes resources due to
termination or pause, network load must also be updated.
This is the opposite of (10), i.e.,

for (j = 1 to SF)

for k to lI Sp j
=�� ��1

C k C k ldI S I Sp j p j
[ ] [ ]= -  .           (11)

4.4 Weighted Minimum Link Assignment (WMLA)
and Weighted Minimum Contention Assignment
(WMCA) Policies

The MLA policy tries to minimize the total number of links
that data for a stream will have to travel, while the MCA
policy tries to minimize link contention by distributing traf-
fic over more lightly used links. However, neither of them
tries to balance the load across the interface nodes. An in-
terface node can source only a finite number of streams;
beyond this limit client deadlines may be missed due to
excessive scheduling overhead. The weighted MLA and
MCA policies try to balance the load across both the net-
work and the I nodes. This is done by factoring in the num-
ber of streams that a candidate I node is serving in the cost
equation. Specifically, if

MIi

is the number of streams being served by interface node Ii,
then the cost of assigning to it the responsibility of serving a
request under WMLA is:

CA I M CA IWMLA i I MLA ii
( ) ( )� = * + *a b      (12)

and under WMCA is:

CA I M CA IWMCA i I MCA ii
( ) ( )� = * + *a b      (13)

where a and b are fractions that sum to 1, and CAMLA(Ii)
and CAMCA(Ii) are given by (6) and (8), respectively. How-
ever, in each of (12) and (13), the two quantities being
weighted and combined can have different magnitudes.
Hence, it is necessary to normalize

MIi

and CAxxx(Ii) prior to multiplication by a and b, respectively.
This is done as follows. We normalize these terms so that
the value of each of them lies between 0 and 1, inclusive.
Let M be the total number of streams being served. Then,

CA I
M

M
CA I

lWMLA i

I MLA i

max

i( )
( )

= * + *a b       (14)

where lmax is the maximum number of links between a given
node and SF other nodes with which it has to communicate.
The normalized cost for WMCA is:

CA I
M

M
CA I

ldWMCA i

I MCA i

agg

i( )
( )

= * + *a b      (15)

where ldagg is the aggregate traffic load on the interconnec-
tion network; i.e., the sum of the load on each link of the
network. This value can be easily maintained (one addition
operation) whenever (10) is invoked.

The criterion for selecting a candidate I node is similar to
that for the respective unweighted cases [(7) and (9), re-
spectively]; so are the running times. The value to assign to
the weight is a design choice that depends on the network
size and topology, routing strategy and the maximum
number of streams that an I node can source. Note that
WML(C)A with a = 1, b = 0 is equivalent to RR, while
WML(C)A with a = 0, b = 1 is equivalent to ML(C)A.

5 PERFORMANCE EVALUATION

We have implemented our logical server model on the
Intel Paragon parallel computer. The Intel Paragon [27]
is a mesh-based architecture with Intel i860XP micro-
processors. Interprocessor communication is done using
wormhole routing [23]. The most important metric of an in-
terconnect for multimedia data is its communication la-
tency, which is the sum of three factors: start-up la-
tency, network latency, and blocking time. The first two are
static features for a given system in that the sum of their
values represents the latency of packets sent in the ab-
sence of other network traffic and transient system ac-
tivities. Blocking time includes all possible delays encoun-
tered during the lifetime of a packet, such as those due
to link contention. An important reason for the growing
popularity of wormhole routing as a switching technique
in interconnection networks is that when it is used, the
network latency is almost independent of the path length
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when there is no link contention and the packet size is
large. Thus, minimizing link contention ensures that the
deleterious effects of blocking time are kept in check,
which, as explained above, is crucial to providing real-
time communication guarantees. By its very nature, worm-
hole routing is highly susceptible to deadlock condi-
tions. Various routing algorithms have been proposed and
used to provide deadlock-free wormhole routing. We
use deterministic XY routing in which packets are first sent
along the X direction, and then along the Y dimension. We
benchmarked the interconnection network of the Paragon
for determining its bandwidth. In the absence of any other
traffic, a round trip send-receive achieved an average link
bandwidth of 17.6 Megabytes/sec.

The data access pattern is assumed to follow a Zipfian
distribution (Fig. 4) with parameter 0.271 [26]. The total
number of objects in the server is assumed to be 100. Due
to storage space and availability of real-world data limita-
tions, the disk access part was simulated. The disk access
time was simulated by elapsing the system timer on each
storage node. Disk retrieval was simulated by assuming
that the stripe fragments are stored on the disk using a
random placement model [22]. We have assumed giga-
bytes of disk space per node, and a disk data transfer
rate of 10 Mbytes/sec, with two disks per storage node.
Currently available magnetic disks have data transfer rates
of a few megabytes per second. In general, for higher
data transfer rate and rotational speed of the disk, the
higher the disk cost. Thus, it might be better to have an ar-
ray of cheaper but slower disks than a single fast disk. For
example, one could use an array of four disks to achieve a
10 Mbytes/sec data transfer rate. In practice, the exact type
and configuration of disks to use is an implementation de-
cision. We used a playback rate (Rpl) equal to the MPEG-1
rate of 1.5 Mbits/sec. Table 2 shows the values of the pa-
rameters defined in Table 1 that we used for our simulation.
It should be noted that except for the simulation of the disk
access, the rest of the server operations were implemented
including the scheduler and data transfer over the inter-
connection network.

The traffic was generated as follows. Initially, requests
for videos are sent to the object manager at random times,
with average interarrival time of 2 secs. There is an initiali-
zation transient until all interface nodes have started
sourcing streams. When this occurs, the software begins
gathering performance data. Each video lasts for about
10 minutes. As soon as a video terminates, a new request
for a video is sent to the object manager. Disk retrieval was
simulated by assuming that the stripe fragments are stored
on the disk using a random placement model [22]. For the
purposes of this paper, we assume a DoO of 0, nine stripe
groups and a stripe factor of 4.4 We used a 8 � 6 mesh result-
ing in a total of 48 nodes used in the experiment. Fig. 5
shows the distribution of I nodes and S nodes. Node 20 is
the object manager (O), nodes marked ‘I’ are interface
nodes, and the other nodes are storage nodes.5 The value of

4. Numerous trade-offs are possible with respect to the data partitioning
strategy, which are well reported in [7], [11]. However, these are not the
subject of this paper.

5. We have performed experiments for other distributions of S and I
nodes. The results in those cases were similar to the ones presented below,
and have not been included in this paper on account of space limitations.

the parameter ld for the MCA policy (Subsection 4.3) we
used was 1, since the value of PS and Rpl is the same for
all streams.

The load on the server was increased by incrementally
increasing the number of object requests during startup. We
carried out experiments for all five assignment policies. The
same data distribution and request pattern were used for
each experiment, in order to permit comparison of the re-
sults. The most important metric for comparison is the maxi-
mum number of streams that can be supported. We have
used deterministic (as opposed to statistical) deadlines, i.e.,
deadlines are hard and clients cannot tolerate missed packets.
The other metrics we used were the degree to which

Fig. 4. Zipfian distribution.

TABLE  2
THE PARAMETER VALUES USED FOR THE EXPERIMENTS
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load is balanced across the interface nodes in terms of
number of requests, and the frequency distribution of pack-
et blocking time.

5.1 Comparison of Load Balancing Ability
In order to compare the distribution of stream requests to
the I nodes, the number of streams served by each interface
node was measured for the same number of total streams
served by the server for each policy except for RR. Fig. 6
illustrates these values for each I node in Fig. 5 for a total
server load of 565 streams for the RR policy and for a load
of 630 streams for the other four policies. The reason for the
different stream loads used for RR and the other four poli-
cies is as follows: We are primarily interested in server per-
formance under stress conditions (i.e., high-stream loads).
Except for the RR policy, each of the other four policies
supported at least 630 streams, but the maximum num-
ber of streams supported by RR was only 565. (Note that I
node 1 in the graph corresponds to node 2 in the mesh, I
node 2 corresponds to node 9, etc.) We first compare the
RR, MLA, and MCA policies. We note from the figure that
the RR policy performs best in terms of balancing stream
load across the interface nodes. A measure of the degree to
which a request assignment policy balances stream load
across the interface nodes is the standard deviation of the
number of streams per interface node, s. Table 3 shows this
value for the five policies. The standard deviation of the
number of requests per I node for MLA, sMLA, is the worst
among the standard deviations of RR, MCA, and MLA. The
reason for this is the skewed data access pattern.

Now, consider the WMLA and WMCA policies. The
graphs in Fig. 6 for the WMLA and WMCA policies are for
values of a and b of 0.5 each. In this case, too, the load bal-
ancing of WMCA is better than that of WMLA. Although
sWMLA (8.85) is less than sMLA (33.75), it is still greater than
sWMCA (4.07). In summary, the weighted assignment policies
improve the load balancing ability at the I nodes as com-
pared to the pure schemes; however, MCA gives better per-
formance than MLA, and WMCA gives better performance
than WMLA for this metric.

5.2 Comparison of Network Blocking Time
We now compare the performance of the policies with re-
spect to the network blocking time. With reference to (5),
the networking blocking time for each packet requested by
an I node from a S node,

d nwbl
,

was measured as follows: dseek and drot were measured at
runtime. Given a disk and a value of PS,

d trPS

can be computed.

d SQ

is given by

d d d dS t seek rot trQ PS
= - + +�� ��D ,

where Dt is the time interval between arrival of the packet
request at the S node, and the time when the packet is sent
to the requesting I node.

d nwcomm

is a known when PS and network bandwidth in the absence
of blocking is fixed. The round trip time for the sequence of
events represented by (5),

d io�  ,

is measurable at runtime. Hence, the only unknowns in (5)

are drq and

d nwbl
,

from which the latter can be approximated.6 Fig. 7 shows
the distribution of packet network blocking time,

d nwbl

for the five policies.
Bins of size 10 msec each were used to count the distri-

bution of network blocking time for each packet. The hori-
zontal axis depicts these bins i.e., 0-10 msec, 11-20 msec,
21-30 msec, etc. The vertical axis shows the percentage of
packets that fell in each bin. For real-time retrieval of data
with a high quality of service (QOS), it is desirable that
the variable components in (5) be bounded and of mini-
mal value. Hence, the higher the cumulative percentage of
packet blocking times falling in the leftmost bins, the bet-
ter is the performance of the policy. Keeping this in mind, it
can be seen that the performance of the policies with respect
to this metric (in ascending order) is RR, MCA, WMCA,
WMLA, and MLA. Note that the frequency distribution
of blocking times for the last four are not very different
from each other. This would suggest that the perform-
ance of the (W)MLA policy would be similar to that of
the (W)MCA policy in terms of the maximum number
of streams supported. However, this is not the case, as
shown below.

6. The time for the request from the I node to reach the S node, drq, can be
neglected. This is a packet of a few bytes in length; moreover, it is in the
opposite direction of the dataflow. Hence, its value is very small compared
to the other terms.

Fig. 5. Distribution of I, S, and O nodes in the evaluation configuration.
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5.3 Comparison of Stream Sourcing Capacity
We now compare the policies with respect to the more
important metric of stream sourcing capacity. Table 4 shows
the maximum number of streams that were supported by
each policy, without missing any packet deadlines, together
with the percentage improvement over the RR policy. As
expected, the RR policy performs the worst. Although it
best balances the stream among the I nodes (minimum s),
it makes no effort to balance the load on the interconnec-
tion network. At the other end of the spectrum are the MLA

and MCA policies: They try to reduce load on the inter-
connection network by minimizing link contention; how-
ever, they do not try to balance the load across the I nodes.
In spite of this, they outperform RR by 12.0 percent and
14.5 percent, respectively. Between RR, on the one hand,
and MLA and MCA, on the other, are the WMLA and
WMCA policies that try to balance the load on both the
network as well as the I nodes. This translates into superior
performance over RR, MLA, and MCA. The WMCA policy
with a = 0.5 gave the highest throughput of 757 streams

Fig. 6. Comparison of request assignment of RR, MLA, MCA, WMLA, and WMCA policies.

TABLE  3
STANDARD DEVIATION OF STREAM LOAD PER I NODE
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among the five cases shown, corresponding to a 34.0 per-
cent improvement over RR.

In summary, although the performance of (W)MLA is
similar to that of (W)MCA as far as network blocking time
is concerned, the load imbalance on the I nodes is much
higher for the former than for the latter (Table 3). This ex-
plains why (W)MCA consistently outperforms (W)MCA in
the maximum number of supported streams.

5.4 Overhead of (W)MLA and (W)MCA Policies
An advantage of the RR policy is that its use incurs al-
most zero overhead. Execution of the (W)MLA and (W)MCA

policies incurs overhead due to computations and com-
parisons. For the highest workload supported by WMLA
(736 streams), the total (i.e., total for all streams) time over-
head was 9.3 secs, while for WMCA (757 streams), it was
29.7 secs.7 The overhead for either of (W)MLA or (W)MCA
per stream is of the order of a few millisecs, which is a neg-
ligible fraction of the duration of a two-hour movie.
Moreover, the algorithm needs to be executed only at the

7. The difference between overhead of MLA and WMLA, and MCA and
WMCA, was negligible (of the order of a few millisecs). This is so because
MLA and MCA differ from WMLA and WMCA by only 2 floating point
multiplications and an addition.

Fig. 7. Frequency distribution of packet network blocking time for RR, MLA, MCA, WMLA, and WMCA policies.

TABLE  4
THE MAXIMUM NUMBER OF STREAMS SUPPORTED FOR EACH EXPERIMENT
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time of accepting a request (and possibly when a paused
stream is restarted. The (W)MCA algorithm also needs to be
run when a stream pauses or departs). Thus not only are
these policies effective in increasing server throughput,
they are also efficient in terms of overhead incurred.

6 EFFECT OF REPLICATION

6.1 Motivation
In the experiments described thus far, the subject of object
replication has not been addressed. We now develop two
schemes for replicating frequently accessed files, and pres-
ent the performance of these two schemes.

As noted in Table 2, the database we used for the ex-
periments consisted of 100 files, with each file stored in one
of nine striping groups. Each file is assumed to have an
object id, i. Similarly, each striping group also has a group
id, k. The object ids are positive integers starting from 1
(Fig. 4), and so are the group ids. If N is the number of
striping groups, a file with id i is stored in group k, where

k = (i - 1) mod (N) + 1   (16)

Thus, files with object ids 1, 10, 19 etc. will be stored in
group 1, files with object ids 2, 11, 20, etc. will be stored in
group 2, and so on. In the absence of file replication and in
the presence of a skewed data access pattern, a striping
group containing a frequently accessed file can become a
hot-spot for the storage subsystem and cause the perform-
ance of the server to degrade. One way to avoid such hot-
spots from developing is to replicate frequently accessed
files in different striping groups, so that accesses are spread
over multiple striping groups instead of being localized to
one group. Object replication is expensive in terms of stor-
age space (due to the typically large size of multimedia
files). Moreover, when files are replicated, the issue arises as
to which replica of a file is to be chosen for serving a re-
quest for the file. This may require multiple executions of
the the assignment policies developed in this paper, which
may be computationally expensive. We develop two heu-
ristic replication schemes that not only avoid multiple exe-
cutions of the algorithms to select an interface node for
serving a request, but also improve server performance, in
terms of the number of streams supported.

Two important design decisions that must be made
when replication is considered are:

1)�Which files should be replicated, and
2)�How many replicas should be made of a file?

Observe that in a skewed access distribution such as in
Fig. 4 (which is a distribution observed in practice by [26]),
a few files account for a majority of the accesses. For the
particular case in the figure, 10 percent of the files account
for nearly 40 percent of all accesses. Assuming that the de-
cision about which files to replicate has been made, we
propose that the number of replicas of each file, and the
placement of each replica, can be determined using the fol-
lowing heuristics:

1)� If a is the access probability, expressed as a per-
centage, of a file i which is to be replicated, then form
(a - 1) replicas of file i, rounded to the nearest integer,

so that there can exist at most ÎaÞ copies of the file. For
example, if the access probability of a file is 6.8 per-
cent, then six replicas of the file will be formed,
which, together with the original, will result in seven
copies of the file in existence.

2)�The maximum number of copies of a file should not
exceed N, the number of striping groups.

3)�Each copy of a file must be placed in a unique strip-
ing group.

We now discuss two alternative schemes for choosing the
striping group in which to store a copy of a replicated file.
We define the parent group of a file to be the group id of the
file as determined by its object id by (16). The original (first)
copy of a replicated file is stored in its parent group. The
two schemes presented below give the striping group of a
replica of a file with respect to its parent group.

6.2 Scheme #1: Parent Group-Based Round-Robin
Placement (PGBRRP)

In this scheme, if ki
0  is the parent group for a file i, then the

jth replica of file i will be stored in group kj
i , given by

k k j N j nj
i i

i= + + � <0 1 14 9mod ( ) ,  (17)

where N is the number of striping groups and ni is the total
number of copies of file i(ni � N). In other words, in this
scheme, the replicas of a file are stored in a round-robin
fashion among the striping groups, starting from the parent
group of the file.

6.3 Scheme #2: Group Wide Round-Robin Placement
(GWRRP)

In this scheme, the original copy of each file is placed in its
parent group as determined by (16). The replicated versions
are placed round-robin a mong the striping groups as fol-
lows. Let r be the number of files that are chosen for repli-
cation, let M be the total number of replicas (i.e., excluding
original copies) of all files, N be the number of striping

groups, and ni be the total number of copies of file i(ni � N).
The pseudocode for storing the jth replica of file i, denoted
by kj

i , follows:

Rptr = 0;
for (Rcount = 0; Rcount < M; Rcount ++)

for (i = 1; i <= r; i ++)
for (j = 1; j < ni; j ++){

if (ki
0  � Rptr mod (N) + 1)

kj
i  = Rptr mod (N) + 1;

else
kj

i  = (Rptr + 1) mod (N) + 1;

Rptr = Rptr + 1;
}

Fig. 8 shows the way in which five objects having six,
four, three, two, and one replica, respectively, would be
stored among a configuration of nine striping groups under
the two placement schemes. Intuitively, one would expect
the GWRRP scheme to better balance load among the
striping groups than the PGBRRP scheme.
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6.4 Operation of Dynamic Allocation Policies with
Replication

When a file is replicated, one way of choosing an interface
node to source a request for the file is to execute the as-
signment policies of Section 4 for each replica of the file.
However, this can be computationally expensive. For in-
stance, if a file has 10 copies stored, then the policies would
have to be executed 10 times for each request for the file,
one for each stored copy of the file. One way to get around
this problem is to use a simple round-robin rule to choose
the copy of a replicated file that will be used to serve the
file request. This design choice has the advantage of negli-
gible (O(1)) computational overhead in choosing a copy of
a replicated file to be used in serving a request for the
file, and also has the added advantage of balancing work-
load among the copies of a replicated file. This is the ap-
proach we use in this paper. Another approach is described
in Section 7. We now present the performance of the stream
allocation policies for the two replication schemes.

6.5 Comparison of I-Node Load Balancing Ability
As noted in Subsection 6.1, in a skewed data access pattern,
such as the Zipfian distribution considered in this paper, a
few files account for a large number of files. Accordingly,
we chose to replicate 10 percent of the files in the database,
which amounts to 10 files. Two sets of experiments were
conducted, one for each replication scheme described in
Subsections 6.2 and 6.3. The files were replicated according
to the two schemes, and the values of the other parameters
were the same as in Section 5.

Fig. 9 shows the distribution of requests among the inter-
face nodes for the MLA, MCA, WMLA, and WMCA poli-
cies for three cases: no replication and with replication us-
ing the two schemes. Performance of RR has not been
shown because it will be similar to the case of no replica-
tion. Except otherwise noted, the graphs are for a total
server load of 630 streams (MLA with replication scheme #2
could support a maximum of only 611 streams). Table 5
shows the average number of streams served by each I
node, and the standard deviation from this average for an I
node. The results for replication are similar to the case
without any replication, viz., (W)MCA performs better than
(W)MLA, WMLA performs better than MLA, and WMCA
performs better than MCA, the metric being load balancing
ability among the I nodes.

6.6 Comparison of Striping Group Load Balancing
Ability

While load balancing performance among the I nodes in the
presence of replication was not too different from that
without replication, consider now the metric of load bal-
ancing with respect to the striping groups.

Fig. 10 shows the number of streams served by each of
the nine striping groups for the three cases of no replica-
tion, and replication using schemes 1 and 2, for three total
server stream loads: 630, 730, and 800 streams. Observe
from the figure that the variation among group load seems
to be the largest for the case with no replication. This is cor-
roborated by Table 6, which shows the group-wide mini-
mum and maximum number of streams, average number of
streams per group served by the storage subsystem, and the
standard deviation from the average, for the three cases.
From the column for the standard deviation we observe
that for a given replication policy, the load imbalance
among the striping groups increases as net server stream
load increases. More importantly, at a given stream load,
either replication scheme results in at least a 50 percent re-
duction in the standard deviation from the average number
of streams per striping group, as compared to the case with
no replication. Among the two replication schemes, the
PGBRRP scheme consistently outperformed the GWRRP
scheme in terms of striping group load balancing ability.

6.7 Comparison of Stream Sourcing Capacity
We now consider the most important metric from an
application-level point of view: the maximum number of
streams supported. Table 7 shows the number of streams
that were supported by each assignment policy for each rep-
lication case, together with the percentage improvement
over the case of RR allocation of stream requests to I nodes
and no data replication. For the WMLA and WMCA policies,
results are shown for a values of 0.25, 0.5, and 0.75, re-
spectively. In the case of the RR policy, replication has a
derogatory effect on maximum streams that can be sup-
ported; this number was lower for both replication schemes
as compared to the case with no replication. Since RR gives
worst performance among the five allocation policies, this
observation is not discussed further. For the MLA and
MCA policies, replication has a negligible impact on the
maximum number of streams that can be supported. This
is to be expected, since the dominating influence on

Fig. 8. Placement of five objects and six, four, three, two, and one replicas of each object, respectively, among nine striping groups for PGBRRP
and GWRRP schemes.
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supportable streams for these policies is the wide disparity
in the number of requests assigned to each interface node.
However, for the WMLA and WMCA policies, with differ-
ent nonzero weights, the maximum number of streams that

can be supported with replication is more than that without
file replication. Moreover, among the two replication
schemes, the second scheme consistently outperforms the
first scheme for a given policy.

Fig. 9. Comparison of request assignment of MLA, MCA, WMLA, and WMCA policies for the two replication policies.

TABLE  5
STANDARD DEVIATION OF STREAM LOAD PER I NODE
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7 DISCUSSION AND FUTURE WORK

In this paper, we were primarily interested in determining
the maximum number of streams that could be supported
for each of the five policies proposed. Hence, the experi-
ments were of the nature of stress tests, i.e., the workload
offered to the server (in terms of stream requests) was in-
crementally increased until some packet delivery deadline

was missed. In an actual media server, requests arriving at
the server would be subject to an admission control policy,
which would determine whether the request could be ac-
cepted or not, based on existing workload. Refer to Fig. 11,
which shows the history of a client session at the server.
The session consists of four stages. In the first stage, the
client request would either accepted or denied depend-
ing on the result of executing the admission control policy.

Fig. 10. Comparison of stream load on each striping group for no replication and the two replication schemes, at total stream loads of 630, 730,
and 800 streams, respectively.

TABLE  6
STANDARD DEVIATION OF STREAM LOAD PER STRIPING GROUP
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If the request is accepted, resources are allocated and ini-
tialized in the next stage. In the third stage, data is deliv-
ered to the client as per the contract negotiated. In the last
stage. the session terminates and resources are freed. The
allocation policies proposed in this paper could be executed
in stage 1 or stage 2 of Fig. 11. Since the policies allocate
streams to I nodes, it is clear why they could be imple-
mented as part of the stage 2 software. The (W)MCA poli-
cies maintain state of interconnect workload, and hence,
could be integrated as part of an admission control policy.
We are developing admission control policies which can
make use of these policies.

When files are replicated, the issue of which file to use
for an incoming request for the file arises. As explained in
Subsection 6.4, one way to handle this would be to execute
the allocation policies for each copy of the requested file.
However, since each policy is executed for each I node (ex-
cept RR), this could be expensive. In this paper, we used the
low-overhead heuristic of distributing requests for file ac-
cesses to replicated files round-robin among the replicas.
Although this balances the workload among the copies of a
replicated file, it does not attempt to balance workload
among the striping groups. A policy that would do this can
be devised: State information is maintained dynamically
about the number of requests that each striping group
serves. When a request for a replicated file is received, it is
assigned to that copy of the file that is stored in the striping
group serving the minimum number of streams among the
groups which store copies of the file. We are in the process
of implementing this policy.

Lastly, we intend to extend our work to different hard-
ware environments, such as the IBM SP/2 parallel com-
puter and networks of workstations connected by high-
speed links.

8 CONCLUSIONS

In this paper, we developed five policies for assigning
requests to the interface nodes in a high-performance
multimedia server. The performance of these policies under
identical background conditions was compared. MLA, MCA,
WMLA, and WMCA each outperformed RR in terms of
number of streams. RR best balances inter I node load,
closely followed by MLA and WMLA. Although MCA and
WMCA give worst performance on this count, WMCA, with
proper choice of weights, gave highest throughput. The
(W)MCA policy is a global one, as it takes into account
the load on a link due to the existing traffic. (W)MLA, on
the other hand, is a local optimization that is oblivious to the
load imposed by other nodes. This explains why WMCA
gave the best throughput. Fig. 12 shows the effect of vary-
ing the weight values on the maximum number of sup-
ported streams for the five policies. For the parameters
and data access pattern considered in this paper, a = 0.75,
b = 0.25 gave the best performance for both WMLA and
WMCA policies. The optimum values to assign to the
weights is an implementation-dependent problem that de-
pends on the network topology, routing strategy and the
maximum streams that an I node can source. However, irre-
spective of these implementation details, changing the ratio
values of a and b in one direction makes the assignment

TABLE  7
THE MAXIMUM NUMBER OF STREAMS SUPPORTED FOR THE REQUEST ASSIGNMENT

POLICIES FOR NO REPLICATION AND THE TWO REPLICATION SCHEMES

Fig. 11. History of a client session at the server.
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criterion tend to RR (a = 1, b = 0), while changing the
ratio in the opposite direction will make it tend to ML(C)A
(a = 0, b = 1). We have shown that values in between give
better performance than these extremes. This is so because
such values try to balance both the load on the I nodes and
the load on the interconnection network, unlike the extreme
cases, which balance one or the other.

We also addressed the issue of file replication in this
paper. Two policies for placement of the replicas among
the striping group, PGBRRP and GWRRP, were developed.
Fig. 13 and Fig. 14 show the performance of the WMLA and
WMCA polcies, respectively, for the three cases of no repli-
cation, replication using PGBRRP and replication using
GWRRP schemes. Consider first Fig. 13. Except for the case
of MLA (a = 0) and RR (a = 1), file replication results in
improving the maximum number of streams that can be
supported. Also, replica placement scheme #2 outperforms
scheme #1 for these cases. This is also the general trend
with respect to the WMCA class of policies (Fig. 14). Be-
tween PGBRRP and GWRRP, while the standard deviation
of workload on the striping groups is slightly smaller for
the former than that of the latter (Table 6), the standard de-
viation of stream load among the I nodes is smaller for the
latter than that due to the former. On account of these rea-
sons, the number of streams supported using GWRRP is
more than that supported using PGBRRP for a given allo-
cation policy. Finally, in all three variations of replication,
the superiority of WMLA over MLA and WMCA over
MCA, and WMCA over WMLA is maintained.
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