Techniques for Increasing the Stream Capacity of a Multimedia
Server *

Divyesh Jadav
ECE Department & CASE Center
Syracuse University , Syracuse, NY 13244
divyesh@cat.syr.edu

Abstract

A server for an interactive distributied multimedia
system may require thousands of gigabytes of storage
space and high I/0 bandwidth. In order to mazimize
system wutilization, and thus minimize cost, the load
must be balanced among the server’s disks, intercon-
nection network and scheduler. Many algorithms for
mazimizing retrieval capacity from the storage system
have been proposed. This paper presents techniques for
wmproving server capacity by assigning media requests
to the nodes of a server so as to balance the load on
the interconnection network and the scheduling nodes.
Five policies for request assignment are developed. The
performance of these policies on a server model devel-

oped earlier is presented.

1. Introduction

Digitalization of traditionally analog data such as
video and audio, and the feasibility of obtaining
networking bandwidths above the gigabit-per-second
range are two key advances that have made possible
the realization, in the near future, of interactive dis-
tributed multimedia systems. Multimedia data differs
from unimedia data in the diversity of data sizes and
the need to provide real-time guarantees for playback
(video and audio data). One of the most pervasive in-
teractive multimedia applications is media-on-demand

vhish £ ta tha ny N £
Wwillcnl reiers 1o the possiouily o1 a

comanmer interace
LulIduliicr vl als

tively retrieving multimedia data over high-speed net-
works from geographically distributed media servers.
It is anticipated that a distributed media-on-demand
(MOD) system will be built in a hierarchical manner,
with clients connected to neighbourhood servers, which
servers, which in turn

to metropolitan

*This work is supported by Intel Corporation, NSF grants
CCR-9357840, CCR-9509143, and the New York State CASE
Center at Syracuse University. The authors thank the Caltech
CCSF facilities for providing access to the Intel Paragon.

0-8186-7557-8/96 $5.00 © 1996 IEEE

Alok Choudhary
ECE Department & Technclogical Institute

Northwestern University, Evanston, Illinois 60208.

43

choudhar@ece.nwu.edu

are connected to massive archive servers. This hierar-
chy of servers is similar to the memory hierarchy in a
computer system. When the processor issues a request
for data, the time penalty for retrieving the data is di-
rectly proportional to the hierarchical distance of the
data from the processor, which constitutes the apex of
the hierarchy. In a hierarcical MOD system, a simi-
lar relationship exists in this case with regard to the
On

time delay for data retrieval by a client. On account of
the real-time and storage capacity requirements of mul-
timedia data, the servers are high-end machines with
gigabytes of storage space and high I/O bandwidth.
Moreover, higher up the hierarchy is the server, the
higher its storage and I/O capacity. In order for the
entire system to be cost effective, each server must be
cost effective. Hence, it is essential to maximize the
utilization of each resource type of the server. This pa-
per deals with techniques to maximize the utilization

of one of the resource types of a MOD server.
1.1. Related Work

Researchers have proposed various approaches for
the storage and retrieval of multimedia data. [1]
characterized the disk-level tradeoffs in a multimedia
server. [2] proposed a model based on constrained
block allocation. [3] proposed striping media data
across several disks in a round robin fashion. The ef-
fective retrieval bandwidth is then proportional to the
number of disks used. Our server model (section 2) is
similar to this model. Issues in designing MOD servers
are discussed in [4]. A component-wise instrumenta-
tion of the delays in a MOD [5], showed that variable
delays become performance bottlenecks at high loads.
Techniques for balancing the load on the storage de-
vices of a MOD server were developed in [6] .Given
the fact that a high performance MOD server con-
sists of multiple processors (nodes) connected by an
interconnection network, not much work has been re-
ported on efficient use of the interconnection network
S0 as to maximize server capacity. In this paper we ad-

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

dress this issue by developing five policies - round robin
(RR), minimum link allocation (MLA), minimum con-
tention allocation (MCA), weighted minimum link al-
location (WMLA) and weighted contention allocation
(WMCA). We have developed and implemented a logi-
cal model for a MOD server [5]. Performance results of
the five policies under this model implemented on the
Intel Paragon parallel computer are presented.

The rest of this paper is organized as follows : Sec-
tion 2 explains the server and data scheduling model.
Section 3 presents the five allocation strategies. We
present and analyze performance results in Section 4.
Conclusions are presented in Section 5.

2. Server and Scheduling Model

At the heart of the system is a high-performance
server optimized for fast I/O. A parallel machine is a
good candidate for such a server because of its ability
to serve multiple clients simultaneously, its high disk
and node memory, and the parallelism of data retrieval
that can be obtained by data striping. We assume that
{a) the server is connected to clients by a high-speed
wide-area network, which delivers data to clients reli-
ably and at the required bandwidth. (b) Clients have
hard deadlines i.e. they cannot tolerate jitter. (c) The
data are stored at the server in compressed digital form,
with the decompression being done at the client end.
The server consists of multiple nodes interconnected by
a network. Each node is a computer in its own right,
with a CPU, RAM and secondary storage. There are
three types of nodes, interface (I) nodes, storage
(S) nodes and the object manager (O) node. The
object manager receives all incoming requests for me-
dia objects, and delegates the responsibility of serving
a request to one of the interface nodes. I nodes are
responsible for scheduling and serving stream requests
that have been accepted. Storage nodes store mul-
timedia data on their secondary storage devices in a
striped fashion, and refrieve and transmit the data to
an interface node on request. The assumption about
the architecture of the interconnection network is that
any node can transfer data to and from any other node
with approximately the same latency, under conditions
of light load. For the purposes of this paper, we assume
that the interconnection network is a direct network[7].

The data is compressed and striped across the stor-

ode a round-robin faghion The number of
as\, No4aes il & rounda-rodin iasnion. 1€ numoer ol

nodes across which a data object is striped is called
the stripe factor (SF). The collection of SF storage
nodes that store an object is called a striping group.
The data stored at a storage node consists of chunks of
the object. The collection of chunks is called a subob-

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

1
[N

Symisl Deaertplion Units
R Required playback rate bytes/sec
Py Size of packets sent by an I node bytes
L3 Duration of a packet sent by an I node sec
Br Buffer size at an I node bytes
Pg Size of packets sent by a S mnode bytes
bg Duration of data in Bj sec
Ty Period of issuing fetches to S nodes from [node sec
SF Stripe factor -

Table 1. The parameters used in this paper

ject. Note that the collection of chunks of a subobject
do not constitute a contiguous portion of the object;
however the data within a chunk is a contiguous part
of the entire object. This contiguous data is called a
stripe fragment.

Table 1 shows the parameters used by our model.
oy is the time for which a packet sent by an I node
to a client will last at the client. Hence this is also
the deadline by which the next packet from the I node
must be received at the client. Its value is given by:

Py
4]

Ry

or = (1)

Once the requested SF' stripe fragments from the S
nodes have arrived at the destination I node, the latter
arranges them in the proper sequence and continues
sending packets of size P to the client no less than
every 67 seconds. The buffer at the I node will last for
ds time, before which the next set of stripe fragments
must have arrived from the S nodes. The average time
to retrieve Pg bytes from a S node is given by

61'0 = 67‘(] + 6avgseek + 6avgrot + 617‘}95 + 6nwps (2)
where 6., is the time delay for a request from an [
g

o

ade to reach
1IC4e 10 reacn a

average seek and rotational latencies for the disks being
used, 6trp is the disk data transfer time for Py bytes,
and 6nw}, is the network latency to transport P; bytes
froma S node to an I node. Note that equation 2 uses
average seek and rotational latencies for disk accesses,
for reasons explained in[5).

node, 6 and o are the
) YAUZseek aAVgrot

In a given server configuration, only a finite number
of nodes (interface nodes) would be connected to the
high speed wide area network. Moreover, their position
in the server architecture would be fixed a-priori. Sec-
ondly, since the secondary storage capacity for a given
server configuration is finite; only a finite number of
media objects can be stored in the secondary storage
system at a time. In order to maximize the pool of po-
tential clients, there would exist a tertiary storage sys-
tem from which the most frequently requested objects

are materialized on the secondary storage subsystem.
However, the number of objects stored on secondary
storage would be a slowly changing set. Given the fact
that the position of the T nodes and the storage pat-
tern of data on S nodes is fixed, the problem is one
of assigning accepted media requests to I nodes so as
to minimize the incremental workload due to the new
requests on the server’s resource types. This allows the
server to maximize the number of streams that it can
source. The network communication time is the sum
of two factors - the network latency in the absence of
blocking, and the blocking time due to link contention
in the interconnection network 1.e.,

®3)

For a given message size and interconnection network,
the former is fixed; while the latter depends on the
network traffic. There is another variable delay in the
retrieval time : when multiple requests arrive at a S
node, only a finite number of them can be served at a
given time; this causes a queueing delay at the S nodes.
If 65, denotes this queueing delay, equation 2 requires
to be modified to :

6nwps = bnweomm T bnwy

8150 = 6rq +6scok+ 0ot +6trp5 +(6nwcomm +6nwb1)+6(5Q

1)
The effect of the variable delays 6,4, and és, on total
retrieval time at various workloads was studied in[5].
At heavy workloads, these delays become the limiting
factors on stream capacity. Any mechanism that re-
duces either or both of these quantities improves per-
formance. In this paper we show that techniques that
reduce 6,4, by minimizing link contention translate
into the ability to support more streams.

This is the simplest policy. If n is the total number
of interface nodes, and the ith request was assigned
to interface node k, then the (¢ 4+ 1)th request will
be assigned to interface node (k + 1) mod n. This
policy is simple, requiring O(1) time to execute. The
maximum workload imbalance in terms of number of

streams served

suiCalils SCLIVOL

T node is at most 1.

ner
per
policy does not balance or minimize the load imposed
on the interconnection network.

3.2. MLA Policy

This policy aims to minimize the total number of
links that the data for an object has to travel from the
SF storage nodes on which it is stored to the I node
which sends it to the outside world. If l;;5; denotes the

45

number of links between interface node I; and storage
node S;, then the cost of assigning a stream request to
interface node I; under this pclicy is :

SP
CAmpa(ls) =Y s

j=1

(5)

This policy will assign a request to interface node p,
= 1: (l'niIl(CAMLA(L')) (6)

i.e., the request is assigned to that interface node which
is closest in terms of the total number of links that need
to be traversed from the S nodes to the I node. This
policy tries to minimize the number of streams using a
given link. But, it does not take into account the pre-
existing link load. Nor does it balance the total stream
load among all the interface nodes.

i=1,2,..,n)

3.3. MCA Policy

In this policy, state information is maintained about
the usage of each link. Specifically, whenever a new re-
quest is assigned to an interface node, the load imposed
on the interconnection network by data traffic due to
that stream is calculated and the total load on the net-
work due to all streams is updated. When a stream
terminates, the load due to it is decremented from the
total network load. If cy,s;[k] is the cost of using the
kth link on the path from storage node S; to interface
node I;, then the cost of assigning a stream request to
interface node I; under this policy is :

SF lns;

CAmca(lL) =Y ens,lk]

i=1 k=1

(7)

This policy will assign a request to interface node p,
p=1t:(min{CApca(l;)) (8)

The cost of using a link is directly proportional to the
traffic that the link carries. The link traffic due to ac-
cepting a new request is updated as follows :

i=1,2,..,n)

(9)

where Id is a scalar that reflects the load imposed by
the new stream on link k. Its value is implementation-
dependent : it depends on the network, the size of
packets being transferred and the playback rate of the
stream. The premise behind this policy is that the load

should be distributed evenly over the interconnection

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

network. If some links are more heavily used than oth-
ers, contention in these links increases network block-
ing effects, which in turn degrades server performance.
Note that since the traffic pattern in the interconnec-

tion net'mnrl(for r]a*a nackete r‘nncl sts of stor

101 s vOISR 1010 Uava palialvs LLLGISW Ul PuULags LOULS

aoce nnr‘]oq

sending data to interface nodes, there is a possibility of
hot spots developing at the links around the interface
nodes. This policy tries to prevent the formation of
such hot spots by allocating requests to interface nodes
so that aggregate link traffic is distributed as evenly as

network.

QLA

ossible aver the entire interconnection
0O§81D1e over ntire 1mmierconnectlor

3.4. WMLA and WMCA Policies

The MLA policy tries to minimize the total number
of links that data for a stream will have to travel, while
the MCA policy tries to minimize link contention by
distributing traffic over more lightly used links. How-
ever, neither of them tries to balance the load across
the interface nodes. An interface node can source only
a finite number of streams; beyond this limit client
deadlines may be missed due to excessive scheduling
overhead. The weighted MLA and MCA policies try
to balance the load across both the network and the
I nodes. This is done by factoring in the number of
streams that a candidate I node is serving in the cost
equation. Specifically, if My, is the number of streams
being served by interface node I;, then the cost of as-
signing to it the responsibility of serving a request un-
der WMLA and WMCA (respectively) is :

CAwmra(L) = ax My, + B3« CApra(ly)
CAWMCA(IZ‘)IZQ*MI:.+ﬂ*CAMcA(Ii) (11)

where « and @ are fractions that sum to 1, and
CApra(l;) and CApca(l;) are given by equations
5 and 7 respectively. The criterion for selecting a
candidate I node is similar to that for the respective

unweighted cases (equations 6 and 8 respectively);
The value to assign to the

(10)

so are the running times.
weight is a design choice that depends on the network
size and topology, routing strategy and the maximum
number of streams that an I node can source. Note
that WML(C)A with o = 1, 8 = 0 is equivalent to
RR, while WML(C)A with o« = 0, 8 = 1 is equivalent
to ML(C)A.

4. Performance Evaluation

TVer mnr’]p] on

SeIrver maode! on

We h ave imnplemented o

i1ay Al pCiiiCiivel ur Lo

the Intel Paragon parallel computer. The Intel Paragon
is a mesh-based architecture with Intel 1860XP micro-
processors. Interprocessor communication i1s done us-
ing wormhole routing [7]. The data access pattern is

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 |IEEE

46

Valve
1.5 Mbits/sec

Deseripion
Fiequired playback rate (R)

Size of packets sent by an I node (Pr) 80 Kbytes

Size of packets sent by a 5 node (Pg) 160 Kbytes
Minimum disk seek time 4 msec
Maximum seek time 30 ms

Time for one rotation 10 ms
Disks per storage node
Disk data transfer rate
Stripe Factor (S)
Num. of Interface nodes 11
Num. of Storage nodes 36
Num. of media objects 100
Evaluation machine Intel Paragon

2
10 MBytes/sec
4

Table 2. The parameter values used

eter 0.271[8]. Due to storage space and avaﬂablhty of
real-world data limitations, the disk access part was
simulated by elapsing the system timer on each stor-
age node. a random placement model. Table 2 shows

the values of the parameters defined in table 1 that we
'T‘ho ratad

110 uLuu.u auvCUu ao

trafhie was

nsed or oo
vao gl ner

our simulation ag
follows. Initially, requests for videos are sent to the
object manager at random times, with average inter-
arrival time of 2 seconds. Each video lasts for about 10
minutes. As soon as a video terminates, a new request
for a video is sent to the object manager. Figure 1
shows the distribution of I nodes and S nodes used!.
The value of the parameter {d for the MCA policy (sub-
section 3.3) we used was 1, since the value of Pg and
Ry is the same for all streams. The load on the server
was increased by incrementally increasing the number
of object requests. The same data distribution and re-

quest pattern were used for each experiment.

4.1. Comparison of load balancing ability

e+

.

[®)
3
=

rll
-
D
]
3

ail QGG

quests to the I nodes th
each interface node was measured for the same total
number of streams served for each policy. Figure 2
illustrates these values for each I node in figure 1 for a
total server load of 565 streams for the RR policy and
for a load of 630 streams for the other four policies.
(the maximum number of streams supported by RR

1Numerous tradeoffs are possible with respect to the data
partitioning strategy, which are well reported in [3]. However,
these are not the subject of this paper.

Foltey Average streams per I nede Standard Devtefton (o)
RR 51.36 0.48
MLA 57.27 33.75
MCA 57.27 22.49
WMLA (u =8= 0.5) 57.27 8.85
WMCA (o = 8 = 0.5) s57.27 4.07

Number of streams

Table 3. Standard Deviation of stream load

was only 565. Each of the other 4 policies supported at
least 630 streams). We first compare the RR, MLA and

B
)
H

o AR MLA

oo I Total supported streama :630

MCA
Total aupported streams ‘aa0

Total aupparted streama :5e5,

2

Number of skreams
IR

2
Number of streams
%

¢
¢ 223 ¥ s
e

¥
P
»

2 3 4 5 8 3 3 a5 om 2 3 ¢ 5 o 7 B 5t 2 2 4 s 07 5 B ot it
Interface node number Interface node numbar Intertace noda numbar

120

i WMCA (=05, B=05)
Total supporied streama : 630

WMLA(a=05.8105)
Total supperted sireams :630

I :E

£ s 3

Number of slreams
+ £ 2 ¥ £

Number of sreams
¢ + ¢ 2 ¥ v 2 I

¥
¥ ¢

I U AN S LN 2 2. 4 5 6 7 B 0 1
interface node rumber Interfaca noda number

Figure 2. Comparison of request assignment

MCA policies. We note from the figure that the RR
policy performs best in terms of balancing stream load
across the interface nodes. A measure of the degree to
which a request assignment policy balances stream load
across the interface nodes is the standard deviation of
the number of streams per interface node, ¢ (Table 3).
The standard deviation of the number of requests per I
node for MLA, oarz 4, is the worst among the standard
deviations of RR, MCA and MLA. The reason for this
is the skewed data access pattern. Consider now the
WMLA and WMCA policies. The graphs in figure 2
for the WMLA and WMCA policies are for values of
o and 3 of 0.5 each. In this case too, the load balanc-
ing of WMCA is better than that of WMLA. Although
owamra (8.85) is lesser than opra (33.75), it is still
greater than owarca (4.07). In summary, the weighted
assignment policies improve the load balancing ability
at the I nodes as compared to the pure schemes; how-
ever MCA gives better performance than MLA, and
WMCA gives better performance than WMLA.

With reference to equation 4, the networking block-
ing time for each packet requested by an I node from
a S node, 8pu,,, was measured as follows : 85001 and
6,0 were measured at run time. Given a disk and

47

a value of Pg, 6,;“,5 can be computed. 65, is given
by 5o = A¢ — (8scek + 6rot + 6”,,5), where A, is the
time interval between arrival of the packet request at
the S node, and the time when the packet is sent to
the requesting I node. é,4.,,,,, is a known when Pg
and network bandwidth in the absence of blocking is
fixed. The round trip time for the sequence of events
represented by equation 4, é;,/, is measurable at run
time. Hence, the only unknowns in equation 4 are é,4
and 8,,,, from which the latter can be approximated
(by neglecting 6,,). Figure 3 shows the distribution
of packet network blocking time, ép4y,,, for the 5 poli-
cies. Bins of size 10 ms each (horizontal axis) were used

-

: |
ia

! ea
i ——

Total supported mreams ;630

AR
Total supported sirasma 565

¥ 5t
5t &
8t

8

Parcenlage of Packsls

|
!
|

...

20 G oo TR R A T 7
Time dalay”(ms) (bin size:+10 ms)

Parcentage of Packsts
®
Percentage of Packels
- z > H *
—
—
-

ks
. III
s

.
)

s |I

- [1

* Himo dalay (ms) (bin size=16 M)

. e]
T T T
Time delay (ms) {Bin size=10 ms}

«© N
WMLA (=05, B=0'5)
Totas supported sreams ;630

WHCA@0S. 505
Total supported wrasma 630

[
#®

4

Percentage of Packets
H 3 ¥ % €

|

L]

Percantage of Packals
H & 2 ® ¢

5 sn o) TR
Tima detay (ms) (bin size=10 ms)

" Hima dolay”

Figure 3. Frequency distribution of packet
network blocking time

to count the distribution of network blocking time for
each packet. The vertical axis shows the percentage
of packets that fell in each bin. For real-time retrieval
of data with a high quality of service (QOS), it is de-
sirable that the variable components in equation 4 be
bounded and of minimal value. The higher the cumu-
lative percentage of packet blocking times falling in the
leftmost bins, the better is the performance of the pol-
icy. Accordingly, the performance of the policies with
respect to this metric (in ascending order) is RR, MCA,
WMCA, WMLA and MLA. The frequency distribution
of blocking times for the last four are not very differ-
ent from each other, suggesting that the the number of
supportable streams for (W)MLA and (W)MCA poli-
cies should be nearly the same. However, this is not
the case, as shown below.

4.3. Stream Sourcing Capacity

We now compare the policies with respect to the
more important metric of stream sourcing capacity.

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 |IEEE

Foltey Maz. # of 1ircams tmprevement o2er RE

RR 565 B

MLA 633 12.0 %

MCA 647 14.5 %
WMLA (o = 0.5, 8 = 0.5) 736 30.3 %
WMCA (o« = 0.5, 8 = 0.5) 757 34.0 %

Table 4. Maximum streams supported.

Table 4 shows the maximum number of streams that
were supported by each policy, together with the per-
centage improvement over the RR policy. As expected,
the RR policy performs the worst. Although it best

balances the stream among the I nodes (minimum

o)
“““““““““ VS
it makes no effort to balance the load on the intercon-
nection network. At the other end of the spectrum are
the MLA and MCA policies : they try to reduce load
on the interconnection network by minimizing link con-
tention; however, they do not try to balance the load

of this, they

outperform
RR by 12.0 % and 14.5 %, respectively. In between
RR, on the one hand, and MLA and MCA, on the
other, are the WMLA and WMCA policies that try
to balance the load on both the network as well as
the I nodes. This translates into superior performance
over RR, MLA and MCA. The WMCA policy with
a = 0.5 gave the highest throughput of 757 streams
among the 5 cases shown, corresponding to a 34.0 %
improvement over RR. In summary, although the per-
formance of (W)MLA is similar to that of (W)MCA
as far as network blocking time is concerned, the load
imbalance on the I nodes is much higher for the for-
mer than for the latter (table 3). This explains why
(W)MCA consistently outperforms (W)MCA.

across the T nodes.

cross the I nodes. In spite
r

In this paper we developed five policies for assigning
requests to the interface nodes in a high-performance
multimedia server. MLA, MCA, WMLA and WMCA
each outperformed RR in terms of number of streams.
RR best balances inter I node load, closely followed
by MLA and WMLA. Although MCA and WMCA
give worst performance on this count, WMCA with
proper choice of weights gave highest throughput. The
(WIYMCA policy is a global one, as it takes into ac-
count the load on a link due to the existing traffic.
(W)MLA, on the other hand is a local optimization
that is oblivious of the load imposed by other nodes.
This explains why WMCA gave the best throughput.
Figure 4 shows the effect of varying the weight values
on the maximum number of supported streams for the
five polcies. For the parameters and data access pat-
tern considered in this paper, a« = 0.75, § = 0.25 gave
the best performance for both WMLA and WMCA
policies. The optimum values to assign to the weights

Proceedings of the 1996 International Conference on High-Performance Computing (HiPC '96)
0-8186-7557-8/96 $10.00 © 1996 IEEE

Maximum supported streams

48

8s0.0

25.0 oW WMCA e WMLA
-—

WHMGA
7750
750.0
725.0
700.0
a750

050.0 §

Standard Deviation

a25.0

©00.0

575.0 so

ss50.0

525.0

%6 o1 o0z 03 o4, 05 08

o (B=1-o)

05 o1 02 02 04 085 06 07 08 09 10

57 o8 o5 1o
o BE 1%

Figure 4. Effect of changing weight values.

is an implementation-dependent problem that depends
on the network topology, routing strategy and the max-
imum streams that an I node can source. However,
changing the ratio values of « and # in one direction
makes the assignment criterion tend to RR (e = 1, 8
= 0), while changing the ratio in the opposite direction
will make it tend to ML(C)A (o« = 0, 8 = 1). We have
shown that values in between give better performance
than these extremes. This is so because such values try
to balance both the load on the I nodes and the load on
the interconnection network, unlike the extreme cases,
which balance one or the other.

References

[1] A.Reddy and J. Wyllie. I/O issues in a multimedia sys-
tem. [EFFE Computer, vol. 27, No. 3, pp. 69-T4, March
1994.

P. V. Rangan and H. Vin. Efficient storage techniques
for digital continuous multimedia. IEFE Transactions
on Knowledge and Data Engineering , Vol. 5, No. 6,
August 1993.

<

721 - Nt
LOJ . w

and L. Ramos. ntinous re-
trieval of multimedia data using parallelism. IFEF
Trans. on Knowledge and Data Engineering, Vol. 5, No.
4, August 1993.

D. Jadav and A. Choudhary. Design issues in high per-
formance media-on-demand servers. IEEE Parallel and
Distributed Technology Systems and Applications, Sum-
mer 1995.

D. Jadav, A. Choudhary, P. Bruce Berra and C.
Srinilta. An evaluation of design tradeoffs in a high per-
formance media-on-demand server. CASFE Center Tech-
nical Report # 9502, CASE Center at Syracuse Univer-
sity, February 1995).

A. Dan and D. Sitaram. An Online Video Placement
Policy based on Banwidth to Space Ratio. Proceedings
of the ACM 1995 Intl. Conference on the Management
of Data, pp. 376-385, May 1995.

L. Ni and P. McKinley. A survey of wormhole tech-
niques in direct networks. IEEE Computer, vol. 26, No.
2, pp- 62-76, February 1993.

A. Dan, D. Sitaram and P. Shahabuddin. Scheduling
Policies for an On-Demand Video Server with Batching.
Proceedings of ACM Multimedia °94, pp. 15-23, 1994.

O NN PN e P
\riialdenarizaden

