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Abstract 

A server for an interactive distributed multimedia 
system may require thousands of gigabytes of storage 
space and high I/O bandwidth. In order to maximize 
system utilization, and thus minimize cost, the load 
must be balanced among the server’s disks, intercon- 
nection network and scheduler. Many algorithms for 
mnvim;hnn ~ot~;~~,nl rnmnr;fw f-nm fho ctnvwno cwrfom “Y”LY”YY”Y,“y ,I,*, YYYW” ““y”cYYy J’“,,” Y,YC uY”,“y” U,y”Y~,,” 

have been proposed. This paper presents techniques for 
improving server capacity by assigning media requests 
to the nodes of a server so as to balance the load on 
the interconnection network and the scheduling nodes. 
Five policies for request assignment are developed. The 
nPrfnrmnnrP nf t.h.ese nnliriP.G 0% g serl_re?- p-Q&l &y/- T‘.J”. ..“_.“V1 1J I,“““-“-- 
oped earlier is presented. 

1. Introduction 

Digitalization of traditionally analog data such as 
video and audio, and the feasibility of obtaining 
networking bandwidths above the gigabit-per-second 
range are two key advances that have made possible 
the realization, in the near future, of interactive dis- 
tributed multimedia systems. Multimedia data differs 
from unimedia data in the diversity of data sizes and 
the need to provide real-time guarantees for playback 
(video and audio data). One of the most pervasive in- 
teractive multimedia applications is media-on-demand 
mh;nh rnfoorn e, thn ,..n,,;h;l;t., ,f e, ,.,,mc.,,-nz :,t,,,, ““‘11LU ILLL1.Y. I,” U11L p”oo‘vllltiJ “I 0. L”IIDUIIIc?I ‘ubc1aL- 

tively retrieving multimedia data over high-speed net- 
works from geographically distributed media servers. 
It is anticipated that a distributed media-on-demand 
(MOD) system will be built in a hierarchical manner, 
with clients connected to neighbourhood servers, which 
are confif&ed to metrGnnlit2n seryfy~, which in t~~rg r---1-_- 
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are connected to massive archive servers. This hierar- 
chy of servers is similar to the memory hierarchy in a 
computer system. When the processor issues a request 
for data, the time penalty for rc’trieving the data is di- 
rectly proportional to the hierarchical distance of the 
data from the processor, which constitutes the apex of 
the hierarchy. In a hierarcical MOD system, a simi- 
lar relationship exists in this case with regard to the 
time clalz,,, fnr cl>tD mt,.;a.,cal hv 2 rl;,,t on .arrn,,nt nf YIIIIL Ub’“J I”I ucuuw I~“IIb.cuI “J u, bilbl1”. \,11 U~b”UII” “I 

the real-time and storage capacity requirements of mul- 
timedia data, the servers are high-end machines with 
gigabytes of storage space and high I/O bandwidth. 
Moreover, higher up the hierarchy is the server, the 
higher its storage and I/O capacity. In order for the 
entire cvdm-n to be cost effectic,e enrh SPPVPP must be UJ ---All 1 ----- 1-1 .-_ 
cost effective. Hence, it is essential to maximize the 
utilization of each resource type of the server. This pa- 
per deals with techniques to maximize tlhe utilization 
of one of the resource types of a MOD server. 

1.1. Related Work 

Researchers have proposed various approaches for 
the storage and retrieval of multimedia data. PI 
characterized the disk-level tradeoffs in a multimedia 
server. [2] proposed a model based on constrained 
block allocation. [3] proposed striping media data 
across several disks in a round robin fashion. The ef- 
fective retrieval bandwidth is then proportional to the 
number of disks used. Our server model (section 2) is 
similar to this model. Issues in ‘designing MOD servers 
are discussed in [4]. A component-wise instrumenta- 
tion of the delays in a MOD [5], showed that variable 
delays become performance bot,tlenecks at high loads. 
Techniques for balancing the load on the storage de- 
vices of a MOD server were developed in [B] .Given 
the fact that a high performa.nce MOD server con- 
sists of multiple processors (nodes) connected by an 

interconnection network, not much work has been re- 
ported on efficient use of the interconnection network 
so as to maximize server capacity. In this paper we ad- 
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dress this issue by developing five policies - round robin 
(RR), minimum link allocation (MLA), minimum con- 
tention allocation (MCA), weighted minimum link al- 
location (WMLA) and weighted contention allocation 
(WMCA). W  e h ave developed and implemented a logi- 
cal model for a MOD server [5]. Performance results of 
the five policies under this model implemented on the 
Intel Paragon parallel computer are presented. 

The rest of this paper is organized as follows : Sec- 
tion 2 explains the server and data scheduling model. 
Section 3 presents the five allocation strategies. We 
present and analyze performance results in Section 4. 
Conclusions are presented in Section 5. 

2. Server and Scheduling Model 

At the heart of the system is a high-performance 
server optimized for fast I/O. A parallel machine is a 
marl ra.ndidate fnr _SIJ& ;1 server hacallse of its ahilitv o--- _-__- .-.. d_ _-_ -_ - -.-- -_ -_ _I- _.__^ LJ 
to serve multiple clients simultaneously, its high disk 
and node memory, and the parallelism of data retrieval 
that ca,n be obtained by data striping. We assume that 
(a) the server is connected to clients by a high-speed 
wide-area network, which delivers data to clients reli- 
ably and at the required bandwidth. (b) Clients have 
hard deadlines i.e. they cannot tolerate jitter. (c) The 
data are stored at the server in compressed digital form, 
with the decompression being done at the client end. 
The server consists of multiple nodes interconnected by 
a network. Each node is a computer in its own right, 
with a CPU, RAM and secondary storage. There are 
three types of nodes, interface (I) nodes, storage 
(S) nodes and the object manager (0) node. The 
object manager receives all incoming requests for me- 
dia object,s, and delegates the responsibility of serving 
a request to one of the interface nodes. I nodes are 
responsible for scheduling and serving stream requests 
that have been accepted. Storage nodes store mul- 
timedia data on their secondary storage devices in a 
striped fashion, and retrieve and transmit the data to 
an interface node on request. The assumption about 
the architecture of the interconnection network is that 
any node can transfer data to and from any other node 
with approximately the same latency, under conditions 
of light load. For the purposes of this paper, we assume 
that the interconnection network is a direct network[7]. 

The data is compressed and striped across the stor- 
-,mn ,,rl,, in -x ,,,,,A rr\h;n fa&ior,, Th, n,,mhn, cb.gL II”UGD 111 CL ‘“uI,u-‘““III IILL IILz1,I”L.L of 

nodes across which a data object is striped is called 
the stripe factor (SF). Th e collection of SF storage 
nodes that store an object is called a striping group. 
The data stored at a storage node consists of chunks of 
the object. The collection of chunks is called a subob- 

BI Buffer size a* an I node bytes 
ps Size of packets sent by a S node bytes 

6.5 Duration of data in BI set 

=r Period of issuing fetches to S nodes from I node set 
SF stripe factor 

Table 1. The parameters used in this paper 

ject. Note that the collection of chunks of a subobject 
do not constitute a contiguous portion of the object; 
however the data within a chunk is a contiguous part 
of the entire object. This contiguous data is called a 
stripe fragment. 

Table 1 shows the parameters used by our model. 
61 is the time for which a packet sent by an I node 
to a client will last at the client. Hence this is also 
the deadline by which the next packet from the I node 
must be received at the client. Its value is given by: 

Once the requested SF stripe fragments from the S 
nodes have arrived at the destination I node, the latter 
arranges them in the proper sequence and continues 
sending packets of size PI to the client no less than 
every 61 seconds. The buffer at the 1 node will last for 
6s time, before which the next set of stripe fragments 
must have arrived from the S nodes. The average time 
to retrieve PS bytes from a S node is given by 

where 5,, is the time delay for a request from an I 
nnrln tn ,,,,h ,I”UL I,” ICCLLII a s node s ,,A A  

, umJg,,,k auu “aug,,t are the 

average seek and rotational latencies for the disks being 
used, &,, is the disk data transfer time for P, bytes, 
and b,, is the network latency to transport P, bytes 
from a S’node to an I node. Note that equation 2 uses 
average seek and rotational latencies for disk accesses, 
for reasons explained in[5]. 

In a given server configuration, only a finite number 
of nodes ( interface nodes) would be connected to the 
high speed wide area network. Moreover, their position 
in the server architecture would be fixed a-priori. Sec- 
,,r?l., m.;m,a the .zorfinrl-,,,r c+rrr=rro ,,,o,;e., f-m .a A.mr, “LLULJ, 0111L~ LillL ~CC”IIuaIJ aLI”IcLhL Lch~acIuy I”I a 5L”LLL 

server configuration is finite, only a finite number of 
media objects can be stored in the secondary storage 
system at a time. In order to maximize the pool of po- 
tential clients, there would exist a tertiary storage sys- 
tem from which the most frequently requested objects 
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are materialized on the secondary storage subsystem. 
However, the number of objects stored on secondary 
storage would be a slowly changing set. Given the fact 
that the position of the I nodes and the storage pat- 
tern of data on S nodes is fixed, the problem is one 
of assigning accepted media requests to I nodes so as 
to minimize the incremental workload due to the new 
requests on the server’s resource types. This aiiows the 
server to maximize the number of streams that it can 
source. The network communication time is the sum 
of two factors - the network latency in the absence of 
blocking, and the blocking time due to link contention 
in the interconnection network i.e., 

5 n*PS = &w,,,, + &w,, (3) 

For a given message size and interconnection network, 
the former is fixed; while the latter depends on the 
network traffic. There is another variable delay in the 
retrieval time : when multiple requests arrive at a S 
node, only a finite number of them can be served at a 
given time; this causes a queueing delay at the S nodes. 
If Ss, denotes this queueing delay, equation 2 requires 
to be modified to : 

(4) 
The effect of the variable delays S,,,, and SS, on total 
retrieval time at various workloads was studied in[5]. 
At heavy workloads, these delays become the limiting 
factors on stream capacity. Any mechanism that re- 
duces either or both of these quantities improves per- 
formance. In this paper we show that techni’ques that 
reduce S,,,, by minimizing link contention translate 
into the ability to support more streams. 

This is the simplest policy. If 7~ is the total number 
of interface nodes, and the ith request was assigned 
to interface node k, then the (i + 1)th request will 
be assigned to interface node (k + 1) mod n. This 
policy is simple, requiring O(1) time to execute. The 
maximum workload imbalance in terms of number of 
~treamc c~rvmd no? 1 node is at mLost 1. However t.hin YYI-UIIIY UVA I”.. y-A I ----- 
policy does not balance or minimize the load imposed 
on the interconnection network. 

3.2. MLA Policy 

This policy aims to minimize the total number of 
links that the data for an object has to travel from the 
SF storage nodes on which it is stored to the I node 
which sends it to the outside world. If Er,s, denotes the 

number of links between interf’ace node 4 and storage 
node Sj , then the cost of assigning a stream request to 
interface node li under this pcllicy is : 

CAMLA('~) = fJ'IzSj (5) 
j=l 

This poiicy wiii assign a request to interface node p, 

p = i : (min(CAMLA(li)) i = 1,2 , . . . . 4 (6) 

i.e., the request is assigned to that interface node which 
is closest in terms of the total number of links that need 
to be traversed from the S nodes to the I node. This 
policy tries to minimize the number of streams using a 
given link. But, it does not take into account the pre- 
existing link load. Nor does it .Dalance the total stream 
load among all the interface nodes. 

3.3. MCA Policy 

In this policy, state informaLion is maintained about 
the usage of each link. Specifically, whenever a new re- 
quest is assigned to an interface node, the load imposed 
on the interconnection network by data traffic due to 
that stream is calculated and the total load on the net- 
work due to all streams is updated. When a stream 
terminates, the load due to it LS decremented from the 
total network load. If c~,s~[lc] is the cost of using the 
Icth link on the path from storage node S’j to interface 
node 1i, then the cost of assigning a stream request to 
interface node 1i under this policy is : 

SF 'Its, 

~AMcA('~)= C C CI,Sj['] (7) 
j=l k=l 

This policy will assign a request to interface node p, 

p = i : (min(CAjt4cA(&)) i = 1, 2, . . . . n) (8) 

The cost of using a link is directly proportional to the 
traffic that the link carries. The link traffic due to ac- 
cepting a new request is updated as follows : 

a--^.. / ,c-r4,cr;l\ I”I (J - I b”L.Jl’ ) 
for ( k = 1 to II,s,) 

CIpsj [‘I = CI~S~ [‘I + ‘d (9) 

where Id is a scalar that reflects the load imposed by 
the new stream on link k. Its value is implementation- 
dependent : it depends on the network, the size of 
packets being transferred and the playback rate of the 
stream. The premise behind this policy is that the load 
should be distributed evenly over the interconnection 
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network. If some links are more heavily used than oth- 
ers, contention in these links increases network block- 
ing effects, which in turn degrades server performance. 
Note that since the traffic pattern in the interconnec- 
t;,, nPtrrTn~lr fc?r rlatn narlrdc rnna;cta af ctnrarro nnaoc Ul”ll llrU,,“ll. I”I UU”U yLnA.uuv ~VIIUIVU” “I Y”“‘c”(jU ll”U”Y 

sending data to interface nodes, there is a possibility of 
hot spots developing at the links around the interface 
nodes. This policy tries to prevent the formation of 
such hot spots by allocating requests to interface nodes 
so that aggregate link traffic is distributed as evenly as 
n~~aihl~ ~VPP the ent;re intorrrrnna-tinn noturnrlc yvuu’“I” V.“l UllV VllUl lY llluIl”vll l lYIYl”ll II”Y..VII.. 

3.4. WMLA and WMCA Policies 

The MLA policy tries to minimize the total number 
of links that data for a stream will have to travel, while 
the .MCA nolicv tries to m_inimize link conten_tion by r ----.I 
distributing traffic over more lightly used links. How- 
ever, neither of them tries to halance the load across 
the interface nodes. An interface node can source only 
a finite number of streams; beyond this limit client 
deadlines may be missed due to excessive scheduling 
overhead. The weighted MLA and MCA policies try 
to balance the load across both the network and the 
I nodes. This is done by factoring in the number of 
streams that a candidate I node is serving in the cost 
equation. Specifically, if MI! is the number of streams 
being served by interface node Ii, then the cost of as- 
signing to it the responsibility of serving a request un- 
der WMLA and WMCA (respectively) is : 

CAWMLA(I~)/  = ff * MI, i-p * CA%fLA(Ii) (10) 

CAwMCA(Ii) l= Q * MIX + P  * CAMCA(A) (11) 

where (Y and ,B are fractions that sum to 1, and 
CAMLA(I~) and CAMCA(I~) are given by equations 
5 and 7 respectively. The criterion for selecting a 
candidate I node is similar to that for the respective 
unweighted cases (equations 6 and 8 respectively); 
80 RW the rl~nninv t , imw The vn111e t.o ~nnim to t;hp -_- ___- _- ____ ‘--. _____--. .-_-- “- -ll-d-- 

weight is a design choice that depends on the network 
size a.nd t,opology, routing strat,egy and the maximum 
number of streams that an I node can source. Note 
that WML(C)A with Q  = 1; ,/3 = 0 is equivalent to 
RR, while WML(C)A with a = 0, ,B = 1 is equivalent 

to ML(C)A. 

4. Performance Evaluation 

We hxw imnlerrwnterl o~dr igoiral -ZPPVPF mndel opA , , G  I.w. - ““yx~~~A-I’y”.. bAuw’ u”I . _A ll.v..Il 

the Intel Paragon parallel computer. The Intel Paragon 
is a mesh-based architecture with Intel i86OXP micro- 
processors. Interprocessor communication is done us- 
ing wormhole routing [7]. The data access pattern is 

Table 2. The parameter values used 

Figure 1. Distribution of I, S and 0 nodes 

,,,..-,A c,. c-11,.., ,l:,+,.:l.,.+:?., . . ..+L. -,.,.,.- 
CKmUlllGU b" L"ll"W a Zipfian UIDbIIV"CI"II Wlbll yaLaM- 

eter 0.271[8]. D ue to storage space and availability of 
real-world data limitations, the disk access part was 
simulated by elapsing the system timer on each stor- 
age node. a random placement model. Table 2 shows 
the values of the parameters defined in table 1 that we 
,IED~~ fnr. r\,,v &m,,lc,t;,, Th, tvc,Rr -inna monorntnrl nn U”LU &“I “UI UIllItAIU”I”II. I 11L YICYIIIV I” cliu ~~11bLcu”~U cliu 

follows. Initially, requests for videos are sent to the 
object manager at random times, with average inter- 
arrival time of 2 seconds. Each video lasts for about 10 
minutes. As soon as a video terminates, a new request 
for a video is sent to the object manager. Figure 1 
qhnws t.he rlint,rihllt,inn of T norlw rrnrl S  nodes I ISPCI~ i ---..L I--- --I” ---I ~--*_ -- - __---I ---x - __ --YY LLIY . 

The value of the parameter bd for the MCA policy (sub- 
section 3.3) we used was 1, since the value of PS and 
Rpl is the same for all streams. The load on the server 
was increased by incrementally increasing the number 
of object requests. The same data distribution and re- 
quest pattern were used for each experiment. 

4.1. Comparison of load balancing ability 

Tn nrrl~r tn rnmnare thP rlictrih>>tinn nf ctroam I.P- 111 VlUVl  Y” ti”“‘yLuy’v UII_ ulYul.vuulvll VI UYIYVII I  LU 

quests to the I nodes, the number of streams served by 
each interface node was measured for the same total 
number of streams served for each policy. Figure 2 
illustrates these values for each I node in figure 1 for a 
total server load of 565 streams for the RR policy and 
for a load of 630 streams for the other four policies. 
(the maximum number of streams supported by RR 

lNumerous tradeoffs are possible with respect to the data 
partitioning strategy, which are well reported in [3]. However, 
these are not t,he subject of this paper. 
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Idtry Al,,l,, ,rrclm, p,r I n.dc S,ondard P,.tlflrn (‘7,) 
RR 51.36 0.48 

ML.4 57.27 33.75 
MCA 57.27 22.49 

WMLA (m = )4 = 0.5) 57.27 8.85 
WMCA (a = p = 0.5) 57.21 4.0, 

Table 3. Standard Deviation of stream load 

was only 565.  Each of the other 4  policies supported at 
least 630  streams). W e  first compare the RR, MLA and  

Figure 2. Comparison of request assignment 

MCA policies. W e  note from the figure that the RR 
policy performs best in terms of balancing stream load 
across the interface nodes.  A measure of the degree to 
which a  request assignment policy balances stream load 
across the interface nodes is the standard deviation of 
the number  of streams per interface node,  cr (Table 3). 
The standard deviation of the number  of requests per I 
node  for MLA, BMLA, is the worst among the standard 
deviations of RR, MCA and MLA. The reason for this 
is the skewed data access pattern. Consider now the 
WMLA and WMCA policies. The graphs in figure 2  
for the WMLA and WMCA policies are for values of 
Q  and  p  of 0.5 each.  In this case too, the load balanc- 
ir,m nfT,VMP A ;a hotter thcan thrrt nf W M T  A Althn,,gh 5  “I I, I.1”11 1.3 VLUUCII Ullcull “llch” “I ,I IIIYLX. ‘“““““b” 

dWMLA (8.85) is lesser than (~MLA (33.75), it is still 
greater than UWMCA (4.07). In summary,  the weighted 
assignment policies improve the load balancing ability 
at the I nodes as compared to the pure schemes;  how- 
ever MCA gives better performance than MLA, and  
WMCA gives better performance than WMLA. 

W ith reference to equat ion 4, the networking block- 
ing time for each packet requested by an  I node  from 
a  S node,  b,,,, was measured as follows : Sseek and  
6  ,.ot were measured at run time. Given a  disk and  

a  value of Ps, Strps can be  computed.  Ss, is given 
by SS, =  A, - (SJeelc +  6,,t +  Strps), where A, is the 
time interval between arrival of the packet request at 
the S node,  and  the time when the packet is sent to 
the request ing I node.  6,,=,,_,, is a  known when Ps 

and  network bandwidth in the absence of blocking is 
fixed. The round trip time for the sequence of events 
represented by equat ion 4, S~J, is measurable at run 
time. Hence,  the only unknowns in equat ion 4  are S,, 
and  b,,, , from which the latter can be  approximated 
(by neglecting S,,). F  g  i ure 3  shows the distribution 
of packet  network blocking time, 6,,,, , for the 5  poii- 

ties. Bins of size 10  ms each (horizontal axis) were used 

Figure 3. Frequency distribution of packet 
network blocking time 

to count the distribution of network blocking time for 
each packet.  The vertical axis shows the percentage 
of packets that fell in each bin. For real-time retrieval 
of data with a  high quality of service (&OS), it is de- 
sirable that the variable components  in equat ion 4  be  
bounded and  of minimal value. The higher the cumu- 
lative percentage of packet  blocking times falling in the 
leftmost bins, the better is the performance of the poi- 

icy. Accordingly, the performance of the policies with 
respect to this metric (in ascending order) is RR, MCA, 
WMCA, WMLA and MLA. Thse f requency distribution 
of blocking times for the last four are not very differ- 
ent from each other, suggest ing that the the number  of 
supportable streams for (W)MLA and  (W)MCA poli- 
cies should be  nearly the same. However,  this is not 
the case, as shown beiow. 

4.3. Stream Sourcing Capacity 

W e  now compare the policies with respect to the 
more important metric of stream sourcing capacity. 
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Table 4. Maximum streams supported. 

Table 4 shows the maximum number of streams that 
were supported by each policy, together with the per- 
centage improvement over the RR policy. As expected, 
the RR policy performs the worst. Although it best 
ba!anCeS the Stream amO”g the I nodes (minimum U), 
it makes no effort to balance the load on the intercon- 
nection network. At the other end of the spectrum are 
the MLA and MCA policies : they try to reduce load 
on the interconnect,ion network by minimizing link con- 

tention; however, they do not try to balance the load 
a.rrnss the T nodes. In snik of th_&. t,h_ev ol~tperform~ -___LL 1___ - __- --L. -r--- -- 
RR by 12.0 % and 14.5 %, respectively. In between 
RR, on the one hand, and MLA and MCA, on the 
other, are the WMLA and WMCA policies that try 
to balance the load on both the network as well as 
the I nodes. This translates into superior performance 
over RR, MLA and MCA. The WMCA policy with 
a = 0.5 gave the highest throughput of 757 streams 
among the 5 cases shown, corresponding to a 34.0 % 
improvement over RR. In summary, although the per- 
formance of (W)MLA is similar to that of (W)MCA 
as far as network blocking time is concerned, the load 
imbalance on the I nodes is much higher for the for- 
mer than for the latter (table 3). This explains why 
(W)MCA consistently outperforms (W)MCA. 

In this paper we developed five policies for assigning 
requests to the interface nodes in a high-performance 
multimedia server. MLA, MCA, WMLA and WMCA 
each outperformed RR in terms of number of streams. 
RR best baiances inter I node load, ciosely followed 
by MLA and WMLA. Although MCA and WMCA 
give worst performance on this count, WMCA with 
proper choice of weights gave highest throughput. The 
(W)MCA policy is a global one, as it takes into ac- 
count the load on a link due to the existing traffic. 
(W)MLA, on the other hand is a local optimization 
that is oblivious of the load imposed by other nodes. 
This explains why WMCA gave the best throughput. 
Figure 4 shows the effect of varying the weight values 
on the maximum number of supported streams for the 
five polcies. For the parameters and data access pat- 
tern considered in this paper, a = 0.75, /3 = 0.25 gave 
the best performance for both WMLA and WMCA 
policies. The optimum values to assign to the weights 

Figure 4. Effect of changing weight values. 

is an implementation-dependent problem that depends 
on the network topology, routing strategy and the max- 
imum streams that an I node can source. However, 
changing the ratio values of cy and /? in one direction 
makes the assignment criterion tend to RR (CX = 1, p 
= 0)) while changing the ratio in the opposite direction 
will make it tend to ML(C)A (CX = 0, ,B = 1). We have 
shown that values in between give better performance 
than these extremes. This is so because such values try 
to balance both the load on the I nodes and the load on 
the interconnection network, unlike the extreme cases, 
which balance one or the other. 
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