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Abstract

We present a deep learning approach to the indexing of electron backscatter diffraction (EBSD) patterns. We design and implement a deep
convolutional neural network architecture to predict crystal orientation from the EBSD patterns. We design a differentiable approximation
to the disorientation function between the predicted crystal orientation and the ground truth; the deep learning model optimizes for the
mean disorientation error between the predicted crystal orientation and the ground truth using stochastic gradient descent. The deep
learning model is trained using 374,852 EBSD patterns of polycrystalline nickel from simulation and evaluated using 1,000 experimental
EBSD patterns of polycrystalline nickel. The deep learning model results in a mean disorientation error of 0.548° compared to 0.652° using
dictionary based indexing.
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Introduction

Engineering materials are usually crystalline, most often in
polycrystalline form. They consist of multiple “grains” having
different crystallographic orientations. While the microscopic
properties of these grains are anisotropic due to their crystalline
nature, the macroscopic properties of the whole crystal depend on
the material’s texture—the relative fractions of each of these grain
orientations. Texture also provides information about the
thermo-mechanical processing history of materials and can be
used to reconstruct the conditions leading to the micro-structure,
for example, in geological rocks. Thus, texture is paramount in
understanding the processing–structure–property relationships.

Since its development in the early 1990s, automated electron
backscatter diffraction (EBSD) has become the primary tool to
determine the crystal orientation of crystalline materials across a
wide variety of material classes (Adams et al., 1993). The tech-
nique provides quantitative information about the grain size,
grain boundary character, grain orientation, texture and phase
identity of the sample by measuring the angular distribution of
backscattered electrons using a combination of a scintillator
screen and a charge coupled device camera. The schematic of the
EBSD setup is shown in Figure 1. The sample sits at a tilt of σ
(typically 70°) with the camera tilted at angle θc (typically 0− 10°).
Electrons travel down from the pole piece and interact with the

specimen at point O. The backscattered yield is measured as a
function of direction by the scintillator. A physics-based model
can be used to predict the backscattered yield based on the
principles of quantum mechanics. Assuming the microscope is
parametrized by M, the geometry of the setup is denoted by G,
and the crystal under investigation is parametrized by C, the
forward model is given by

F � F M;G; Cð Þ: (1)

Further details of this model can be found in Callahan & De
Graef (2013). An example experimental EBSD pattern of iron
with its corresponding physics-based simulation is shown in
Figures 2a and 2b, respectively.

There are two major techniques to indexing EBSD patterns,
each with its advantages and drawbacks. These include the
commercially available Hough-transform based approach
(Schwartz et al., 2000) and the newly developed dictionary
indexing method (Chen et al., 2015; Wright et al., 2015;
Marquardt et al., 2017; Singh & De Graef, 2017). The commer-
cially available solution to the indexing problem uses a feature
detection algorithm (Krieger Lassen, 1992). A Hough transform
of the diffraction is performed to identify linear features (Kikuchi
bands). The angles between the extracted linear features are
compared to a precomputed look up table to determine the crystal
orientation. This method has been very successful in indexing
EBSD patterns and has led to significant advances in materials
characterization. However, the performance of this method
quickly deteriorates in the presence of noise (Wright et al., 2015;
Ram et al., 2017).
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In essence, dictionary based indexing is a nearest neighbor
search approach in which the output angles correspond to the
orientation angles of the closest EBSD pattern present in dic-
tionary. The distance function used is a dot product as follows:

dð~x1;~x2Þ= 1� ~x1 �~x2
j ~x1 j j ~x2 j ; (2)

where x! is a vector representing the pixels in the EBSD patterns.
The dot product between the pixel intensities in the test sample
and each sample in the simulation-based dictionary set is com-
puted and the nearest training sample is used to make the pre-
diction. This method has been shown to be very robust to noise in
the diffraction pattern and outperforms the line feature based
Hough transform method (Ram et al., 2017) for a wide variety of
crystal classes. However, this approach is computationally very
expensive, which limits the technique to be an off-line method,
and a real time solution to the indexing problem is currently not
possible using this approach.

In the present paper, we present a deep learning (LeCun et al.,
2015) based model, trained using a simulated diffraction dataset,
to predict the crystal orientations for experimental EBSD pat-
terns, such that they have a minimum “disorientation” with
respect to their ground truth. Deep learning leverages deep neural
networks composed of multiple processing layers to automatically
learn the representations of data with multiple levels of abstrac-
tion (LeCun et al., 2015). They have achieved great success in the
field of computer science with state-of-the-art results in computer
vision (Krizhevsky et al., 2012; Szegedy et al., 2017), speech
recognition (Mikolov et al., 2011; Deng et al., 2013) and text
processing (Sutskever et al., 2014), and are increasingly being used
in the relatively nascent field of materials informatics (Agrawal &
Choudhary, 2016) for deciphering processing–structure–property
relationships.

A convolutional neural network (CNN) is a type of artificial
neural network which is composed of convolution layers (LeCun,
2015) in addition to fully connected layers. Since they require
minimal preprocessing, they have gained significant attention in
fields like computer vision (Krizhevsky et al., 2012; Szegedy et al.,
2017), recommender system (Van den Oord et al., 2013) and

natural language processing (Collobert & Weston, 2008).
Recently, CNNs have been applied for building models from
microstructural data and improving characterization methods
(Kondo et al., 2017; Cecen et al., 2018; Ling et al., 2017) and they
have been shown to be useful for predicting properties of crystal
structures and molecules (Schütt et al., 2018; Wu et al., 2018),
detecting cracks in materials/infrastructure images (Gopalakrishnan
et al., 2017), and so on. Park et al. (2017) used CNNs for the
classification of X-ray diffraction (XRD) patterns in terms of
crystal system, extinction group and space group using a large
dataset of 150,000 XRD patterns, without any manual feature
engineering. Xu & LeBeau (2018) developed CNNs to auto-
matically analyze position averaged convergent beam electron
diffraction patterns to extract pattern size, center, rotation, spe-
cimen thickness, and specimen tilt, without any need for pre-
treating the data. Liu et al. (2016) applied CNNs to learn crystal
orientations from simulated EBSD patterns; they built three
separate CNN models to individually predict the three Euler
angles, but did not take into account the mean disorientation
between the predicted and true crystal orientations. Moreoever,
their models were not tested on experimental data. In this study,
our goal is to learn to predict the crystal orientation of experi-
mental EBSD patterns such that they have minimum dis-
orientation with the ground truth.

Building a predictive model for the indexing of EBSD patterns
poses two significant challenges. First, we need to minimize the
disorientation between the predicted and the ground truth crystal
orientations; this requires optimizing for the mean disorientation
error which is metric for a highly nonlinear orientation space.
Furthermore, this cost function is computationally intensive,
making it difficult to manually compute and implement its
derivatives with respect to the orientation angles. Therefore, we
designed a differentiable approximation to the mean disorienta-
tion; it is implemented using TensorFlow (Abadi et al., 2016) and
optimized using stochastic gradient descent (Bottou, 1991). The
training of the deep learning model was optimized to take
advantage of the parallelization available in graphics processing
units (GPUs) to process a complete mini-batch.

The second challenge is that the crystal orientation is repre-
sented using three Euler angles, which requires learning all three
angles simultaneously using a single model, which is different
from multi-labeling problems that require predicting different
objects present in the input image (Zhou et al., 2008; Briggs et al.,
2013; Pham et al., 2015). Most state-of-the-art deep learning
architectures are limited to predicting a single output (Krizhevsky
et al., 2012; He et al., 2016; Szegedy et al., 2017); existing work on
multi-output learning using neural networks has been limited to
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Figure 1. Schematic of the electron backscatter diffraction geometry.

a b

Figure 2. Electron backscatter diffraction pattern from iron (a) experimental and (b)
simulation.
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shallow feed-forward networks with a single regression layer
having multiple outputs (Kang et al., 1996; An et al., 2013;
Bezijglov et al., 2016).

We design and implement a novel branched deep CNN
optimized for learning multiple outputs; we refer to this model as
OMNet. The training and test sets are composed of EBSD pat-
terns of polycrystalline nickel. The simulation dataset used for
training the models is composed of 374,852 EBSD patterns. The
models are evaluated using a set of 1,000 EBSD patterns from real
experiments. The OMNet model outperforms the current dic-
tionary based indexing by 16%, resulting in a mean disorientation
of 0.548° compared to 0.652° for the dictionary approach.

Crystal Orientation and Disorientation

The orientation of a crystal is represented by a passive 3D rota-
tion, g, which maps the specimen’s right-handed Cartesian
coordinate frame, es � es1; e

s
2; e

s
3

� �
onto a right-handed Cartesian

coordinate system attached to the crystal, ec � ec1; e
c
2; e

c
3

� �
, such

that eci = gije
s
j ; in this representation, the orientation g corre-

sponds to a 3 × 3 special orthogonal matrix, that is, an element of
SO(3). There are numerous other representations for orientations,
such as the unit quaternion, Rodrigues–Frank vectors, axis-angle
pair and cubochoric vector; each with its own distinct properties
and advantages. Furthermore, all crystals have certain symmetries
associated with them, which lead to degeneracies such that all
crystal orientations are not unique. For any crystal, let Oc

represent the set of symmetry operators including the identity
operation, with cardinality #Oc =N . All orientations in the set
Ocg are equivalent for this crystal symmetry and represent
identical orientations.

In the absence of crystal symmetry, the distance metric
between two orientations g1 and g2 is represented by Dðg1; g2Þ,
and is referred to as the misorientation. This metric represents the
angle of rotation about some axis to go from one crystal orien-
tation to the other. In this case, the space has simple analytical
expressions for the metric tensor as well as smooth and con-
tinuous geodesics. The distance metric is given by (assuming g is
in matrix notation)

Dðg1; g2Þ= arccos tr g�1
1 g2

� ��1
� �

= 2
� �

: (3)

However, in the presence of crystal symmetry, the rotation
space becomes degenerate and such an expression is no longer
valid. In the presence of crystal symmetry given by the set Oc, the
distance metric referred to as disorientation is given by the fol-
lowing expression (assuming g and Oc are both in matrix nota-
tion):

Dðg1; g2Þ= min
i;j2½1;N�

arccos tr Oi
cg1

� ��1 Oj
cg2

� �h i
�1

� �
= 2

� �
;

n
arccos tr Oi

cg2
� ��1 Oj

cg1
� �h i

�1
� �

= 2
� �o

: ð4Þ
This expression gives the minimum angle of rotation, that is,

the disorientation, about some axis between any two symme-
trically equivalent variants of the two orientations g1 and g2.

Deep Learning Approach

The ideal data driven approach for building a predictive model
would be to train a machine learning model on the EBSD patterns
from experiments. However, experiments are generally expensive

and yield a relatively small number of diffraction patterns; in our
case, we have selected 1,000 “experimental” diffraction patterns.
Instead, we leverage the ability to simulate realistic EBSD patterns
for training, such that the model can predict the crystal orienta-
tions for the experimental EBSD patterns with minimum dis-
orientation with respect to the true orientations.

The training and test datasets are composed of EBSD patterns
of polycrystalline nickel. The training dataset contains two
simulated EBSD pattern dictionaries, one generated with a
cubochoric sampling of N= 100 samples along the cubic semi
axis, the other with N= 50 (see Singh & De Graef (2016) for
details). The first dataset has 333,227 patterns, and the second has
41,625 patterns. Combining them, a total of 374,852 patterns were
used as the training set without any data augmentation. As the
pattern pixel values range from [0, 255], they were rescaled to the
range of [0, 1]. The performance of the models was evaluated by
indexing 1,000 simulated patterns with known orientations. The
disorientation between the predicted and known Euler angles
provides the efficacy of the approach. It is important to note that
the microscope and diffraction geometry for the training and test
set were identical. There exist two main challenges associated with
developing such a predictive model. We discuss these challenges
along with how we tackle them below.

Optimizing the Mean Disorientation Error

This problem requires optimizing the mean disorientation error
between the predicted and the true crystal orientations. This is a
challenging task for two reasons: first, the disorientation is the
distance metric of a non-Euclidean manifold. In the absence of
symmetries in orientation, this metric is easily computed using
analytical expressions. However, the presence of crystal symme-
tries introduces degeneracies in the space resulting in dis-
continuities in the gradient of the disorientation metric with
respect to the input orientations. This renders the disorientation
function inappropriate for optimization using stochastic gradient
descent for any deep learning model.

Second, the original disorientation algorithm is computation-
ally intensive; for 432 cubic rotational symmetry, it takes one pair
of predicted and true Euler angles and computes their 24 × 24
symmetrically equivalent orientations to find the disorientation
(equation (4)). It would be extremely cumbersome to manually
compute and implement its derivatives with respect to the input
Euler angles. Hence, it is infeasible to train any predictive model
using the disorientation function in feasible time.

The disorientation is computed using equation (4). It consists
of 1,152 evaluations, each step computing the symmetrically
equivalent orientation pairs, followed by two computations to
determine the required angle of rotation between them. The
disorientation computation contains the arccos(x) function which
is undefined for values outside its domain of [− 1, 1]. We
approximated it by putting an upper bound of 1 to the magnitude
of all the values passed to the arccos(x) function.

We implemented a differentiable approximation of the mean
disorientation by building a computational tensor graph using Ten-
sorFlow (Abadi et al., 2016). We leveraged its auto-differentiation
support for computing the gradients of the mean disorientation error
with respect to the Euler angles. The mean disorientation error was
optimized by training a deep learning model using the stochastic
gradient descent algorithm (Bottou, 1991). When the minibatch size
was 64, the sequential algorithm involved 64×1,152=73,728
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computations for the misorientation between the symmetrically
equivalent predicted and ground truth crystal orientations. It was
very costly both in terms of processing time and memory transfer;
it took around 24h to train our model for one epoch using a Titan
X GPU with 12GB memory. This made it impractical to train a
deep learning model using the sequential implementation in fea-
sible time. We optimized it to process one mini-batch so that it
could leverage the parallelization available in GPUs.

The models are evaluated using the mean disorientation error
and mean symmetrically equivalent orientation absolute error
(MSEAE). The MSEAE is computed by considering the periodi-
city of orientation angles as follows:

MSEAE1 ~ys;~̂ys

� �
=

1
n

Xn
i= 1

X3
j= 1

j ~ysj�~̂ysj j ; (5)

MSEAE2ð~ys;~̂ysÞ=MSEAE1ð~ys;~̂ysÞmod ð2πÞ; (6)

MSEAEð~ys;~̂ysÞ=
MSEAE2ð~ys;~̂ysÞ; if MSEAE2ð~ys;~̂ysÞ≤ π

2π�MSEAE2ð~ys;~̂ysÞ; else

(

(7)

where ~ys and ~̂ys are Euler angle triplets of the symmetrically
equivalent true and predicted orientations with minimum
disorientation.

CNN Architectures for Learning Multiple Outputs

Optimizing for the mean disorientation requires learning the
crystal orientation angles using a single model such that they can
be used to optimize the mean disorientation error. The conven-
tional approach to learning multiple outputs would be to train
individual models for learning each output. Since the three Euler
angles are correlated with the crystal orientation, we have to learn
all the three orientation angles simultaneously using a single
model such that they can be leveraged for optimizing for mean

disorientation. Existing multi-output learning using neural net-
works has been limited to shallow feed-forward networks having
a regression layer with multiple outputs (Kang et al., 1996; An
et al., 2013; Bezijglov et al., 2016).

We explored several design approaches for learning multiple
outputs. Figure 3 demonstrates a novel CNN model architecture
—a branched model with individual and independent model
components for each output. The first four model components are
composed of multiple convolution layers and max pooling. Con-
volution layers capture the locally correlated features present in
the input EBSD patterns; they learn the high level abstract features
from the inputs. As the three outputs require similar learning
capability, the branched model is composed of three classifier
branches containing equal numbers of layers and parameters.

Each branch leverages around two million parameters inde-
pendent of each other which can be optimized to learn the indi-
vidual outputs. As the outputs are correlated with each other, they
all share the same convolution outputs and the first fully connected
component. The convolutional layers are the computationally
expensive components; they extract high level features from the
inputs that are required for learning all outputs. Sharing the con-
volutional layers keeps the computational cost comparable to the
model having a single regression layer with multiple outputs. The
branching technique is currently used in the inception model
architectures, but for a different reason (Szegedy et al., 2016). The
point where the model starts branching can have a significant
impact on the model performance. For the training, we explored
branching at different layers, but it was limited by the available GPU
memory. Since the model architecture is designed to optimize for
learning multiple outputs, we refer to this architecture as OMNet.

All models were implemented using Python and TensorFlow
(Abadi et al., 2016). They are trained using Titan X GPUs with
12GB memory. An extensive search was carried out to tune the
hyperparameters, such as learning rate, optimization algorithm,
momentum and learning rate decay. We used a batch size of 64
and trained using Adam (Kingma & Ba, 2014) for 100 epochs
with a patience of 10. We searched through several CNN model
architectures and loss functions—conventional loss functions,
followed by mean disorientation error, and finally their hybrids.

Convolution Convolution

Image

filters:

Weight initialization for the entire network: Xavier normal lnitializer
Activation function (Unless indicated): Rectified Linear Unit (ReLU)

filter filter

filters:

layer

Pooling Pooling
Fully

Fully

Fully

Fully

Euler angle# 1

Euler angle# 2

Euler angle# 3

filter filter

Figure 3. OMNet: CNN architectures for learning multiple outputs.
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Results

We optimized using the mean disorientation error as the loss
function as shown in Figure 4a. Since our goal was to optimize for
mean disorientation error, we expected the algorithm to result in
an improved mean disorientation error on both sets. However,
the mean disorientation error alone as the loss function did not
perform well; it achieved a mean disorientation error of 1.224° on
the test set (experimental EBSD patterns). We observed a lot of
oscillations in the training loss curve compared to while using
conventional loss functions. This may be due to the mean dis-
orientation error being computed using the symmetrically
equivalent orientations rather than the actual outputs (equation
(4)). Optimizing for the mean disorientation error increased the
model training time by around 30–40%.

Since optimizing for mean disorientation did not perform well,
we designed and experimented with several hybrid loss functions,
combining the mean disorientation with the conventional loss
functions such as mean absolute error (MAE) and mean squared
error. We assigned different weights to the constituent losses,
even some conditional loss functions that optimized for the Euler

angles first, followed by optimizing for the mean disorientation or
a hybrid loss. The best loss function was the sum of the MAE and
the mean disorientation error, as shown in Figure 4b and Table 1.
The mean disorientation error decreased steadily with time,
although the total loss became almost constant. The mean dis-
orientation error on the training set is computed using only the
current mini-batch; hence, the mean disorientation error curve
for training set has oscillations. The model achieved a mean
disorientation error of 0.548° on the experimental EBSD patterns,
about 16% better than using dictionary based indexing.

Summary

It is one of the goals of EBSD analysis to obtain grain orientations
that are as accurate as possible. Having the ability to determine
grain orientations to within a fraction of a degree makes it pos-
sible to perform quantitative comparisons between experimental
data sets and predictive micro-structure models, in particular for
cases in which the material contains large amounts of plastic
deformation. Current commercially available EBSD indexing
solutions do not perform well when the material is heavily
deformed. The recent dictionary indexing approach performs
significantly better, but suffers from a high computational cost
which makes the approach unfeasible as a real-time indexing
solution. The deep learning approach described in this paper has
the potential to have a great impact on the field of materials
science by providing an indexing approach that is both rapid and
accurate, once the training process has been completed.

If deep learning based indexing in real time becomes possible,
then this would have a significant impact on the field of materials
characterization by providing a faster and more accurate indexing
approach than is currently available commercially. While this paper
establishes the efficacy of neural networks in learning orientations
from EBSD patterns for pristine simulated patterns, the character-
istics of such a network in the presence of noise still need to be
established. The current model was trained with orientations as the
only variable and assuming that the microscope geometry is pre-
cisely known; this is seldom the case for real experiments. New
strategies leveraging techniques in incremental learning might prove
to be useful for training the model for different detector geometry
parameters. Finally, the current model can also be extended to other
electron diffraction modalities such as the scanning electron
microscope based electron channeling patterns and transmission
Kikuchi diffraction modality as well as the transmission electron
microscope based precession electron diffraction patterns.
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Figure 4. Loss and mean disorientation error using different loss functions. a: The training loss and mean disorientation error (MDE) on training set and test set for MDE as the
loss function. b: The loss and MDE for the hybrid loss function of the sum of mean absolute error and MDE.

Table 1. Mean Disorientation Error (MDE) and Mean Symmetrically Equivalent
Orientation Absolute Error (MSEAE) Using Different Models and Loss Functions.

Simulation
data Experimental data

Model
Loss

function MDE MDE MSEAE

Dictionary-based
indexing

– – 0.652° [0.6592°, 0.3534°,
0.6484°]

Deep learning
(OMNet)

MAE 0.064° 0.596° –

Deep learning
(OMNet)

MSE 0.292° 1.285° - –

Deep learning
(OMNet)

MDE 0.272° 1.224° –

Deep learning
(OMNet)

MAE +MDE 0.132° 0.548° [0.7155°, 0.2194°,
0.7066°]

Deep learning
(OMNet)

MSE +MDE 0.171° 0.658° –

MAE, mean absolute error; MSE, mean squared error.
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