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Abstract

In this paper we present the novel design, implementation,
and evaluation of an ad-hoc parallel I/O system (AHPIOS).
AHPIOS is the first scalable parallel I/O system completely
implemented in the Message Passing Interface (MPI). The
MPI implementation brings the advantages of portability,
scalability and high performance. AHPIOS allows MPI appli-
cations to dynamically manage and scale distributed parti-
tions in a convenient way. The configuration of both the MPI-
IO and the storage management system is unified and
allows for a tight integration of the optimizations of these lay-
ers. AHPIOS partitions are elastic: they conveniently scale
up and down with the number of resources. We develop two
collective I/O strategies, which leverage a two-tiered cooper-
ative cache in order to exploit the spatial locality of data-
intensive parallel applications. The file access latency is hid-
den from the applications through an asynchronous data
staging strategy. The two-tiered cooperative cache scales
with both the number of processors and storage resources.
Our experimental section demonstrates that, with various
optimizations, integrated AHPIOS offers a substantial per-
formance benefit over the traditional MPI-IO solutions on
both PVFS or Lustre parallel file systems.

Key words: parallel I/O, parallel systems, distributed file
systems, parallelism and concurrency

1 Introduction

The ever increasing gap between the performance of proc-
essors and persistent storage devices has focused the atten-
tion of several research projects on providing scalable,
high-performance storage solutions. In addition, the scale
of modern supercomputers has recently augmented to per-
formance surpassing the PetaFLOP milestone. A recent
survey of High-Performance Computing (HPC) open sci-
ence applications (Geist, 2008) has shown that the vast
majority of applications are implemented in the Message
Passing Interface (MPI), which has become the de facto
standard of scalable parallel programming. Despite increas-
ing interest in alternative parallel programming paradigms,
there are at least two factors that make the MPI indispensa-
ble: the limited scalability of shared memory machines
(hence the need for the message passing paradigm on
distributed memory machines), and the legacy of a huge
amount of robust scientific libraries developed in the
MPI.

A large subset of parallel scientific applications is data
intensive. Parallel file systems represent traditional scala-
ble high-performance solutions to the storage bottleneck
problem. A typical parallel file system stripes files across
several independent I/O servers in order to allow parallel
file access from many compute nodes simultaneously.
Examples of popular file systems include General Paral-
lel File System (GPFS) (Schmuck and Haskin, 2002), Par-
allel Virtual File System (PVFS) (Ligon and Ross, 1999)
and Lustre (Cluster File Systems Inc., 2002). These paral-
lel file systems manage the storage of the vast majority of
clusters and supercomputers from the Top500 list (Top
500 list, 2009). They are also used by small and medium
clusters of computers, typically for parallel data processing
and visualizations. These applications could benefit from
a simple transparent solution offering scalable parallel I/
O with practically no cost for installing and maintaining
a parallel file system.

Many parallel applications access the final storage
through parallel I/O libraries, including the MPI-IO (Mes-
sage Passing Interface Forum, 1997), Hierarchical Data
Format (HDF) (HDF5 home page, 2009), and parallel
NetCDF (Li et al., 2003). Both HDF and parallel NetCDF
are implemented on top of the MPI-IO, as the MPI-IO
handles the low-level file access to the file system.
Being part of the MPI-2 standard, the MPI-IO defines a
set of application programming interfaces (API) for file
access in parallel. It also specifies the rules for data
consistency.
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165AD-HOC PARALLEL I/O SYSTEM

Recently, there has been growing interest in High-Pro-
ductivity Computer Systems (High Productivity Computer
Systems, 2008). Besides the performance, the productivity
is taken into consideration, which includes the costs of pro-
gramming, debugging, testing, optimization, and adminis-
tration. In the case of parallel I/O, it becomes more difficult
to obtain optimal performance from the underlying parallel
file system, given the different I/O requirements. The
default file system configuration cannot always provide an
optimal throughput for different data intensive applica-
tions. File system reconfiguration may be a solution, but an
expensive one, which would inevitably involve adminis-
trative overheads, data relocation, and system down time.
In addition, the design complexity of a distributed parallel
file system, such as GPFS, makes it difficult to address the
requirements from different I/O patterns at the file system
level. In other words, implementing the solutions for these
problems in the file systems would come at the cost of
additional complexity. However, the solutions addressing
specific I/O requirements can be done at a higher level,
closer to the applications.

This paper presents AHPIOS, a light-weight ad-hoc
parallel I/O system that addresses some of the issues men-
tioned above. AHPIOS can be used as a middleware located
between the MPI-IO and distributed storage resources, pro-
viding high-performance, scalable access to files. AHPIOS
can be used as a light-weight low-cost alternative to any
parallel file system. The main goals of AHPIOS design
are the following:

High performance. High performance is achieved through
the tight integration of the MPI-IO and the storage system,
which allows an efficient data access through a two-
tiered cooperative cache and an asynchronous data stag-
ing strategy.

Scalability. The AHPIOS partitions are elastic: they
scale up and down with the number of storage resources.
In addition, the system performance scales with both the
capacity of memory and storage. The first cooperative
cache tier runs along with the application processes and
hence scales with the number of application processes.
The second cooperative cache tier runs at the I/O servers
and, therefore, scales with the numbers of global storage
devices.

Portability. The portability is achieved through the com-
plete implementation in the MPI. To the best of our
knowledge, this is the first implementation of a parallel I/O
system in the MPI.

Simplicity. AHPIOS is simple to use and no modifica-
tion to the existing applications are needed. The setup for
AHPIOS is user-configurable through a plain text file.

In our earlier work (Isaila et al., 2008) we have pre-
sented the initial design and evaluation of AHPIOS. This
paper presents the system evolution and differs from the
initial work in the following aspects:

• The novel design includes a hierarchical two-tiered
cooperative cache. In the initial design the data was
cached locally only at the AHPIOS servers.

• AHPIOS partitions are elastic: they can be scaled up
and down by a simple remount.

• The first cooperative cache level is leveraged by a new
client-directed collective I/O implementation.

• The new design includes a transparent asynchronous
data staging strategy.

• We add the evaluation of scalability of independent I/
O operations.

• A performance comparison with Lustre file system is
included.

• The client-directed and server-directed collective I/O
implementations are compared with other three collec-
tive I/O solutions.

• We discuss and evaluate the usage of the MPI in
designing a system.

• Further applications of AHPIOS, including initial expe-
riences and potential utilizations in Blue Gene systems
and clouds.

The remainder of the paper is structured as follows.
Section 2 presents a system overview. The background
necessary for understanding of the system is given in
Section 3. Section 4 overviews related work. The system
design and implementation are described in Section 5.
The experimental results are presented in Section 6. In
Section 7 we discuss initial experiences and envision
potential applications of our system on Blue Gene sys-
tems and clouds. Finally, we conclude in Section 8.

2 System Overview

Given a MPI application accessing files through the MPI-
IO interface and a set of distributed storage resources,
AHPIOS constructs, on demand, a distributed partition,
which can be accessed transparently and efficiently. On
each AHPIOS partition the users can create a directory
name space in the same way as on any regular file system.
Files stored on one AHPIOS partition are transparently
striped over storage resources as in any parallel file sys-
tem. Each partition is managed by a set of storage servers,
running together as an independent MPI application. The
access to an AHPIOS partition is performed through an
MPI-IO interface. A partition can be built and scaled up
and down on demand during the application run-time.

The system manages a hierarchy of cooperative caches
as depicted in Figure 1. Firstly, client applications cache

 at NORTHWESTERN UNIV LIBRARY on September 15, 2010hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


166 COMPUTING APPLICATIONS

collective buffers on the compute nodes. The collective
buffers are used by the MPI-IO layer for reordering and
gathering I/O requests in order to improve the I/O perform-
ance. Secondly, the AHPIOS servers also perform data
caching by collectively managing a single-copy cache.
The communication within and between these layers is
performed through standard MPI communication opera-
tions.

A data staging strategy hides the latency of transfer-
ring data blocks between the levels of the cache hierar-
chy. The data transfer between the client cache and
AHPIOS server caches, and between AHPIOS server
caches and disk storage, is done asynchronously. There-
fore, overlapping of computation, communication and I/O
is achieved.

The MPI-IO mechanisms and optimizations, such as
the file view setting and collective I/O, are strongly inte-
grated into the AHPIOS storage system. The MPI views
may be set either at the client or the server, and the MPI
collective buffering, the mechanism behind two-phase I/O,
can be activated either at the client (close to computing)
or at the server (close to storage).

AHPIOS is started by parsing a configuration file,
which defines the parameters, such as the number of stor-
age resources, file stripe size, the type of collective I/O to
be used, the sizes of the client and server caches, the type
of parallel I/O scheduling policy, etc. The user can con-
trol both the MPI-IO and the parallel I/O system through
the configuration file.

Multiple AHPIOS partitions can coexist, each being
managed by different sets of AHPIOS servers with differ-
ent configurations.

3 Background

ROMIO (Thakur et al., 1999) is the most wide-spread
implementation of the MPI-IO standard and is developed
at Argonne National Laboratory. ROMIO has been incor-
porated in MPICH (MPI Forum, 1995), LAM (LAM web-
site, 2009), HP-MPI (HP MPI home page, 2009), NEC-
MPI (NEC MPI home page, 2009), and SGI-MPI (SGI
MPI home page, 2009) distributions.

The design and implementation of the AHPIOS client
is based on the ROMIO software architecture. ROMIO is
implemented on top of an abstract device interface called
ADIO (Thakur and Lusk, 1996). Figure 2 shows the soft-

Fig. 1 AHPIOS overview.

Fig. 2 ROMIO software architecture.
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167AD-HOC PARALLEL I/O SYSTEM

ware architecture of ROMIO on five tiers: (C1) the appli-
cation layer; (C2) the MPI-IO layer; (C3) the ADIO file
system-independent layer; (C4) the ADIO file system-
specific layer; and (C5) the file system library. The MPI-
IO calls made by applications are translated in the C2
layer (MPI-IO) into a smaller subset of ADIO calls. The
C3 layer contains implementations of mechanisms and
optimizations, such as views, non-contiguous file access
and the collective I/O. The C4 layer maps an even
smaller set of file access functions on particular file sys-
tems. This layer has to be implemented in order to add
ROMIO support for a new parallel file system. Finally,
the C5 layer consists of the file system access routines.
The AHPIOS client was integrated into the ROMIO
architecture stack by implementing the C4 and C5 layers.

One of the most interesting MPI-IO file operations is
the declaration of a file view. A file view defines the cur-
rent set of data visible and accessible from an open file by
a MPI process. Each process defines its own file view.
Defining file views offers several advantages: non-contig-
uous file ranges can be “seen” to be logical as a contiguous
range, facilitating the programmer’s task and allowing
non-contiguous I/O optimizations. At the same time, a
process’s file view hints at the future access pattern and
can be used for optimizing the access. The view is
mapped to the linear file space by the MPI-IO and, in
turn, the linear file space is mapped on disk blocks by the
file system. The two mappings are explicitly performed,

even when the view maps are contiguous on a disk.
Examples of using file views are given in Figure 3. Four
MPI processes shown in the upper part have declared
views on the file depicted in the lower part of the figure.
Process 0 “sees” only the dark gray bytes of the file,
process 1 only the hashed, and so on. In this example, the
bytes 0, 1, 2, 3 in process 0 map onto bytes 0, 4, 8, 12 of
the file.

In the MPI-IO data is moved between files and process
memories by issuing read and write calls. The MPI-IO
functions are divided into two categories: independent
and collective. Collective I/O functions merge small indi-
vidual requests from individual processes into larger glo-
bal contiguous requests in order to better utilize the
network and disk performance. Depending on the place
where the request merging occurs, there are two well-
known implementations for collective I/O. Disk-directed I/
O (Kotz, 1994; Seamons et al., 1995) merges the requests
at the I/O servers, while two-phase I/O (del Rosario et al.,
1993; Bordawekar, 1997) merges the requests at the com-
pute nodes. AHPIOS incorporates both strategies based
on views.

Two-phase I/O implementation in ROMIO performs
in two steps, as illustrated in Figure 3, namely the shuffle
phase and the I/O access phase. In the shuffle phase, the
data is gathered in contiguous chunks at a subset of MPI
processes called aggregators. In this example we have two
aggregators (processes 1 and 2). The number of aggrega-

Fig. 3 Two phase I/O write example.
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tors can be customized by the user through a MPI hint. In
the first part of the shuffle phase, the file interval
between offsets 0 and 15 is split among the two aggrega-
tors into (0,7) and (8,15). Then, the view is mapped to a
list of (file offset, file length) tuples of corresponding inter-
vals; e.g. process 0 maps the (0,1) view data onto (0,1),
(4,1). These lists correspond to the mapping between each
view and the file. Subsequently, the lists are sent from all
processes to the aggregators. For instance, process 0 sends
(0,1), (4,1) to aggregator 0 and (8,1), (12,1) to aggregator
1. Finally, the view data is transferred to the aggregators
and is scattered into contiguous chunks by using the off-
set length-lists; for example, process 0 sends contigu-
ously bytes 0 and 1 from this view, which corresponds to
file offsets 0 and 4. In the access phase single, larger con-
tiguous chunks are transferred from the aggregators to the
file system. Combining non-contiguous small requests into
fewer large contiguous ones significantly improves the
performance of collective I/O.

The ROMIO two-phase I/O needs two network trans-
fers: one corresponds to the shuffle phase, the other to the
file access from the aggregators to the I/O servers. As we
will show in Section 5.3, AHPIOS needs only one net-
work transfer, when server-directed I/O is used and the
AHPIOS server runs on a node with local storage.

4 Related Work

GPFS (Schmuck and Haskin, 2002), PVFS (Ligon and
Ross, 1999) and Lustre (Cluster File Systems Inc., 2002)
are parallel file systems that are currently installed and
used in many production supercomputers. GPFS is based
on a virtual shared-disk architecture: logical disks are
shared by all the nodes in the cluster/supercomputer. File
system clients see the shared disks as if they were locally
mounted. Read performance is boosted through client-
side file caching and prefetching. Lustre (Cluster File
Systems Inc., 2002) aims at providing a file system for
clusters consisting of tens of thousands of nodes with
petabytes of storage capacity. Lustre consists of the fol-
lowing components: one metadata target (MDT), which
stores metadata, such as file names, directories, permis-
sions, and file layout, and one or more object storage tar-
gets (OSTs), which store file data on one or more object
storage servers (OSSs). Lustre is a POSIX compliant file
system. Client-side file caching is enabled in Lustre. File
joining (Yu et al., 2007) merges multiple files into one for
improving collective I/O over Lustre. PVFS (Ligon and
Ross, 1999) is an open source parallel file system that tar-
gets the efficient parallel access to large data sets. PVFS
consists of several servers and a set of APIs for client
processes to access the file system. Unix I/O APIs is also
supported through the installation of a Linux kernel mod-
ule implementing a mountable Virtual File Switch (VFS)

interface. A server may be both a data and or a metadata
manager. PVFS provides efficient non-contiguous I/O
through its list I/O interface.

AHPIOS differs from these systems through its strong
integration into the MPI-IO architecture and its dynamic
and easily reconfigurable nature. AHPIOS offers several
optimizations, such as views, collective I/O operations and
transparent asynchronous file data transfers. AHPIOS can
be used as a memory-based file system in the same fashion
as Memfs (Hermanns, 2006). In this scenario AHPIOS
could take advantage of its tight integration with the MPI-
IO for better informed optimizations (such as view I/O),
before flushing the data to the end file system, which can
be any of GPFS, Lustre or PVFS.

pNFS (Hildebrand and Honeyman, 2005) is an exten-
sion of the network file system (NFS) protocol (in version
4.1) and provides parallel access to storage systems. pNFS
is a continuation of efforts on parallelizing the file access
by striping files over multiple NFS servers (Garcia-Car-
balleira et al., 2003; Kim et al., 1994; Lombard and Den-
neulin, 2002). pNFS is likely to become the de facto
standard of high performance parallel storage access
and has already been adopted by storage leader compa-
nies, such as Panasas and IBM. Panasas is migrating its
PanFS parallel file system (PanFS web site, 2008) to
pNFS. IBM is also implementing pNFS on top of GPFS.
Like AHPIOS, pNFS provides a storage system inde-
pendent of the operating system and allows client applica-
tions to fully utilize the throughput of a shared parallel file
system. Unlike pNFS, AHPIOS implementation is fully
done in the MPI. In addition, AHPIOS mainly targets MPI
applications and enables a tight integration among MPI
processes and storage servers, in particular for view-based
and collective file accesses.

File systems, such as Sorrento (Tang et al., 2004) and
RADOS (Weil et al., 2007) (RADOS is a part of Ceph
scalable high-performance distributed file system (Weil
et al., 2006)), offer scalable auto-reconfigurable storage
solutions for dynamic pools of storage resources. The phys-
ical placement of logical data segments in these systems is
hidden from the applications. In contrast, AHPIOS tar-
gets the optimal mapping of parallel applications’ access
patterns on the storage layout. However, optimizations
implemented in AHPIOS, such as view-based collective
and independent operations, can be used on top of these
storage systems as well.

Several works have presented implementations and
optimizations of the MPI-IO interface. The MPI-IO imple-
mentation for GPFS (Prost et al., 2001) contains an optimi-
zation called data shipping, which is a collective I/O
technique resembling two-phase I/O. As in this paper, this
work emphasizes the importance of efficiently data-to-
file mapping in the MPI-IO layer. An evaluation of the
MPI-IO on PVFS is presented in (Taki and Utard, 1999).
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An ADIO implementation that allows the matching of
views and the file physical layout is described in (Isaila
et al., 2006). The MPI-IO implementation of the VIPIOS
parallel I/O run-time system (Stockinger and Schikuta,
2000) maps MPI data types on the internal VIPIOS struc-
tures. VIPIOS uses data distribution in two layers: a
problem layer analogous to the access pattern and file
view, and a data layer, analogous to the physical file dis-
tribution. The layout is constructed automatically, which
is an approach similar to that of the Panda parallel I/O
library (Winslett et al., 1996). Several researchers have
contributed with optimizations of the MPI-IO, such as data
sieving (Thakur et al., 1999), non-contiguous access
(Thakur et al., 2002), collective caching (Liao et al., 2005),
and cooperating write-behind buffering (Liao et al., 2005),
to name a few. Packing and sending derived data types
systematically between clients and servers has been pre-
sented in (Ching et al., 2003).

In our earlier work (Isaila and Tichy, 2003) we imple-
mented the view I/O technique in the Clusterfile (Isaila
and Tichy, 2001) parallel file system, which uses a data
representation equivalent to the MPI data types. Later we
integrated collective I/O and cooperative caching (Isaila
et al., 2004) in a prototype of Clusterfile. AHPIOS differs
from our previous work on several aspects. First, AHPIOS
is portable middleware, which can be used independently
on top of storage resources or any parallel file system,
including Clusterfile. Second, AHPIOS is a completely
portable implementation in the MPI, with all the commu-
nication using MPI routines, and completely integrated in
the MPI-IO implementation. Third, AHPIOS manages
two levels of cooperative caches, both at the clients and
the servers. Fourth, the data transfer between the client and
server caching layers, and between the server-side caching
layer and the end storage, is done asynchronously, hiding
the file access latency and, therefore, overlapping com-
putation, communication, and I/O.

5 AHPIOS Design and Implementation

As explained in Section 2, a MPI application accesses an
AHPIOS partition through the MPI-IO interface. The
application processes are linked with an AHPIOS client.
An AHPIOS partition is managed by a set of AHPIOS
servers, which are also processes of a MPI program, run-
ning independently from the MPI application. Figure 4
shows the software architecture of the AHPIOS system: a
client application in the upper part and AHPIOS servers
in the lower part.

The AHPIOS servers are interconnected through a MPI
intracommunicator. A MPI intracommunicator is a MPI
mechanism that allows the members of a group of proc-
esses to communicate among each other through MPI
communication routines. The client processes also com-

municate among each other through an intracommuni-
cator.

The servers communicate with AHPIOS clients through
a MPI intercommunicator. A MPI intercommunicator is
a MPI mechanism that allows the members of different
process groups to communicate. Two different MPI
applications communicate also through a MPI intercom-
municator.

The client-side of AHPIOS is integrated into the ROMIO
architecture stack by implementing the C4 and C5 layers,
as seen in Figure 4. The C4 layer can be divided into two
sublayers: C4.1 and C4.2. C4.1 maps the ADIO file oper-
ations onto I/O tasks to be performed by the individual
AHPIOS servers. These can be metadata-related, such
as creating or deleting a file or data operations. In C4.2,
the I/O tasks are scheduled for transfer by a parallel I/O
scheduling module (Isaila et al., 2006). The C5 layer is
responsible for communication with the AHPIOS serv-
ers.

The AHPIOS servers run as a completely client-inde-
pendent MPI program. As shown in Figure 4, the server
design is structured into four sublayers. Communication
with the client is performed through MPI routines in the
S4 sublayer. The S3 sublayer is responsible for the paral-
lel I/O scheduling policy, which cooperates with the cor-
responding modules at the client side. Data and metadata
management is performed in the S2 sublayer. Finally, the
S1 layer transfers data and metadata to the final storage
system.

The partition creation attributes, such as the number of
resources, the stripe size and the list of resources used for
data and metadata storage, are specified in a configura-
tion file, as in the example shown below:

# The default stripe size of the partition
stripe_size = 64k
# Number of IOS
nr_ios = 4
# Storage resources of AHPFS servers
ahpfs_server = n0:/data
ahpfs_server = n1:/data
ahpfs_server = n2:/data
ahpfs_server = n3:/data
# Path of the metadata directory
metadata = n0:/data

An AHPIOS partition is created by the first application
that uses the partition. The storage servers are spawned
through the MPI dynamic process mechanism and the
partition is subsequently registered in the global regis-
try identified by a port name. Subsequently, other appli-
cations can mount the partitions identified by the port
name and employing the client/server functionality of the
MPI2.
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Several AHPIOS partitions with different configura-
tions may be running in parallel on a cluster of computers,
after registering with the global registry (more details in
Section 5.5). Figure 5 shows an example of two applica-

tions sharing two different AHPIOS partitions. For each
mounted partition, a dedicated MPI intercommunicator is
created, through which the MPI-IO client layer commu-
nicates with the AHPIOS servers.

Fig. 4 AHPIOS architecture with one application and one AHPIOS partition.

Fig. 5 AHPIOS partitions accessed by two MPI applications.
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5.1 Elastic Partitions

AHPIOS partitions are elastic: they can scale up and down
by increasing the number of storage resources. Scaling up
involves only a system restart with a larger number of
AHPIOS servers. In this case, for files that are stored on
the old smaller set of storage resources, users can choose
either to preserve their initial structure or to redistribute
them over the newly available storage resources. Mount-
ing a scaled down partition involves a redistribution of
file data from the storage resources that become unavail-
able to the remaining ones. This is a two-step process.
Firstly, all of the old storage resources are mounted by
starting the system with the old number of AHPIOS serv-
ers and the redistribution is performed. Secondly, the old
partition is unmounted and the new partition is mounted.

5.2 Cooperative Caching

Data access is performed through the cooperation of the
clients running on several compute nodes and the
AHPIOS servers. Data transfer order is controlled by a
parallel I/O scheduling strategy, which is described in
(Isaila et al., 2006).

An AHPIOS file may be striped over several AHPIOS
servers. By default the files are striped over all of the
available AHPIOS servers, but the user can control the
striping parameters through MPI hints.

An AHPIOS partition is accessed through a two-level
hierarchy of cooperative caches as described shortly in
Section 2 and shown in Figure 1. The user can choose to
disable the first level of the cooperative cache for con-
sistency reasons, when multiple client applications share
the same files. However, studies have shown that this is
rarely the case with scientific applications (Smirni and
Reed, 1997; Wang et al., 2004).

The first level of caching is managed through the coop-
eration of all application processes (using only a subset of
processes is also possible). These processes put in com-
mon a fraction of the local memory as cache buffers. Thus,
caching can scale with the number of application proc-
esses. By analogy with the two-phase collective I/O imple-
mentation of ROMIO, we call these nodes aggregators,
because they also aggregate small pieces of files into
larger cache pages. The maximum amount of memory
dedicated to the aggregators’ cache may depend on each
applications and is user-configurable at run time.

The first cooperative caching level works in the fol-
lowing way. File blocks are mapped in a round-robin
fashion over all aggregators. The file requests are
directed accordingly to the responsible aggregator. The
aggregator clusters together several requests before
accessing the next level of caching. Communication with
the second level of caching is performed asynchronously

by an I/O thread, which hides the file access latency from
the application. The I/O thread asynchronously writes
file blocks to the file system following a high–low water-
mark policy, where the watermark is the number of dirty
pages. When the high watermark is reached, the I/O
thread is activated. The I/O thread flushes the last modi-
fied pages to the file system until the low watermark is
reached. The local replacement policy of each aggregator
is the least recently used (LRU).

The second level of cooperative caching is managed
by the AHPIOS servers. File blocks are mapped to
AHPIOS servers in a round-robin fashion and each server
is responsible for transferring its blocks to and from the
persistent storage. When an AHPIOS server receives a
request for a block assigned to another server, it serves
this request in cooperation with the other servers. This
approach is useful at least in two scenarios. Firstly, the I/
O related computations can be offloaded to the AHPIOS
servers. Secondly, a group of application processes is
assigned to an I/O server. The I/O server is responsible
for all file requests from this group and can serve them in
cooperation with other I/O servers, similar to the I/O sys-
tem of the IBM Blue Gene supercomputers. Similarly to
the aggregators, the I/O servers employ a high–low
watermark policy for flushing the last recently modified
dirty blocks to the disks and a LRU local replacement
policy.

5.3 Data Access

As discussed in Section 3, the MPI-IO standard defines
two major groups of file access operations: collective and
independent. In AHPIOS, the independent operations are
identical to the server-directed I/O operations, in the
sense that the data is transferred between the MPI proc-
esses and the AHPIOS servers and the AHPIOS servers
merge independent small requests into larger collective
requests and cache the data in collective buffers. There-
fore, the independent I/O operations can perform as effi-
ciently as collective I/O operations.

Collective operations are suitable for parallel work-
loads because of four basic characteristics that are com-
mon in data-intensive parallel scientific applications
(Nieuwejaar et al., 1996; Smirni and Reed, 1997; Simitici
and Reed, 1998; Crandall et al., 1995; Wong and der
Wijngaart, 2003; Fryxell et al., 2000). Firstly, in many
cases, all processes of one parallel scientific application
perform shared access to the same file. Secondly, each
individual compute node accesses the file non-contigu-
ously and with small granularities. Thirdly, there is a
high degree of spatial locality: when a node accesses
some file regions, the other nodes tend to access neigh-
boring data. Fourthly, write accesses are mostly non-
overlapping among processes.
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As described in Section 3, ROMIO adopts the two-
phase I/O strategy, for which the collective buffers only
reside at the aggregators. The novel design of AHPIOS
includes two collective I/O methods, both of them based
on views: view-based client-directed and view-based
server-directed. Each of them has its own benefit, as we
will demonstrate in the experimental section.

Figure 6 depicts two-phase I/O, client-directed I/O,
and server-directed I/O. We assume that the view has
already been declared. After the view declaration is
made, the view description is kept at the client processes
in two-phase I/O. For client-directed I/O the view is sent
to the aggregators, where it is stored for future use. For
server-directed I/O it is transferred to the AHPIOS serv-
ers, which also store it for future use.

Storing the view remotely has the potential of signifi-
cantly reducing the overhead of transmitting non-contig-
uous file regions, which map contiguously to data locally
available at the MPI processes. Firstly, this contiguous
data do not have to be processed locally (scattered or
gathered) and no offset-length lists have to be sent for
each access (as in the case of two-phase I/O). Secondly,
the view is sent only once in a compact form and can be
reused when the same access pattern appears repeatedly
(a frequent behavior of parallel applications).

For both two-phase I/O and client-directed I/O, the
aggregators represent a subset of the MPI processes and
are used for merging small requests into larger ones. By
default, all MPI processes act as aggregators. However,
the user may set the number of aggregators by a MPI hint.

Two-phase I/O consists of two synchronous phases,
which correspond to the shuffle phase (1) and the I/O
phase (2) described in Section 3.

Client-directed I/O consists of three phases. When cli-
ent-directed I/O starts, the views have been already
stored at the aggregators at the view declaration. The first
phase (1) is synchronous and consists of shuffling the data
between MPI processes and AHPIOS aggregators: small
file regions are gathered at the aggregators for writing and
are scattered from the aggregators for reading. The small
file regions are transferred contiguously between each pair
of MPI processes and aggregators and are scattered/gath-
ered by using the view previously stored at the aggrega-
tors at the view declaration. In the second phase (2) data
are asynchronously staged from the first-level coopera-
tive cache of aggregators to the AHPIOS servers. Only
full file blocks are transferred between these two cache
levels. Finally, in the third phase (3), data are also asyn-
chronously staged from the second-level cooperative
cache of AHPIOS servers to the final storage.

Server-directed I/O consists of two phases. When
server-directed I/O starts, the views have also been already
stored at the AHPIOS servers. The first phase (1) is syn-
chronous and similar to the client-directed I/O, except the
fact that the data are shuffled between the MPI processes
and the AHPIOS servers. The second phase (2) is asyn-
chronous and is the same as the third phase in the client-
directed I/O.

It can be noticed that there are two main differences
between client-directed I/O and server-directed I/O: the

Fig. 6 Comparison of data flow in two-phase I/O, client-directed I/O, and server-directed I/O.
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place where the view is stored and the intermediary level
of caching for the client-directed I/O. Consequently,
small requests are merged into larger ones at the aggrega-
tors for the client-directed I/O and at the AHPIOS servers
for the server-directed I/O.

Table 1 compares two-phase I/O with client-directed
and server-directed I/O. Unlike in two-phase I/O, for cli-
ent-directed and server-directed I/O, the views, repre-
sented as MPI data types, are not stored at the client
application, but decoded at the MPI-IO layer, then serial-
ized and transferred either to AHPIOS aggregators or
AHPIOS servers, respectively. Upon receiving the view,
the aggregators or servers unserialize and reconstruct the
original view data type. The advantage of this approach
is that no metadata has to be sent over the network at
access time, because the view representing the file access
pattern is already stored remotely. For two-phase I/O the
access pattern generated by the view must be sent as lists
of (file offset, length) tuples. In the case of client-
directed and server-directed I/O the data can be trans-
ferred contiguously between the client and the aggrega-
tor/server.

In two-phase I/O, data are not cached at the aggrega-
tors, but only temporarily buffered and synchronously
transferred to the file system. In client-directed I/O, the
file data may be cached at both levels of the cooperative

caching hierarchy and they are transferred asynchro-
nously to the final storage. In server-directed I/O, the
data are cached in the second-level cooperative caching
hierarchy and they are asynchronously sent to the stor-
age. The asynchronous transfers allow a transparent over-
lapping of computing, I/O related communication and
storage access.

5.4 Cache Coherency and File Consistency

According to the MPI standard, the MPI provides three
levels of consistency: sequential consistency among all
accesses using a single file handle; sequential consist-
ency among all accesses using file handles created from a
single collective open with atomic mode enabled; and
user-imposed consistency among accesses other than the
above.

AHPIOS implementation provides partial MPI con-
sistency. The data are flushed to the end storage for both
cache levels, either upon calling MPI_FILE_SYNC or
closing the file. The atomic mode for independent I/O
file accesses has not been implemented, i.e. sequential
consistency is not guaranteed for concurrent, independent
I/O with overlapped access regions. This approach is simi-
lar to the one taken in PVFS and it is motivated by the
fact that overlapping accesses are not frequent for paral-

Table 1
Comparison of Three Collective I/O Methods.

Operation Two-phase (TP) Client-directed (CD) Server-directed (SD)

View declaration Store view at client Send view to AHPIOS 
aggregator

Send view to AHPIOS 
server

File Access
(metadata)

Generate file-offset lists
from views and send them 
to TP aggregators

No action No action

File access
(at client)

Non-contiguous Contiguous access Contiguous access

File access
(aggregator)

Non-contiguous Non-contiguous n/a

File access
(file server)

Contiguous Contiguous Non-contiguous

File cache No In the first level cooperative 
cache

In the second level 
cooperative cache

Data staging from
aggregators to servers/FS

Synchronous Asynchronous n/a

Data staging from
servers to storage

n/a Asynchronous Asynchronous

File close No action Ensure AHPIOS aggregators
and servers flush all data

Ensure AHPIOS servers
flush all data
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lel applications. Nevertheless, the atomic mode can be
enforced as user-defined consistency semantics by using
MPI_FILE_SYNC as described in the MPI standard.

Cache coherency is enforced at both cache levels by
not allowing more than one copy of the data blocks at
each level. This decision is motivated by the frequent
access patterns of the parallel applications: individual
processes write non-overlapping file regions and there is
a high interprocess spatial locality. Data are transferred
between cache levels always at block granularity. For
writing to a file block less than its size in the first- or
second-level cache, a read-modify-write operation is
needed, where the final write operation can be performed
asynchronously.

For client-directed I/O, the modifications of single-
copy file blocks are always performed in the first-level
cache by one aggregator. Server-directed I/O does not use
the first-level cache; therefore, the coherency is enforced
only at the servers by allowing one copy of a file block. A
server-directed I/O operation triggers the eviction of the
accessed file blocks from the first-level cache to the server,
before performing its own operations.

5.5 Metadata Management

In AHPIOS there are two levels of metadata management:
global metadata management of AHPIOS partitions and
local metadata management of individual AHPIOS parti-
tions.

5.5.1 Global Metadata Management In AHPIOS
there is no server that performs global metadata manage-
ment. The global metadata are minimal, and contain only
information about the particular partitions of the file sys-
tem. This information is stored in a file shared by all par-
titions and called the registry. Each set of AHPIOS
servers managing a partition accesses atomically this file
in order to read or modify it. This access should not cause
a bottleneck in a large system, because the registry is
accessed only when a partition is created, mounted or
unmounted. All of these operations are infrequent.

The global registry stores structural and dynamic con-
figuration parameters of the AHPIOS partition. The
structural parameters are the partition name, the storage
resources assigned to the AHPIOS servers, the number of
AHPIOS servers, the default stripe size, and metadata
file disk location. The dynamic parameters include the
network buffer size, the parallel I/O scheduling policy,
the buffer cache size of the AHPIOS server, etc. The
dynamic parameters can be changed by the user each
time a partition is mounted.

5.5.2 Local Metadata Management For each parti-
tion, one of the AHPIOS servers also plays the role of a

partition-local metadata manager. This server manages a
local name space and an inode list, stores and retrieves
the file metadata and updates the metadata in coordina-
tion with the other servers. The global name of a file is
given by appending the local path of a file to the global
unique partition name. The local name space can be as
simple as a directory in the name space of the local file
system on the node where the AHPIOS metadata server
is running. An inode stores typical file metadata, includ-
ing values for the stripe size and the number of stripes.
By default, the number of stripes is the same as the
number of AHPIOS servers and the user can modify this
value through a hint.

6 Experimental Results

The evaluation presented in this paper was performed on
the “Lonestar” parallel computer at the Texas Advanced
Computing Center (TACC) (Lonestar home page, 2009),
which is part of the Teragrid framework (Teragrid home
page, 2009). A node consists of a Dell PowerEdge 1955
blade running a 2.6 x86_64 Linux kernel. Each node con-
tains two Xeon Intel Duo-Core 64-bit processors on a
single board. The Core frequency is 2.66 GHz and sup-
ports four floating-point operations per clock period with
a peak performance of 10.6 GFLOPS/core or 42.6
GFLOPS/node. There is an 8 GB memory in each node.
The interconnect is an Infiniband with a fat-tree topol-
ogy. The employed MPI library is MPICH2 (MPI Forum,
1995) version 1.0.5, with the communication running
over TCP/IP sockets. The Lonestar Storage includes a 73
GB SATA drive (60 GB usable by user) on each node
(the I/O servers of AHPIOS and PVFS2 used this stor-
age). The work file system, also accessible from all
nodes, is a Lustre parallel file system with 68 TB of Dat-
aDirect Storage.

We compared AHPIOS with Lustre, the parallel file
system installed on Lonestar, and with PVFS2, which we
launched through the batch system, before the applica-
tion is started. AHPIOS and PVFS2 used eight I/O nodes.
For AHPIOS and PVFS2, the I/O servers and the applica-
tion processes are running on disjoint nodes. Lustre is
installed over 32 OSTs and stripes by default files over
eight consecutive OSTs, chosen through an algorithm
that combines the randomness with load–balance aware-
ness. Lustre uses the buffer cache of the compute nodes
up to a maximum of 6,912 MB per node. In addition,
Lustre has an aggressive prefetching policy, which reads
ahead up to 40 MB. AHPIOS employs a cooperative
cache managed by the application processes for client-
directed I/O. PVFS2 and AHPIOS, with server-directed
I/O, do not cache data at the clients.

On Lonestar, the internal communication of Lustre is
performed directly over the Infiniband network. The
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PVFS2 setup could only run TCP/IP over Infiniband.
The MPI communication employed by AHPIOS was per-
formed with MPICH2 and not with the Infiniband
MVPICH, and consequently, also over TCP/IP. There-
fore, in all of the performed measurements, Lustre has an
advantage over PVFS2 and AHPIOS, due to its considera-
bly lower communication costs (TCP/IP sockets are known
for high overheads).

6.1 Scalability

We evaluated the scalability of independent I/O opera-
tions on AHPIOS. The processes of a MPI program write
and read in parallel disjoint contiguous regions of a file
stored over an AHPIOS system for different numbers of
AHPIOS servers. In this experiment the first level coop-
erative cache is disabled. We evaluate two scenarios: one
in which the compute nodes also have local storage and
the AHPIOS servers run on the same nodes as the MPI
processes and another in which the MPI processes and
AHPIOS servers run on disjoint sets of nodes.

Figure 7 shows the aggregate I/O throughput for n MPI
processes writing and reading to/from an AHPIOS partition
with n AHPIOS servers. The figure represents the through-
put to the AHPIOS servers. We can see that the file access
performance scales well with the partition size. This hap-
pens independently of the location of the AHPIOS servers,
both when the AHPIOS servers run on the same nodes as
the MPI application and on disjoint nodes.

In Figure 8 the number of MPI processes running on
distinct nodes is n = 64 and the number of AHPIOS serv-
ers is varied between 1 to 64. We notice that the aggre-
gate throughput of both write and read operations scales
smoothly with the number of AHPIOS servers, as in the
previous case, independently of whether the AHPIOS
servers share or do not share the compute node with the
MPI application.

6.2 Collective I/O Evaluation

In the following two benchmarks we compare five differ-
ent solutions for parallel I/O access: ROMIO two-phase
I/O over PVFS2 (2P-PVFS2); ROMIO two-phase I/O
over Lustre (2P-Lustre); ROMIO two-phase I/O over
AHPIOS; and the two AHPIOS-based solutions: server-
directed I/O and client-directed I/O. Our goal is to dem-
onstrate that, by the tight integration between application
and library offered by the full-AHPIOS solution, a signif-
icant performance improvement can be obtained.

In the evaluations for all solutions all compute nodes act
as aggregators and the collective buffer size was 4 MB.

6.2.1 BTIO Benchmark NASA’s BTIO benchmark
(Wong and der Wijngaart, 2003) solves the Block-Tridi-

agonal (BT) problem, which employs a complex domain
decomposition across a square number of compute nodes
as shown in Figure 9 for nine processes. Each compute
node is responsible for multiple Cartesian subsets of the
entire data set. The execution alternates computation and
I/O phases. Initially, all compute nodes collectively open
a file and declare views on the relevant file regions (the
subcubes along the diagonal line in the Cartesian
domain). After each five computing steps, the compute
nodes write the solution to a file through a collective oper-
ation. At the end, the resulting file is collectively read and
verified for correctness. In this paper we report the results
for the MPI implementation of the benchmark, which uses
the MPI-IO’s collective I/O routines. The collective I/O
routines provide significantly better results than the inde-
pendent ones, due to the coalescing of small requests and
a more efficient usage of the network and disk transfers.
On all runs we set the benchmark to execute 25 compute
steps, which correspond to five I/O steps (five collective

Fig. 7 File independent I/O for N processes writing to
N AHPIOS servers.
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writes followed by five collective reads). The benchmark
does not explicitly commit the file writes to disks.

The access pattern of BTIO is nested-strided with a
nesting depth of two, with the file access granularity
given in the Table 2.

Figures 10 and 11 show the results for the BTIO classes
B and C. Because the latency is hidden by AHPIOS at file
access time, we show the file write time on the first row,
the file read time on the second , and finally the total time
as reported by the benchmark (includes file open, set
view, write, and close).

For each collective write operation for the client-
directed I/O the data are written to the first-level cache
on the aggregators, while the server-directed I/O trans-
fers the data to the AHPIOS server in the second-level
cache. As a consequence, in most cases the client-
directed I/O hides better the write latency to the applica-
tions. However, when the final flushing is done the
server-directed I/O outperforms the client-directed I/O
due to the fact that the file close is done right after the
last write. Therefore, there is no overlapping with com-
munication or computation for this last step.

BTIO closes the file after writing and then reads the
data for verification. For the client-directed I/O the write
data are propagated from the first-level cache to the sec-
ond-level cache, but a copy of the data is kept in the first-
level cache. Therefore, the client-directed collective I/O
routines read the data from the first-level cache. This
explains the better results for collective reads when using
client-directed I/O in most cases.

We note that the AHPIOS client-directed I/O and the
server-directed I/O significantly outperform the write
and read operations of the other three methods in all
cases. In general, the client-directed I/O hides the latency
better in most cases, because data are written to the cli-
ents and then staged through both cache layers. However,
when the file close time is included, the server-directed
I/O performs the best in all cases, because the data were
already transferred to the AHPIOS servers asynchro-

Fig. 8 File independent I/O scaling for 64 processes
and N AHPIOS servers.

Fig. 9 BTIO data decomposition for nine processes.

Table 2
Granularity of BTIO File Accesses.

Number of 
processes

Access granularity
in bytes (class B)

Access granularity
in bytes (class C)

9 1,360 2,160

16 1,000 1,640

25 800 1,280

36 680 1,080

49 600 920

64 480 800
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nously. In particular for class B, the client-directed I/O
hides the latency of file writes better up to 36 processes,
but does not scale well due to the fact that aggregators, as
communication hubs, become overloaded: each aggrega-
tor receives data from all of the MPI processes, shuffles

them and transfers them to all of the AHPIOS servers. In
turn, the server-directed I/O performs better for increas-
ing contention, as the communication is reduced. For
class C, as the communication volume is larger, the bet-
ter performance of the client-directed I/O over the server-

Fig. 10 BTIO class B measurements. Fig. 11 BTIO class C measurements.
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directed I/O is marginal for a small number of proc-
esses. As for class B, file writes of the server-directed I/O
scale better. The file reads perform substantially better
for both the server-directed I/O and the client-directed
I/O than for the two-phase I/O, as the data is read from
the collective cache levels: level 1 for the client-
directed I/O and level 2 for the server-directed I/O. The
performance is similar for both methods, as the com-
munication volume and contention levels are roughly
the same. In terms of total time reported by the applica-
tion, which includes the write time and the time to
completely flush the data to the AHPIOS servers (read
time is not included), the server-directed I/O performs
best in all cases, as the client-directed I/O incurs the
cost of the flushing of the remainder of the data from
the level 1 cache.

There are additional reasons explaining these results.
In the two-phase I/O, data are in general transferred twice
over the network: firstly, for data aggregation at the com-
pute nodes, and secondly, to access the file system. In
the server-directed I/O, the aggregation is done at the
AHPIOS server, i.e. close to the storage. If the storage
is locally available, the second communication operation
is spared. This is also the case for file-read operations in
the client-directed I/O if the data is accessed in the first-
level cache. This is the main factor for the better results
of the BTIO file reads for the server-directed I/O and the
client directed I/O, when compared to the two phase I/O.

In addition, the view I/O technique significantly reduces
the size of the metadata sent over the network. The MPI
data types are sent in a compact form to the AHPIOS serv-
ers at view declaration. This data type transfer is done only
once and the data types can be reused by subsequent I/O
operations. In contrast, the two-phase I/O requires the
lists of (file offset, length) tuples to be sent to the aggre-
gators at each file operation.

6.2.2 MPI Tile I/O Benchmark The MPI Tile I/O
benchmark (MPI tile I/O, 2009) evaluates the perform-
ance of the MPI-IO library and the file-system imple-
mentation under a non-contiguous access workload. The
benchmark logically divides a data file into a dense two-
dimensional set of tiles. The number of tiles along the
rows (nrx) and columns (nry) and the size of each tile in
the x and y dimensions (szx and szy) are specified as the
input parameters. We have chosen these values such that
for any number of processors the total amount of data
accesses is 1 GByte and the access granularity is 4 kB.
Table 3 lists the values of these parameters. The size of
an element is 1 byte.

The performance results are plotted in Figure 12. Cli-
ent-directed I/O scales very well with the problem size.
In this case the cooperative cache scales with the number
of processes, because the clients put in common parts of

their memory. The file-write performance seen by the
application is much higher for the client-directed I/O as
the data is synchronously transferred only to the first-
level cooperative cache and then written back in the
background to the second level. 2P-Lustre performs com-
parably to the others for small numbers of processes, but

Table 3
Parameters of the MPI Tile I/O Benchmark.

Number of 
processes

szx 
(kB)

szy 
(kB)

nrx nry

4 4 64 4 4

8 4 32 4 4

16 4 16 4 4

32 4 8 8 4

64 4 4 8 8

Fig. 12 MPI Tile I/O throughput.
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does not scale, even though the two-phase aggregators
cache the file blocks in their local memory (client-side
caching). The performance seems to be affected by the
POSIX semantics, even in this particular case of non-
overlapping accesses. The server-directed I/O does not
scale beyond eight processes, which represents the same
number as the AHPIOS servers employed in this experi-
ment. A larger number of AHPIOS servers would con-
tribute to the scalability of the server-directed I/O, as
seen in Section 6.1. The MPI Tile I/O benchmark does
not invalidate file caches between write and read opera-
tions. Therefore, the expectation is that the performance
of the solutions employing client-side caching (client-
directed I/O and 2P-Lustre) will be superior to the others.
Indeed, 2P-Lustre performs best for a small number of
processes (four and eight), but does not scale with the
number of processes. The client-directed I/O benefits the
most from the client-side caching and significantly out-
performs the other solutions. The server-directed I/O
performs second-best for a large number of processors, by
taking advantage of the second-level cooperative cache.
The 2P solutions seem to suffer from the strict alternation
of metadata (offset-length lists) and data transfers and con-
servative implementation with collective communication
operations, as will be seen in the next section.

6.3 MPI Implementation Evaluation

AHPIOS is fully implemented in the MPI. The MPI
offers a powerful paradigm for programming on distrib-
uted memory systems in terms of programming facility,
portability, and performance. We found the employment
of both point-to-point and collective operations very con-
venient. Both blocking and non-blocking point-to-point
routines are straightforward to use and with a minimal
management overhead (when compared with TCP/IP
sockets, for instance). The collective synchronization
routines, such as MPI_Barrier offer the possibility of
a rapid (conservative) implementation and facilitate the
debugging.

However, one of the most important advantages is
portability; the AHPIOS system can run unmodified on
all the systems that have a MPI library installed and
they support the dynamic process mechanisms from
MPI2.

One problematic aspect we found was the error mech-
anisms implemented in the MPI. In some cases, a MPI
implementation must provide an explicit handling of
errors, for instance for propagating an error from a faulting
process. A global automatic exception mechanism for the
MPI would significantly increase the productivity of
implementing in the MPI.

In order to better understand the employment of the
MPI in the solutions investigated in this paper, we traced
the BTIO application by using the performance profiling
library MPE (Gropp et al., 1995). We profiled the BTIO
execution for nine processes and all evaluated I/O meth-
ods. In this case the size of traces was around 4MB.
Tables 4 and 5 show the number of communication and
synchronization calls performed by the BTIO for I/O pur-
poses. Table 4 shows the number of MPI point-to-point
calls for all processes, while Table 5 gives the number of
collective calls. Each collective call is counted once for
the group of processes that perform it.

Note that the AHPIOS server-directed I/O implementa-
tion employs only blocking point-to-point communication
(MPI_Send, MPI_Recv), while the other implementa-
tions use both blocking and non-blocking point-to-point
operations (MPI_Isend, MPI_Irecv, MPI_Waitall).
Therefore, the performance of both server-directed and
client-directed AHPIOS can be improved by a subse-
quent implementation with non-blocking operations.

For AHPIOS, the numbers from the tables include com-
munication to the distributed storage, i.e. the communica-
tion overhead for providing a transparent parallel I/O
access to files. In the case of Lustre and PVFS these opera-
tions are performed by using internal communication pro-
tocols and cannot be directly compared with the MPI
routines. This fact explains why the client-directed I/O
and 2P-AHPIOS generate a significantly higher number

Table 4
The Count of MPI Point-to-Point Communication Operations for NP = 9 Processes.

MPI call 2P-PVFS2 2P-Lustre 2P-AHPIOS
Server-directed 

AHPIOS
Client-directed 

AHPIOS

MPI_Send 0 0 4,660 4,660 4,660

MPI_Recv 0 0 4,660 4,660 5,830

MPI_Isend 5,670 5,760 5,760 0 5,553

MPI_Irecv 5,670 5,760 5,760 0 4,383

MPI_Waitall 855 855 855 0 396
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of MPI messages. However, even under these conditions,
the communication is lower for the server-directed I/O
than for 2P-PVFS2 and 2P-Lustre.

The number of collective communication and synchro-
nization operations performed by the two-phase I/O imple-
mentation is considerably higher. The two-phase I/O
collective buffering is done at the compute nodes, which
need to perform expensive all-to-all operations in the
shuffle phase in order to get the list of file offset-length
pairs and the data. The 2P-PVFS2, 2P-Lustre and 2P-
AHPIOS solutions performed a similar number of opera-
tions (2P-AHPIOS and 2P-Lustre used three more barrier
operations).

7 Further Application Domains

Besides large clusters of computers, two other potential
application domains of AHPIOS are large-scale super-
computers and clouds.

7.1 Supercomputers

The architecture of large-scale supercomputers, such as
IBM Blue Gene/L, IBM Blue Gene/P, and Cray XT3 sys-
tems, is organized by specializing the system into disjoint
sets of compute and I/O nodes. The compute nodes are
assigned to an application through a batch scheduler. Each
set of compute nodes is served by dedicated I/O nodes.
Therefore, the I/O nodes corresponding to the assigned
compute nodes are known after the job is scheduled.
AHPIOS servers can be spawned after the scheduling is
performed. Here we describe our initial experiences of
AHPIOS on Blue Gene systems.

On Blue Gene systems, the communication among
compute nodes is performed through a torus network. The
I/O calls, such as file accesses, are forwarded from the
compute nodes to the I/O nodes through a dedicated tree
network. On the I/O nodes these requests are served by
I/O daemons. In our experiments we employ the ZOID
daemon (Iskra et al., 2008), which is an open software

package developed at ANL that can be used alternatively
to IBM’s CIOD daemon.

Blue Gene systems currently do not offer MPI
dynamic process management. In our initial setup, I/O
daemons are started on the I/O nodes as MPI processes.
Each AHPIOS server is the thread of an I/O daemon run-
ning on the I/O node. The MPI-IO calls are forwarded
through the tree network to the AHPIOS servers, where
they are processed in cooperation. The communication
among the AHPIOS servers is performed through MPI
calls and goes over the switched network interconnecting
the I/O nodes. We have managed to deploy the AHPIOS
on the Blue Gene/L system in the Argonne National Lab
(ANL) and we are currently experimenting with the new
Blue Gene/P system installed there.

7.2 Clouds

Many researchers agree that, in the future, companies
will rely less on their own infrastructures and more on
remote clouds. A cloud is defined as an Infrastructure as a
Service (IaaS). Amazon Amazon web services site (2008)
provides pay-per-use computing and storage resources
through Web Services. With Amazon Elastic Computing
Cloud (EC2), users may run instances of virtual machines
consisting of a CPU, memory and local disks. The cloud is
elastic, the users can increase or decrease their computa-
tion needs by acquiring or releasing VM instances. The
local disks store the information only during the life of
an instance. For permanent storage, the users should use
either the Elastic Block Store (EBS) or Simple Storage
System (S3). EBS is an elastic storage partition (that
can be increased or decreased), on top of which a file
system can be installed. EBS can be mounted concur-
rently inside distinct VM instances. S3 is a persistent
storage service on which users can store objects. Stor-
ing data on the local storage of each instance comes at
no extra cost, while there is a charge for storing both on
EBS and S3. Other academic or research cloud projects,
such as Nimbus Nimbus (Nimbus Cloud Project, 2008)

Table 5
The Count of MPI Collective Communication and Synchronization Operations for NP = 9 Processes. 

MPI call 2P-PVFS2 2P-Lustre 2P-AHPIOS
Server-directed 

AHPIOS
Client-directed 

AHPIOS

MPI_Bcast 60 60 60 0 0

MPI_Barrier 22 25 25 7 154

MPI_Allreduce 22 25 25 7 154

MPI_Alltoall 60 60 60 0 0

MPI_Allgather 20 20 20 0 0
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and Stratus (Stratus Cloud Project, 2008), offer EC2-
like functionality. However, none of these projects
offers a parallel I/O distributed system, such as
AHPIOS.

AHPIOS could be used in two ways with EC2-like
services. Firstly, AHPIOS could offer a MPI-IO inte-
grated, shared, distributed partition, based on the local
storage of several available instances. This provides an
efficient on-demand parallel I/O system to MPI appli-
cations running on the available instances. In addition,
AHPIOS can be simply scaled up or down by a simple
restart. However, in this case the data from the local stor-
age has to be backed up on either EBS or S3, for instance
through an asynchronous data staging running in the
background. Secondly, AHPIOS could be used for effi-
ciently store the data in parallel over several EBS parti-
tions. Currently, we are investigating both possibilities
and we plan to implement and evaluate both of them in
the near future.

8 Conclusions and Future Work

We have presented the AHPIOS parallel I/O system, an
ad-hoc parallel system that allows on-demand virtualiza-
tion of distributed resources, provides a high-perform-
ance parallel I/O and that can be used as a cost-efficient
alternative to traditional parallel file systems. AHPIOS is
completely implemented in the MPI and offers a scala-
ble, efficient platform for parallel I/O. The two-level
cooperative cache scales with the number of processors
at the first level and with the number of storage resources
at the second level. The strategy of asynchronous data
staging between the caching levels hides the latency of
file accesses from the applications.

The performance results show that the tight integration of
the application and storage system, together with the asyn-
chronous data-staging strategy and the cooperative caching,
bring a substantial benefit over traditional solutions.

AHPIOS can be used as an alternative to traditional
parallel file systems where the applications require a lim-
ited set of parallel I/O functionality. Firstly, as in the case
of PVFS, AHPIOS requires an external locking mech-
anism in order to offer atomic file access semantics for
overlapping accesses. Secondly, the current prototype
offers a MPI-IO interface. Nevertheless, we are currently
implementing a POSIX-like interface by using FUSE
(Filesystems in Userspace, FUSE). Thirdly, AHPIOS
requires the dynamic process mechanism of the MPI2,
which is not yet directly integrated with the current sched-
ulers. However, dynamic processes can be spawn on parti-
tions pre-reserved at application scheduling time. Fourthly,
AHPIOS can be virtualized on demand to locally available
disks. However, AHPIOS is not limited to local disks and
can be used with any available storage resource.

Future work will concentrate on expanding the appli-
cability domain of AHPIOS. We believe that AHPIOS is
a suitable solution not only for clusters of computers, but
also for supercomputers, grids, and clouds. Recently, we
have deployed the AHPIOS on a Blue Gene/L system at
the Argonne National Laboratory. Currently, we are
working toward installing and evaluating the system on
the new Blue Gene/P. In addition, we envision AHPIOS
as a high-performance parallel I/O solution for comput-
ing clouds. We plan to install and evaluate AHPIOS on
existing cloud solutions.
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