
AHPIOS: An MPI-based ad-hoc parallel I/O system

Florin Isailă, Javier Garcia Blas, Jesus Carretero - University Carlos III of Madrid
{florin, fjblas, jcarrete}@arcos.inf.uc3m.es

Wei-keng Liao, Alok Choudhary - Northwestern University
{wkliao, choudhar}@ece.northwestern.edu

Abstract

This paper presents the design and implementation of
a portable ad-hoc parallel I/O system (AHPIOS). AH-
PIOS virtualizes on-demand available distributed storage
resources and allows the files to be striped over several stor-
age devices. Additionally, the design unifies the configura-
tion of the MPI-IO library and the AHPIOS data servers. By
a strong integration of the application, MPI-IO library and
file system, a significant performance improvement can be
achieved. The experimental section shows that the full MPI-
IO integrated AHPIOS implementation of file access oper-
ations outperforms the existing MPI-IO implementation by
as much as 495% for file writes and 522% for file reads.

1 Introduction

In the last years the computing power of high-
performance systems has continued to increase at an ex-
ponential rate, making even more challenging the access to
large data sets. The ever increasing gap between I/O subsys-
tems and processor speeds has driven researchers to look for
scalable I/O solutions, including parallel file systems and li-
braries.

A typical parallel file system stripes the file data and
metadata over several independent disks managed by I/O
nodes in order to allow parallel file access from several
compute nodes. Examples of popular file systems include
GPFS [21], PVFS [15] and Lustre [8]. These parallel file
systems manage the storage of several clusters and super-
computers from top 500 list [7].

The design complexity of distributed parallel file sys-
tems makes difficult to address the various requirements
of different classes of applications at file system level. In
other words, the inclusion of these optimizations inside the
file systems would come at the cost of additional complex-
ity. These optimizations addressing specific application re-
quirements can be done at a higher level in an intermediate

layer, whose stability is not critical for the system behavior.
The access to parallel file systems is typically done ei-

ther through POSIX file interface or MPI-IO [17]. While
ongoing efforts try to adapt POSIX to high performance re-
quirements, MPI-IO has imposed as a portable and high per-
formance interface for parallel applications. MPI-IO stan-
dard and its distributions (such as the popular ROMIO [27])
offer various file access optimizations (e.g. collective I/O,
buffering, caching) on top of existing file systems.

A loose integration between file system and MPI-IO li-
brary supposes the existence of specific mechanisms and
policies at each layer. In order to achieve an optimal perfor-
mance an user should search through a high configuration
parameter space and try to tune both file system and library.

In this paper we propose AHPIOS, a system that tightly
integrates the MPI-IO distribution with an on-demand con-
figurable parallel I/O system and unifies the configuration
of both layers. Additionally, AHPIOS offers a high per-
formance I/O system by virtualizing distributed storage and
allowing a file to be striped over several storage devices, in
the same way as in a parallel file system. This makes AH-
PIOS an alternative choice to a parallel file system.

The rest of the paper is structured as follows. Section 2
overviews related work. The system architecture and im-
plementation is described in Section 3. The experimental
results are presented in section 4. Finally, we summarize in
section 5.

2 Related work

GPFS [21] is a parallel file system based on a shared-
disk architecture: the disks are shared by all the nodes in
the cluster/supercomputer. The Lustre [8] project aims at
providing a file system for clusters of tens of thousands of
nodes with petabytes of storage capacity. PVFS [15] is an
open source parallel file system that targets the efficient ac-
cess to large data sets. AHPIOS can be used alternatively
to these parallel file systems. Additionally, can be launched
in any distributed system which allows running an MPI ap-

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521­9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.50

253

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

MPI communication

MPI intercommunicator

Data and metadata operations

Local file system

Parallel I/O scheduling

MPI communication

Data and metadata operations

Local file system

Parallel I/O scheduling

MPI communication

Data and metadata operations

Local file system

Parallel I/O scheduling

MPI communication

MPI communicationMPI communication

Application process 0

Application

MPI−IO

ADIO FS−independent part

AHPIOS File access operations

Parallel I/O schedulingADIO FS−dependent part

...

Application process 1

Parallel I/O scheduling

ADIO FS−independent part

MPI−IO

Application

Application process p−1

...

AHPIOS server 0 AHPIOS server 1 AHPIOS server n−1

AHPIOS instance

AHPIOS client application

AHPIOS File access operations

ADIO FS−independent part

MPI−IO

Application

Parallel I/O scheduling

AHPIOS File access operations

(S4)

(S3)

(S2)

(S1)

(C4.1)

(C5)

(C4.2)

(C3)

(C2)

(C1)

Figure 1. AHPIOS architecture with one application and one AHPIOS instance.

plication, allowing to virtualize on-demand cluster or grid
storage resources.

Collective I/O techniques merge small individual re-
quests from compute nodes into larger global requests in
order to optimize the network and disk performance. De-
pending on the place where the request merging occurs, one
can identify two collective I/O methods. If the requests are
merged at the I/O nodes the method is called disk-directed
I/O [14, 22]. If the merging occurs at intermediary nodes
or at compute nodes, the method is called two-phase I/O
[5, 2]. Data shipping [20] is a collective optimization that
uniquely binds each file block in a round-robin manner to
a unique I/O agent. All subsequent read and write opera-
tion on the file go through the I/O agents, which ship the
requested data between the file system and the appropriate
processes.

Several researchers have contributed with optimiza-
tions of MPI-IO data operations: data sieving [26], non-
contiguous access [28], collective caching [12], cooperat-
ing write-behind buffering [13], integrated collective I/O
and cooperative caching [9]. Packing and sending MPI data

types has been presented in [3]. In our previous work [11]
we have implemented the view I/O technique in Clusterfile
[10] parallel file system, which uses a data representation
equivalent to the MPI data types.

3 AHPIOS design and implementation

AHPIOS system manages several dynamic partitions of
a parallel file system. The partitions are independent from
each other, two different applications can access them in a
concurrent manner.

Each partition is managed by a set of data servers, which
run together as an MPI program called an AHPIOS instance,
as it can be contemplated in the lower part of Figure 1.
A partition can be created on-demand by any MPI appli-
cation, which transparently reads the configuration from a
user file and dynamically spawns the AHPIOS servers. Al-
ternatively, an MPI application can mount an existing parti-
tion, either by re-launching an AHPIOS instance or by con-
necting to a running one. An AHPIOS instance virtualizes
distributed storage resources and it is equivalent with a par-

254

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

allel file system installation. For example, a file may be
striped over several independent storage resources.

The clients are unmodified MPI applications, which ac-
cess the parallel file systems through an MPI-IO inter-
face. One client is shown in the upper part of Figure 1.
Each client is connected to an AHPIOS instance through an
MPI intercommunicator. An intercommunicator is an MPI
mechanism that allows two independent MPI applications
to connect to each other and communicate. After connect-
ing, all application processes can communicate individually
or collectively with all server processes.

The design and implementation of the AHPIOS client is
based on the ROMIO software architecture. Figure 2 shows
the software architecture of ROMIO on five tiers: (C1) ap-
plication layer, (C2) MPI-IO layer, (C3) ADIO file system -
independent layer, (C4) ADIO file system-specific layer and
(C5) file system library. The MPI-IO calls of the applica-
tions are translated in the C2 layer (MPI-IO) into a smaller
subset of ADIO calls. The C3 layer, contains implementa-
tions of mechanisms and optimizations such as views, non-
contiguous file access and collective I/O. The C4 layer maps
an even smaller set of file access functions on particular file
systems. This layer has to be implemented in order to add
ROMIO support for a new parallel file system. Finally, the
C5 layer consists of the file system access routines (it can
be a user level library or the locally mounted file system).
AHPIOS client was integrated into the ROMIO architecture
stack by implementing the C4 and C5 layers, as it can be
seen in the upper part of Figure 1. The C4 layer can be
divided into two sublayers. The upper sublayer maps the
ADIO file operations onto tasks to be performed by the in-
dividual AHPIOS servers. These can be metadata-related,
such as creating or deleting a file or data operations. In the
lower sublayer, these tasks are scheduled for transfer by a
parallel I/O scheduling module. The C5 layer is responsible
for communication with the AHPIOS servers through MPI
communication routines.

As shown in the lower part of Figure 1, the server de-
sign is structured in four sublayers. The communication
with the client application is performed through MPI rou-
tines in the S4 sublayer. The S3 sublayer is responsible for
the parallel I/O scheduling policy, enforced in cooperation
with the corresponding modules of the client side. The data
and metadata management is performed in the S2 sublayer.
Finally, the S1 layer transfers the data and metadata to the
final storage.

3.1 Data access

The data access is performed through the cooperation of
the client library running on several compute nodes and the
AHPIOS servers. An AHPIOS file may be striped over sev-
eral AHPIOS servers. An AHPIOS server has the following

...GPFSPVFSUnixFS

Parallel application

MPI−IO

ADIO file system − specific layer

ADIO file system − independent layer

AHPIOS

(C1)

(C2)

(C3)

(C4)

(C5)

Figure 2. ROMIO software architecture

data-related duties (in subsection 3.2 we describe also the
metadata operations):

• data communication with the clients

• cooperation of the parallel I/O scheduling module with
the parallel I/O scheduling module of other I/O clients
in order to optimize the global transfer performance

• data sieving and view optimizations

• management of a local cache; a local LRU replacement
policy is employed for this cache

• end-storage access

3.1.1 Views

The view mechanism is implemented inside AHPIOS paral-
lel I/O system. For each compute node declaring a view, the
view file type, provided by the application as an MPI data
type is decoded by the file system client. This is achieved by
a recursive top-down traversal of the date type tree, which
reconstructs the steps employed by the original application
for data type creation. This data type structure is serialized
and transferred to all AHPIOS servers, over which the file
is striped. Each of these AHPIOS servers unserializes and
reconstructs the original data type.

Subsequently, at file access time, the view data is directly
mapped to the end-storage blocks at the AHPIOS servers. In
ROMIO, this mapping is decomposed into two components:
view-file mapping inside MPI-IO library and file-end stor-
age mapping in the file system.

Figure 3 shows an example of a compute node that has
declared a view by using an MPI vector data type with 4
blocks of 1 byte each and stride 4. The file is striped over
2 AHPIOS servers with a stripe of 8 (only the first two file
blocks are shown in the figure, one at each I/O server). The
left hand side depicts the view declaration operation, when
the data type is sent to all AHPIOS servers and stored there.
The right hand side illustrates the direct transfer of the con-
tiguous data view to the AHPIOS servers. The contiguous
data of the view is split into two packets at the file block

255

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

0 1

2 3

2 3

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Compute node

File view: blocklen = 1, count = 4, stride =4, oldtype=MPI_BYTE

I/O server 1I/O server 0

(1,4,4,MPI_BYTE) (1,4,4,MPI_BYTE)

Compute node

I/O server 1

(1,4,4,MPI_BYTE) (1,4,4,MPI_BYTE)

File layout: nr_ioservers = 2, stripe =8

I/O server 0

View declaration File write

Figure 3. View I/O example in AHPIOS.

boundary. Each packet it is send to the corresponding AH-
PIOS server, where it is scattered by using the previously
stored data type. The bottom part shows the file after the
transfer.

The AHPIOS servers use the stored view data types for
unpacking and transferring the data to/from the local stor-
age repositories. This approach is different from the one
employed in ROMIO. The ROMIO view is implemented
in the ADIO file system-independent layer, which performs
the mapping to the linear file space at the compute node.
Data lying non-contiguous in file has to be re-mapped on
a contiguous network buffer for efficient remote transfer to
the file system servers.

3.1.2 Collective and independent I/O operations

As discussed in subsection 2, the MPI-IO standard defines
two major groups of file access operations: collective and
independent. The collective operations are suitable for the
parallel workloads because of four basic characteristics,
shown to be common in the data-intensive parallel scien-
tific applications [19, 24, 23, 4, 29, 6]. First, it is frequent
that all compute nodes perform access to the same file. Sec-
ond, each individual compute node accesses the file non-
contiguously and with small granularities. Third, there is a
high degree of spatial locality: when a node accesses some
file regions, the other nodes tend to access neighboring data.
Fourth, the write accesses are mostly non-overlapping.

ROMIO distribution contains an implementation of two-
phase I/O, for which the collective buffers reside at the
aggregators (which are a subset of the compute nodes).

AHPIOS collective I/O operations are related with disk-
directed [14] and server-directed [22] collective I/O tech-
niques (described in Section 2).

The AHPIOS implementation does not make any explicit
distinction between independent and collective I/O opera-
tions, but it relies on the spatial locality property of the col-
lective I/O calls. For write operations, when receiving a
request from a compute node, the AHPIOS server checks to
see if it has already cached the collective buffer (a collec-
tive buffer is a buffer that stores data on behalf of several
compute nodes). If yes, the data is scattered by using the
view data type. If not, the buffer is first read from the stor-
age (for an existing file) or acquired from a pre-allocated
pool (for a new file region) and then the scatter operation is
performed. For read operations, the collective buffer is read
from the file system at the first request of a compute node.
Subsequent accesses find the data in the cache.

There are four main differences between the implemen-
tations of AHPIOS file access operations and ROMIO col-
lective two-phase I/O. First, the view data types of all nodes
involved in a collective access are sent at view declaration
to all AHPIOS servers and can be reused until the view
is changed. In ROMIO the pairs offset-length correspond-
ing to the access pattern have to be transferred at each ac-
cess. Second, no shuffle is necessary at compute node, be-
cause the mapping between application view and file lay-
out is performed at the AHPIOS server. Third, if the AH-
PIOS servers have locally-attached storage, only one net-
work transfer is needed, while in ROMIO two-phase I/O at
least two transfers are performed. Fourth, in ROMIO, the
collective buffers are not reused across different collective

256

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

operations. Consequently, workloads that show temporal
locality cannot take advantage of the data already cached
in them. In contrast, in AHPIOS, the collective buffers
are stored in the local cache of the AHPIOS servers and
can be reused across different collective I/O operations (if
they have not been evicted by the replacement policy in the
meantime).

Data consistency is enforced by caching the data blocks
only once at the AHPIOS servers. This approach is similar
to the one of PVFS. For concurrency control of independent
access operations the user should employ external locking
mechanisms. In the case of collective operations, the partic-
ipant processes cooperate in order to access the file. For the
collective write operation, it is the user responsibility to as-
sure that the processes do not write overlappingly the same
file (for instance by declaring non-overlapping views).

3.2 Metadata management

In AHPIOS there is no server that performs global meta-
data management. The global metadata is minimal, and
contains only information about the particular instances of
the file system. This information is stored in a shared reg-
istry. Each instance accesses atomically the registry in or-
der to read or modify it. It is improbable that this access
could represent a bottleneck in a large system, because it
is accessed only when an instance is created, shut down or
restarted. All these operations are infrequent.

The global registry stores the initial static configuration
parameters of the AHPIOS instance. A rebooting instance
of AHPIOS retrieves the original static configuration pa-
rameters from the global registry and uses them for restart-
ing the file system created by a previous AHPIOS instance.
The dynamic parameters are newly indicated by the user.
We discuss more static and dynamic instance parameters in
the subsection 3.3.

One of the servers of each AHPIOS instance plays
also the role of an instance-local metadata manager. This
server performs in the present implementation two func-
tions: manages a local name space, stores and retrieves the
file metadata. The global name of a file is given by ap-
pending the local path of a file to the global unique instance
name. The local name space can be as simple as a directory
in the name space of the local file system on the node where
the AHPIOS metadata server is running.

For each file, additional metadata information is stored
such as: the number of I/O servers over which the file is
stored, the path on each local file system of each AHPIOS
server, where the file data is permanently stored, and the
stripe size.

3.3 AHPIOS configuration

One of the main goal of AHPIOS was avoiding that the
specific system parameters are the default parameters of a
cluster-wide installation. There may be several instances
of AHPIOS running at the same time on the same cluster.
Each of these instances may use a different block size, net-
work buffer size, AHPIOS server set, metadata manager,
etc. More than that, a particular AHPIOS instance can be
shut down and restarted with a different set of dynamic pa-
rameters, which would provide better performance results.

An AHPIOS instance may be configured at the start of
an application. The user may define the file system param-
eters in a configuration file, such as the one from below.
The static parameters include the default file stripe size and
the storage resources over which the files are striped. In
the example below file data will be striped over nodes n1,
n2, n3, n4 in local directories, while the instance metadata
will be stored in the directory /metadata of node n0. The
dynamic parameters include the network buffer size, the
cache size of the servers and the optimizations to be used
(we show here only the generic ROMIO and AHPIOS op-
timizations). The static parameters could be changed by
creating a new instance and then moving the data from old
instance to the new instance. The dynamic parameters can
be changed when an instance restarts.

#AHPIOS configuration file: filesystem.cfg
######### Static parameters
The default stripe size of the filesystem
stripe_size = 64k
Number of IOS
nr_ios = 4
Storage resources of AHPIOS servers
ahpios_server = n0:/data
ahpios_server = n1:/data
ahpios_server = n2:/data
ahpios_server = n3:/data
Path of the metadata directory
metadata = n0:/metadata

######### Dynamic parameters
Scheduling block size
net_buf_size = 64k
#Buffer cache size of AHPIOS server
cache_size = 1G
AHPIOS or ROMIO optimizations
0: AHPIOS 1:ROMIO
optimizations = 0

4 Experimental results

The evaluation presented in this paper was performed on
the dual-core “Lonestar” system at TACC [16] in the frame-

257

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

0

1

2

3

4

5

6

7

8

9 16 25 36 49 64

Ti
m

e
(s

ec
on

ds
)

Write time BTIO B

2P-PVFS2

2P-AHPIOS

Full-AHPIOS

0
1
2
3
4
5
6
7
8
9
10

Ti
m

e
(s

ec
on

ds
)

Read time BTIO B

2P-PVFS2

2P-AHPIOS

Full-AHPIOS

0

9 16 25 36 49 64

Figure 4. BTIO measurements (class B).

work of the Teragrid project [25]. A node consists of a Dell
PowerEdge 1955 blade running a 2.6 x86 64 Linux kernel
from kernel.org. Each node contains two Xeon Intel Duo-
Core 64-bit processors (4 cores in all) on a single board, as
an SMP unit. The Core frequency is 2.66GHz and supports
4 floating-point operations per clock period with a peak
performance of 10.6 GFLOPS/core or 42.6GFLOPS/node.
Each node contains 8GB of memory. The interconnect is
Infiniband. The employed MPI library is MPICH2 [1] ver-
sion 1.0.5, with the communication running over TCP/IP
sockets. The Lonestar Storage includes a 73GB SATA drive
(60GB usable by user) on each node (the I/O servers of AH-
PIOS and PVFS2 used this storage).

In the experiments we have used AHPIOS and PVFS2,
which we launched through the batch system, before the ap-
plication is started. Both AHPIOS and PVFS2 used 8 I/O
nodes and a file block of 64KBytes. For both systems, the
I/O servers and application processes are running on dis-
joint nodes. The communication inside the file systems and
in the MPICH2 was done with TCP/IP sockets over Infini-
band.

The largest number of nodes used by the applications for
the computation was 64 (an additional number of 8 nodes
were used for I/O servers by PVFS2 and AHPIOS). Due to
the large wait times in the batch system queues of Lonestar,
we could not perform measurements on a larger number of
nodes.

0

5

10

15

20

25

9 16 25 36 49 64

Ti
m

e
(s

ec
on

ds
)

Write time BTIO C

2P-PVFS2

2P-AHPIOS

Full-AHPIOS

0

5

10

15

20

25

30

35

Ti
m

e
(s

ec
on

ds
)

Read time BTIO C

2P-PVFS2

2P-AHPIOS

Full-AHPIOS

0

9 16 25 36 49 64

Figure 5. BTIO measurements (class C).

In all benchmarks we compared three solutions: ROMIO
two-phase I/O over PVFS2 (2P-PVFS2), ROMIO two-
phase I/O over AHPIOS, and an integrated AHPIOS-based
solution (full-AHPIOS). In the first two solutions, the view
and the collective I/O optimizations are implemented in the
file system-independent part of ADIO, while the file sys-
tem is accessed only for contiguous accesses. In the inte-
grated solution, the view and collective I/O operations are
performed in cooperation by the application processes and
AHPIOS servers. Our goal is to demonstrate that, by the
tight integration between application and library offered by
the full-AHPIOS solution, a significant better performance
can be obtained.

4.1 BTIO benchmark

NASA’s BTIO benchmark [29] solves the Block-
Tridiagonal (BT) problem, which employs a complex do-
main decomposition across a square number of compute
nodes. Each compute node is responsible for multiple
Cartesian subsets of the entire data set. The execution al-
ternates computation and I/O phases. Initially, all compute
nodes collectively open a file and declare views on the rele-
vant file regions (a subcube in the Cartesian domain). After
each five computing steps the compute nodes write the so-
lution to a file through a collective operation. At the end,
the resulting file is collectively read and the solution ver-

258

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

ified for correctness. In this paper we report the results
for the MPI implementation of the benchmark, which uses
MPI-IO’s collective I/O routines. On all runs we set the
benchmark to execute 25 compute steps, which correspond
to 5 I/O steps (5 collective writes followed by 5 collective
reads). The access pattern of BTIO is nested-strided with a
nesting depth of 2.

Figures 4 and 5 show the results for the classes B and C,
respectively. The upper row shows the total time (in sec-
onds) spent in writing the file, while the lower row the total
time spent in reading.

First we note that the two implementations based on two-
phase I/O (2P-PVFS2 and 2P-AHPIOS) show similar re-
sults.

In all cases the AHPIOS-based reads and writes signifi-
cantly outperform 2P-PVFS2 and 2P-AHPIOS. When com-
paring the AHPIOS accesses with the best performing im-
plementation, the improvement ranged for class B writes
from 1.81 times (64 processes) to 2.87 times (32 processes),
for class B reads from 1.28 times (36 processes) to 4.42
times (16 processes), for class C writes from 1.95 times (64
processes) to 4.95 times (16 processes) and for class C reads
from 1.9 times (36 processes)to 5.22 times (9 processes).

There are additional reasons, which explain the results.
In two-phase I/O the data is in general transferred twice
over the fabric: once for the data aggregation at the compute
nodes and the second time when accessing the file system.
In Full-AHPIOS the aggregation is done at the AHPIOS
server, i.e. close to the storage. If the storage is locally
available, the second communication operation is spared.

Additionally, the view I/O technique significantly re-
duces the size of the metadata sent over network. First, the
MPI data types are sent compact to the AHPIOS servers at
view declaration. Second, this data type transfer is done
only once and it can be reused by subsequent operations. In
contrast, the lists of offset-length pairs are sent to the aggre-
gators at each two-phase I/O operation.

Finally, in AHPIOS, the collective buffers are cached at
the AHPIOS servers across collective I/O operations. Sub-
sequent read operations find them in the cache.

4.2 MPI Tile I/O benchmark

MPI Tile I/O benchmark [18] evaluates the perfor-
mance of underlying MPI-IO library and file-system imple-
mentation under a non-contiguous access workload. The
benchmark logically divides a data file into a dense two-
dimensional set of tiles. The number of tiles along rows
(nr x) and columns (nr y) and the size of each tile in the x
and y dimensions(sz x and sz y) are specified as input pa-
rameters. We have chosen this values such that for any num-
ber of processors the total amount of data to be accessed is
1 GByte and the access granularity is 4 KBytes.

0

50

100

150

200

250

300

4 8 16 32 64

Th
ro

ug
hp

ut
 (M

By
te

s/
Se

co
nd

)

Number of processes

MPI Tile I/O Write Throughput

2P-PVFS2

2P-AHPIOS

Full-AHPIOS

0

100

200

300

400

500

600

700

4 8 16 32 64

Th
ro

ug
hp

ut
 (M

By
te

s/
se

co
nd

)

MPI Tile I/O - Read Throughput

2P-PVFS2

2P-AHPIOS

Full-AHPIOS

4 8 16 32 64

NUmber of processes

Figure 6. MPI Tile I/O throughput.

The results are plotted in Figure 6. Full-AHPIOS out-
performs the other solutions in nine of the ten cases. From
these nine cases the write improvement of Full-AHPIOS
over the best of 2P-AHPIOS and 2P-PVFS2 ranges between
1.2 times for 16 processes and 1.54 times for 8 processes.
Full-AHPIOS shows remarkable results for reading the file.
The improvement is between 2.25 for 64 processes to 6.3
for 4 processes. When 64 processes write the file, the 2P-
PVFS outperforms Full-AHPIOS by 5%.

5 Conclusion and future work

In this paper we have presented AHPIOS parallel I/O
system, a dynamic parallel I/O system, that virtualizes on-
demand independent storage resources. AHPIOS can take
advantage of its tight integration with MPI-IO, and use the
application access patterns in order to increase the perfor-
mance. AHPIOS employs efficient non-contiguous I/O and
collective I/O techniques, which can be used alternatively
to the ones in ROMIO. The experimental results show that,
even in an incipient development phase, AHPIOS outper-
forms solutions in which the parallel file systems and the ap-
plication optimizations are separated, using various access
patterns common to parallel scientific applications. The
main advantage of AHPIOS solution comes from the tight
integration between the application and the end storage.

259

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

Acknowledgments

This work was supported in part by Spanish Min-
istry of Science and Innovation under the project TIN
2007/6309 and by DOE SCIDAC-2: Scientific Data Man-
agement Center for Enabling Technologies (CET) grant
DE-FC02-07ER25808, DOE SCiDAC award number DE-
FC02-01ER25485, NSF HECURA CCF-0621443, NSF
SDCIOCI-0724599, and NSF ST-HEC CCF-0444405.

References

[1] MPICH website. http://www-unix.mcs.anl.gov/mpi/mpich/.

[2] R. Bordawekar. Implementation of Collective I/O in the In-
tel Paragon Parallel File System: Initial Experiences. In
Proc. 11th International Conference on Supercomputing,
July 1997. To appear.

[3] A. Ching, A. Choudhary, W. K. Liao, R. Ross, and W. Gropp.
Efficient Structured Data Access in Parallel File Systems. In
Proceedings of the IEEE International Conference on Clus-
ter Computing, December 2003.

[4] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input/Output
Characteristics of Scalable Parallel Applications. In Pro-
ceedings of Supercomputing ’95, 1995.

[5] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved
parallel I/O via a two-phase run-time access strategy. In
Proc. of IPPS Workshop on Input/Output in Parallel Com-
puter Systems, 1993.

[6] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo. FLASH:
An Adaptive Mesh Hydrodynamics Code for Modelling As-
trophysical Thermonuclear Flashes. Astrophysical Journal
Suppliment, pages 131–273, 2000.

[7] http://www.top500.org. Top 500 list.

[8] C. F. S. Inc. Lustre: A scalable, high-performance file sys-
tem. Cluster File Systems Inc. white paper, version 1.0,
November 2002. http://www.lustre.org/docs/whitepaper.pdf.

[9] F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy.
Integrating Collective I/O and Cooperative Caching into the
“Clusterfile” Parallel File System. In Proceedings of ACM
International Conference on Supercomputing (ICS), pages
315–324. ACM Press, 2004.

[10] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout
parallel file system. In First IEEE International Conference
on Cluster Computing, Oct. 2001.

[11] F. Isaila and W. Tichy. View I/O:improving the performance
of non-contiguous I/O. In Third IEEE International Confer-
ence on Cluster Computing, pages 336–343, Dec. 2003.

[12] W. keng Liao, K. Coloma, A. Choudhary, L. Ward, E. Rus-
sel, and S. Tideman. Collective Caching: Application-Aware
Client-Side File Caching. In Proceedings of the 14th Inter-
national Symposium on High Performance Distributed Com-
puting (HPDC), July 2005.

[13] W. keng Liao, K. Coloma, A. N. Choudhary, and L. Ward.
Cooperative Write-Behind Data Buffering for MPI I/O. In
PVM/MPI, pages 102–109, 2005.

[14] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In
Proc. of the First USENIX Symp. on Operating Systems De-
sign and Implementation, 1994.

[15] W. Ligon and R. Ross. An Overview of the Parallel Virtual
File System. In Proceedings of the Extreme Linux Workshop,
June 1999.

[16] Lonestar home page. http://www.tacc.utexas.edu/services/-
userguides/lonestar/.

[17] Message Passing Interface Forum. MPI2: Extensions to the
Message Passing Interface, 1997.

[18] MPI tile I/O. http://www-unix.mcs.anl.gov/pio-benchmark/.

[19] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and
M. Best. File Access Characteristics of Parallel Scientific
Workloads. In IEEE Transactions on Parallel and Dis-
tributed Systems, 7(10), pages 1075–1089, Oct. 1996.

[20] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges.
MPI-IO/GPFS, an optimized implementation of MPI-IO on
top of GPFS. In Supercomputing ’01: Proceedings of the
2001 ACM/IEEE conference on Supercomputing (CDROM),
pages 17–17, New York, NY, USA, 2001. ACM Press.

[21] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters. In Proceedings of FAST,
2002.

[22] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.
Server-directed collective I/O in Panda. In Proceedings of
Supercomputing ’95.

[23] H. Simitici and D. Reed. A Comparison of Logical and Phys-
ical Parallel I/O Patterns. In International Journal of High
Performance Computing Applications, special issue (I/O in
Parallel Applications), 12(3), pages 364–380, 1998.

[24] E. Smirni and D. Reed. Workload Characterization of I/O In-
tensive Parallel Applications. In Proceedings of the Confer-
ence on Modelling Techniques and Tools for Computer Per-
formance Evaluation, June 1997.

[25] Teragrid home page. http://www.teragrid.org/.

[26] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Col-
lective I/O in ROMIO. In Proc. of the 7th Symposium on
the Frontiers of Massively Parallel Computation, pages 182–
189, February 1999.

[27] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proc. of the Sixth
Workshop on I/O in Parallel and Distributed Systems, pages
23–32, May 1999.

[28] R. Thakur, W. Gropp, and E. Lusk. Optimizing Noncontigu-
ous Accesses in MPI-IO. Parallel Computing, 28(1):83–105,
Jan. 2002.

[29] P. Wong and R. der Wijngaart. NAS Parallel Benchmarks I/O
Version 2.4. Technical Report NAS-03-002, NASA Ames
Research Center, Moffet Field, CA, January 2003.

260

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 16:37 from IEEE Xplore. Restrictions apply.

