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Abstract—Hierarchical clustering has many advantages over
traditional clustering algorithms like k-means, but it suffers from
higher computational costs and a less obvious parallel structure.
Thus, in order to scale this technique up to larger datasets, we
present SHRINK, a novel shared-memory algorithm for single-
linkage hierarchical clustering based on merging the solutions
from overlapping sub-problems. In our experiments, we find
that SHRINK provides a speedup of 18–20 on 36 cores on
both real and synthetic datasets of up to 250,000 points. Source
code for SHRINK is available for download on our website,
http://cucis.ece.northwestern.edu.

I. INTRODUCTION

Hierarchical clustering is a powerful technique that offers
several advantages over traditional partitional clustering tech-
niques, including its non-parametric nature and its ability
to elucidate the overall structure of a dataset. Hierarchical
clustering has been applied in document classification, bioin-
formatics, and chemoinformatics (e.g., [1], [2], [3]), as well as
others. For example, hierarchical clustering might be used in
a bioinformatics context to establish a putative phylogenetic
tree among a set of species. However, because it effectively
evaluates the cluster structure of a dataset at all levels,
hierarchical clustering has a higher computational cost than
many traditional clustering algorithms, so a scalable parallel
technique is needed in order to apply hierarchical clustering
to large datasets. Critically, hierarchical clustering is difficult
to parallelize effectively due to high data dependence—each
level in the hierarchical dendrogram relies on all of the earlier
levels to make sense. Consequently, relatively little work has
been done on parallel hierarchical clustering. Moreover, many
existing parallel algorithms store a distance matrix, limiting the
feasible problem size due to memory constraints. In this paper,
we describe SHRINK (SHaRed-memory SLINK), a scalable
algorithm for single-linkage hierarchical clustering (SHC) that
we implemented in OpenMP. The main parallelization strategy
for SHRINK is to divide the original dataset into overlapping
subsets, calculate the hierarchical dendrogram for each subset
using the state-of-the-art SHC algorithm SLINK [4], and
reconstruct the dendrogram for the full dataset by combining
the solutions to the subsets. Even though SLINK itself is
strongly serial, dividing the dataset allows us to solve the
problem in parallel, while reaping the benefits of SLINK,
namely, its linear memory requirements and overall efficiency.
In addition, OpenMP allows us to read in the dataset once and

access it from a single location, rather than making copies of
the data.

We evaluate our algorithm empirically on real and synthetic
datasets with up to 250,000 data points, and we find that
it achieves a speedup of 18–20 on 36 cores across a wide
range of datasets. Our main contributions for this work are:
(1) SHRINK, a novel shared-memory algorithm for single-
linkage hierarchical clustering based on the state-of-the-art
serial algorithm SLINK, which we provide as open source on
our website;1 (2) a theoretical analysis of SHRINK, including
a formal proof of its correctness, an upper bound on the
amount of repeated work, and complexity analysis; and (3)
an empirical evaluation of the scalability of the computation
and memory requirements for SHRINK on real and synthetic
datasets.

The paper is organized as follows: Section II covers related
work, Section III describes our proposed algorithm, Section IV
covers theoretical aspects of our work, Section V presents our
empirical results for SHRINK, and Section VI concludes the
paper.

II. RELATED WORK

SLINK, originally created by Sibson [4], is the state-of-the-
art algorithm for single-linkage hierarchical clustering (SHC),
due to its optimal time and space complexity of O(n2)
and O(n), respectively. SLINK achieves this complexity by
iteratively adding one data point at a time to the dataset and
updating the dendrogram while only calculating the distance
from the new point to the existing points once. Because it does
not compute the distance matrix explicitly, it is very effective
at solving large problem instances.

Two of the most well-cited works on parallel hierarchical
clustering present parallel algorithms, but do not report em-
pirical results. The first of these, described by Bentley [5],
distributes the computation to various “tree” processors, while
Olson [6] presents two parallel algorithms for single-linkage
clustering. The first algorithm from Olson is designed for a
shared memory architecture and merges clusters by height,
while the second is designed for a butterfly architecture and
adds a single point at a time to the dendrogram.

An OpenMP algorithm for parallel SHC was presented by
Dash et al. [7]. The algorithm, which is based on partitioning
the data using a rectangular grid, achieved a speedup of about
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5.7 on datasets of up to 30k points using 8 cores. However,
this technique computes a distance matrix for each cell of the
grid, so it may not be applicable for datasets that are not well-
distributed.

Chang et al. [8] present a parallel algorithm for hierarchical
clustering on GPUs. Their algorithm parallelizes the process
of finding the minimum distance between clusters as well as
the pairwise distance computations. They report speedups of
up to 48 using an Nvidia Tesla C870 GPU card, though this
technique relies on computing a distance matrix, and so might
be limited by the size of the dataset it can process.

Du and Lin [9] present a parallel hierarchical clustering al-
gorithm for distributed memory architectures. Their algorithm
shows a speedup of 25 on 48 processors on a microarray
dataset with 7452 genes across 277 conditions, but it relies
on calculating a distributed distance matrix and may have
difficulty with larger datasets.

As the problem of single-linkage hierarchical clustering is
functionally equivalent to constructing the minimum spanning
tree (MST) of a graph in which the vertices represent data
points and edges the distances between them, we will mention
some work on parallel MST construction. While this problem
has been explored more thoroughly, many papers only present
theoretical results (e.g., [10], [11], [12]) or present algorithms
designed for sparse graphs ([13], [14], [15]). However, Dehne
and Götz [16] present a parallel MST algorithm for dense
graphs based on dividing the edges of the graph, performing
Borůvka’s algorithm on the partitions, and combining the
resulting MSTs. They report a speedup of 3.5 on 4 processors
on two graphs with 1k vertices and 400k edges.

Finally, Olman et al [17] present CLUMP, a parallel cluster-
ing algorithm using MPI that is related to both the MST and
SHC problems. Olman et al report speedups of up to 100 on
150 processors on a dataset of 1.2 million points; however,
they claim that this result is very close to the maximum
theoretical speedup.

III. PARALLEL SINGLE-LINKAGE HIERARCHICAL
CLUSTERING

In this section, we will discuss our parallel algorithm for
calculating the single-linkage hierarchical clustering (SHC)
dendrogram. The main strategy for our algorithm is to break
the dataset into overlapping subsets so that we can apply the
highly efficient SLINK algorithm to compute the dendrogram
for each subset independently and then combine the resulting
solutions to form the dendrogram for the full dataset. Specif-
ically, we form these subsets by partitioning the data into k
sets and assign each pair of these sets to a thread. In this
way, we can decompose the problem into smaller, independent
problem instances while still ensuring that every distance
calculation is being performed by at least one OpenMP thread.
We implement this problem decomposition by forming an
array of the data point IDs belonging to each subset. Note
that if we choose k = 2 partitions initially, SHRINK reduces
to the serial SLINK algorithm, with some minor modifications.
A pseudocode description of SHRINK appears in Algorithm 1.

Algorithm 1: Pseudocode outline for SHRINK

1 Partition the original dataset into k subsets of the roughly
same size, D1, D2, . . ., Dk.

2 forall the pairs of subsets (Di, Dj) do
3 Compute the dendrogram of the dataset Di ∪Dj .

(Algorithm 2)
4 end
5 repeat
6 Combine the dendrograms two at a time by

processing the cluster merges in order of increasing
height, eliminating merges that combine data points
already in the same cluster. (Algorithm 3)

7 until all dendrograms have been combined
8 return the combined dendrogram

In step 3 of Algorithm 1, we use a modified version of
the SLINK algorithm to calculate a dendrogram for each
subset of the original data. This algorithm, which appears in
Algorithm 2, differs from SLINK in that:

1) We keep track of the data points used to calculate each
distance and store these in the result (Λ) array,

2) We compare data point IDs when distances are equal,
and

3) We represent the dendrogram as a sequence of merges
between the two closest points in different clusters.

Changes 1 and 2 ensure that the distances between every pair
of points in the dataset are effectively distinct, and changes 1
and 3 make it simple to merge the dendrograms. Our modified
SLINK implementation is based on the serial pslcluster
function from the open source Cluster 3.0 library [18].

In steps 6 and 7 of the SHRINK algorithm (Algorithm 1),
we combine together all of the dendrograms for the subsets
into a single dendrogram that represents the solution of
the original problem. These dendrograms are combined by
iterating through the cluster merges in order of increasing
height, retaining those merges that join data points in different
clusters. A full proof of why this procedure generates the
dendrogram for the original dataset appears in Section IV-A.
To give some intuition on why it works, though, SHC has
a strong connection to the minimum spanning tree (MST)
problem, and we are essentially combining partial MSTs using
Kruskal’s algorithm since all of the edges of the MST for the
full graph must exist as edges in the MSTs of the subgraphs.
Since we sort the merges of the dendrograms by increasing
height (see Algorithm 2), we can use a Union-Find (or Disjoint
Set) data structure to maintain the cluster membership for
each data point as we combine the dendrograms to combine
them efficiently [19]. A pseudocode description of the merging
procedure appears in Algorithm 3.

Note that steps 6 and 7 in Algorithm 1 do not require
that the partial solutions be combined in a particular order.
Thus, we can combine them in a binary fashion, using half
of the available threads to combine pairs of dendrograms
independently in the first step, half as many threads in the



Algorithm 2: Pseudocode description of modified SLINK
algorithm [4]. In lines 9, 10, 14, and 19, the height of the
merges are compared first, and merges with equal height
are compared according to the IDs of the data points they
join.
Input: D—Set of data points
Input: d—function to calculate distance between two

points
Output: Sorted list of cluster merges in the dendrogram

defined by applying a distance function d to
every pair of points in D

1 Algorithm: MOD-SLINK
2 Initialize each Π[i] to be i
3 Initialize the height of each merge in Λ to be ∞
4 for i← 1 to |D| − 1 do
5 for j ← 0 to i− 1 do
6 M[j]← (D[j], D[i], d(D[j], D[i])), representing a

merge between D[j] and D[i] at height
d(D[j], D[i])

7 end
8 for j ← 0 to i− 1 do
9 if Λ[j] has a higher height/id than M[j] then

10 if Λ[j] has a lower height/id than M[Π[j]]
then

11 M[Π[j]]← Λ[j]
12 Λ[j]← M[j]
13 Π[j]← i
14 else if M[j] has a lower height/id than M[Π[j]]

then
15 M[Π[j]]← M[j]
16 end
17 end
18 for j ← 0 to i− 1 do
19 if Λ[j] has a higher height/id than Λ[Π[j]] then
20 Π[j]← i
21 end
22 end
23 Sort the merges of Λ by increasing height
24 return Λ

next step, and so on (see Figure 1). In this way, we can
parallelize the merging phase of the algorithm, improving
the overall efficiency. Moreover, the sooner we can combine
dendrograms with overlapping datasets, the sooner we can
eliminate duplicate or overlapping merges, reducing the total
number of merges and the computational cost of the merging
phase of the algorithm. In our implementation, we assign
datasets D1 ∪D2 to the first thread, D1 ∪D3 to the second,
and so on, so we combine the dendrograms belonging to
consecutive threads first, as most consecutive pairs of threads
share half of their datasets in common. (This is also illustrated
in Figure 1.)

Fig. 1. Example for binary merging of 6 partial dendrograms (6 threads) in
3 rounds.

Algorithm 3: Pseudocode for merging two dendrograms
Input: M1, M2: Sorted merge lists of two dendrograms
Output: M3: Sorted merge list of combined dendrogram

1 Algorithm: Merge(M1, M2)
2 Initialize M3 to be empty
3 Initialize Union-Find data structure
4 Let (u1, v1, h1) be the data points and height of the

lowest merge in M1

5 Let (u2, v2, h2) be the data points and height of the
lowest merge in M2

6 while M1 and M2 have merges remaining do
7 if h1 < h2 then
8 if union(u1, v1) succeeds then
9 Add (u1, v1, h1) to M3

10 Let (u1, v1, h1) be the next lowest merge in M1

11 else
12 if union(u2, v2) succeeds then
13 Add (u2, v2, h2) to M3

14 Let (u2, v2, h2) be the next lowest merge in M2

15 end
16 end
17 Add the remaining merges (u, v, h) of M1 or M2 to M3

as long as union(u, v) succeeds
18 return M3

IV. THEORETICAL RESULTS

In this section, we discuss some of the theoretical aspects
of our parallel algorithm, including its correctness, bounds
on the amount of overhead introduced by our parallelization
strategy, and algorithmic complexity. First, we formalize some
of the language we will use for our theorems. A dendrogram
is a relationship on a dataset that produces a partitional



clustering of the dataset for each height h ∈ R≥0. For any
dendrogram, every distinct data point is in a separate cluster at
height 0. We say that a SHC dendrogram merges two clusters
C1 = {x1, x2, . . . , xi} and C2 = {y1, y2, . . . , yj} at height
h iff minx∈C1,y∈C2

{d(x, y)} = h for some distance metric
or dissimilarity measure d, and all vertices of C1 ∪ C2 are
considered to be in the same cluster for all h′ ≥ h. We also
say that a dendrogram merges data points u and v at height h
iff h is the minimum height at which u and v are considered
to be in the same cluster. Note that the height at which a
dendrogram merges u and v cannot be greater than d(u, v).

A. Correctness

While we do not formally prove the correctness of the
modified serial SLINK algorithm, we note that when the
distance values are distinct, recording the points used to
calculate the distance will produce the correct MST because
SLINK calculates the correct SHC dendrogram, and, due to the
way in which merges are compared in our modified algorithm,
all distances are effectively unique. To formally establish the
correctness of the parallel algorithm (Algorithm 1), we show
that the dendrogram produced by Algorithm 1 merges every
pair of points at the same height as the true dendrogram of
the dataset. We need two lemmas to prove this result.

Lemma 4.1: If a dendrogram merges clusters containing
data points u and v together at height h, then there exist some
set of data points x1, x2, . . . , xj such that x1 = u, xj = v,
and the dendrogram merges data points xi to xi+1 at height
d(xi, xi+1) ≤ h for all such xi. Further, d(xp, xp+1) = h for
some xp.

Proof: We prove the claim by induction on the combined
size of the clusters containing u and v. If the clusters con-
taining u and v have two points between them, h must equal
d(u, v), so x1 = u and x2 = v, and the claim is true trivially.

Suppose the claim is true when the two clusters have k or
fewer points, and consider the case where the clusters contain
k + 1 points. If h = d(u, v), the claim holds as before. For
the case where h < d(u, v), there must be data points a and
b such that a and u are in the same cluster, b and v are in the
same cluster, and h = d(a, b). Note that the cluster containing
u and a must have k or fewer points, and the dendrogram must
merge clusters containing u and a (with combined size k or
less) at some height h′ ≤ h. Thus, by the inductive hypothesis,
there must exist some set of points x1, x2, . . . , xj such that
x1 = u, xj = a, and the dendrogram merges xi to xi+1 at
height d(xi, xi+1) ≤ h′ ≤ h. Similarly, there must exist some
y1, y2, . . . , yk such that y1 = v, yk = b, and the dendrogram
merges yi to yi+1 at height d(yi, yi+1) ≤ h. Therefore, for the
sequence of points u = x1, x2, . . . , xj , yk, yk−1, . . . , y1 = v,
the dendrogram merges xi to xi+1 at height d(xi, xi+1) ≤
h, xj to yk at height d(a, b) = h, and yi to yi+1 at height
d(yi, yi+1) ≤ h for all i, proving the claim for clusters with
total size k + 1. (In this case, d(xj , yk) = h.)

Lemma 4.2: If the SHC dendrogram of a dataset D merges
clusters containing data points u and v together at height h,

then the SHC dendrogram of a dataset D′ ⊃ D will merge
data points u and v together at some height h′ ≤ h.

Proof: By Lemma 4.1, there exist some x1, x2, . . . , xj
in D such that x1 = u, x2 = v, and the dendrogram for D
merges xi and xi+1 at height d(xi, xi+1) ≤ h for all such xi.
Since D ⊂ D′, all of these xi exist in D′. As a dendrogram
must merge any two vertices a and b at a height no more than
d(a, b) and d(xi, xi+1) ≤ h for all xi, the SHC dendrogram
for D′ must merge every xi and xi+1 at a height no more
than h, so xi and xi+1 must be in the same cluster when the
dendrogram of D′ is cut at height h for all xi. Thus, x1 = u
and xj = v must be in the same cluster, so u and v are merged
at some height h′ ≤ h.

We now present our main correctness result in Theorem 4.3.
Essentially, we show that the merges in the optimal solution
are all identified by the algorithm and propagated to the final
solution, and the solution found by the algorithm cannot find
a solution that merges data points at a lower height than the
optimal solution.

Theorem 4.3: Let M be the true SHC dendrogram of the
dataset, and let M ′ be the dendrogram calculated by Algo-
rithm 1. For every pair of data points u and v, M ′ merges u
and v at the same height as M .

Proof: As the SHC dendrogram must merge u and v at
some height h ≤ d(u, v), we consider two cases.

(Case 1: The SHC dendrogram merges u and v at height
h = d(u, v).) As all pairs of data points are distributed among
the parallel processes, at least one process p∗ must be assigned
a dataset containing both u and v. As we employ the SLINK
algorithm on each processor, we know that p∗ will calculate
the correct SHC dendrogram for its partial dataset. We first
show that this dendrogram must merge u and v at height h.

As p∗ contains u and v and d(u, v) = h, the SHC
dendrogram of p∗ must merge clusters containing u and v
at a height of at most h. Since the dataset assigned to p∗ is a
subset of the full data, Lemma 4.2 states that p∗ must merge
u and v at a height of at least h, so p∗ must merge u and v
at height exactly h.

We show by contradiction that no other dendrogram can
merge u and v at height less than h. Suppose that some
dendrogram merged u and v at a height h′ < h. Thus, there
must be some set of merges at height less than h that join u
and v in the same cluster, so there must be some set of vertices
x1 = u, x2, . . . , xj = v such that the dendrogram merges xi to
xi+1 at height d(xi, xi+1) < h for all such xi. (Note that the
height of these merges do represent the true distance between
xi and xi+1 as the merging procedure does not generate any
new merges and the dendrogram for each partial dataset was
calculated correctly.) As the all of these vertices exist in the
full dataset, though, M should merge each xi to xi+1 at height
no more than than d(xi, xi+1) < h, so u and v should be in the
same cluster at a height less than h; however, this contradicts
the fact that M merges u and v at height h. Since no other
dendrogram can merge u and v at height less than h, the
merging process will conserve the merge between u and v at
height h until all dendrograms have been merged, so M ′ will



also merge u and v at height h = d(u, v).
(Case 2: The SHC dendrogram merges together clusters

containing u and v at height h < d(u, v).) By Lemma 4.1,
there must exist some set of data points x1, x2, . . . , xj ∈ C1

such that x1 = u, xj = v, and the SHC dendrogram merges
clusters containing xi and xi+1 at height d(xi, xi+1) ≤ h
for all i < j. In addition, there must be some xp such that
xp and xp+1 are merged together at height d(xp, xp+1) = h.
By the result of Case 1, the final combined dendrogram will
merge each xi to xi+1 at height d(xi, xi+1) ≤ h and xp to
xp+1 at height h. Thus, all xi (including u and v) must be
in the same cluster at height h in the dendrogram formed by
Algorithm 1. As the merging procedure of SHRINK would
eliminate merges between u and v at a height greater than h,
we focus on proving that the calculated dendrogram M ′ does
not merge u and v at height less than h.

We prove by contradiction that u and v are merged together
at a height no less than h in M ′. Suppose u and v were
merged at some height h′ < h in the dendrogram calculated
by Algorithm 1. Thus, there must be some set of merges at
height less than h that join u and v in the same cluster, so there
must be some set of vertices x1 = u, x2, . . . , xj = v such that
the dendrogram merges xi to xi+1 at height d(xi, xi+1) < h
for all such xi. As the all of these vertices exist in the full
dataset, though, M should merge each xi to xi+1 at height no
more than than d(xi, xi+1) < h, so u and v should be in the
same cluster at a height less than h; however, this contradicts
the fact that M merges u and v at height h.

As u and v are merged at height no more than h and no
less than h in the final combined dendrogram, u and v are
merged at a height of exactly h, proving the claim.

B. Bounding the amount of repeated computation

In SHRINK, every distance computation is performed by
some thread, but the distances within a partition are calculated
multiple times, resulting in repeated computation. In this
section, we establish an upper bound on the total number of
distance calculations performed by SHRINK. In the first case,
we show that the parallel algorithm performs no more than
twice as many distance computations as the serial algorithm
in the case where the number of partitions evenly divides the
size of the dataset. In the second, we show an upper bound of
three times as many calculations when the number of partitions
does not evenly divide the dataset; however, it may be possible
to tighten this bound.

Theorem 4.4: When the number of partitions divides n
evenly, the total number of distance calculations performed
by Algorithm 1 is no more than 2

(
n
2

)
, where n ≥ 2 is the

number of data points.
Proof: Let D(n, k) represent the total number of distance

calculations performed by the parallel algorithm on k divisions
of n data points. As k divides n, each of the

(
k
2

)
processes has

2(n/k) points, so the total number of distance calculations is
given by

D(n, k) =

(
2n/k

2

)(
k

2

)
(1)

= (2n/k)(2n/k − 1)/2 · k(k − 1)/2 (2)
= n(k − 1)(2n− k)/(2k) (3)
= (n/2)(2n+ 1− k − 2n/k) (4)

Taking the partial derivative with respect to k yields:

∂D
∂k

= n2/k2 − n/2 (5)

0 = n2/k2 − n/2 (6)

nk2 = 2n2 (7)

k =
√

2n (8)

(Note that k and n must both be positive.) As the partial
derivative is positive for small k and negative for large k, the
number of distance calculations reaches its maximum at k =√

2n. Thus, the maximum number of distance computations
performed by SHRINK is given by:

D(n,
√

2n) = (n/2)(2n+ 1−
√

2n− 2n/
√

2n) (9)

= (n/2)(2n+ 1− 2
√

2n) (10)

= n(n−
√

2n+ 1/2) (11)
(12)

As n −
√

2n + 1/2 < n − 1 for n ≥ 2, D(n,
√

2n) <
n(n− 1) = 2

(
n
2

)
, proving the claim.

Theorem 4.5: The total number of distance calculations
performed by Algorithm 1 is no more than 3

(
n
2

)
, where n

is the number of data points.
Proof: Let D(n, k) represent the total number of distance

calculations performed by the parallel algorithm on k divisions
of n data points. As each division contains at most 2

⌊
n
k

⌋
+ 1

points and there are
(
k
2

)
processes,

D(n, k) ≤
(

2n/k + 1

2

)(
k

2

)
(13)

≤ (2n/k + 1)(2n/k)

2
· k(k − 1)

2
(14)

≤ n(2n+ k)(k − 1)

2k
(15)

≤ (n/2)(2n− 1 + k − 2n/k) (16)

As the partial derivative of this expression with respect to
k,

∂D
∂k

= n/2 + n2/k2, (17)

is everywhere positive (n must be positive), the maximum for
this upper bound will occur at the maximum possible number
of divisions, k = n. Thus, the maximum number of distance
calculations is no more than:



max
k
{D(n, k)} ≤ D(n, n) ≤ (n/2)(2n− 1 + n− 2) (18)

≤ (n/2)(3n− 3) (19)
≤ (3/2)n(n− 1) (20)

≤ 3

(
n

2

)
, (21)

proving the claim.
An interesting consequence of the proof of Theorems 4.4

and 4.5 is that the amount of overhead (in terms of repeated
distance calculations) is quadratic, and in fact decreases be-
yond a certain number of processes. In the extreme case,
partitioning the dataset into sets of size one (using

(
n
2

)
pro-

cesses) results in no repeated distance calculations; however,
the maximum value for the number of distance calculations
requires more processes than could realistically be applied to
a problem. For example, on a dataset of 20,000 points, the
maximum number of distance computations would occur when
using 19,900 cores, so the reduction in overhead is largely
theoretical.

C. Complexity analysis

We analyze the parallel time and space complexity of
SHRINK (Algorithm 1) as follows. The task of assigning n
data points to p threads requires O(n/

√
p) time and space to

enumerate the 2n/k data points, where k is the number of
data partitions.

If we assume that the dataset has O(1) dimensions, the time
complexity of Algorithm 2 is O(n20), where n0 is the number
of data points passed to the algorithm. This time complexity is
due to the for loop in line 5, which executes O(n20) times and
has complexity O(1). (The for loops in lines 8 and 18 both
take O(1) time, and the sort in line 23 takes O(n0 log n0)
time.) Moreover, the space complexity is O(n0), as the three
arrays allocated by the algorithm are of size O(n0) in addition
to the input data. As each process has 2n/k data points, the
parallel complexity for step 3 is O(n2/k2) time and O(n/k)
space, or O(n2/p) time and O(n/

√
p) space.

Because we use a Union-Find data structure for step 6,
we can compute the merged dendrogram in O(nα(n)) time,
where α is the inverse Ackermann function, due to the fact that
the dendrograms may contain up to O(n) total merges. The
space complexity for this step is O(n), due to the Union-Find
data structure and the dendrograms themselves. By merging
the dendrograms in a binary fashion, step 6 of Algorithm 1
will be repeated O(log p) times, giving a time complexity of
O(n log p) (see Figure 1). Thus, the overall complexity for
SHRINK is O(n) space and O(n2/p+ n/

√
p+ nα(n) log p)

time (or O(n2/p + nα(n) log p) if we assume p < n2). By
applying p ∼ n/ log n processes, we can reduce the time
complexity of SHRINK to O(nα(n) log(n)).

V. EXPERIMENTAL RESULTS

In this section, we present our empirical evaluation of
SHRINK. As we are not aware of any openly available

multicore codes for hierarchical clustering, we only evaluate
the time and memory requirements of SHRINK. For these
experiments, we used a Dell computer running GNU/Linux
and equipped with four 2.00 GHz Intel Xeon E7-4850 pro-
cessors with a total of 128 GB memory. Each processor has
ten cores, each with 48 KB of L1 and 256 KB of L2 cache,
and each processor shares a 24 MB L3 cache. All algorithms
were implemented in C using OpenMP and compiled with gcc
(version 4.6.3) using the -O2 optimization flag.

Our testbed consists of 15 datasets divided into three
categories, with five datasets each. The first category, called
real, represent real-world data and have been collected from
Chameleon (t5.8k, t7.10k, and t8.8k) [20] and CUCIS (edge
and texture) [21]. The other two categories, synthetic-random
and synthetic-cluster, have been generated synthetically using
the IBM synthetic data generator [22], [23]. Whereas the
data points in the synthetic-random datasets are drawn from
a uniform random distribution, the synthetic-cluster datasets
are generated by selecting random points cluster centers and
then adding points to these clusters following a Gaussian
distribution. The synthetic datasets contain 50 to 250 thousand
points with 10 dimensions. Table I shows structural properties
of the various datasets along with the the time taken by
SHRINK, using one and thirty-six cores (t1 and t36, respec-
tively). Though these results do not appear in the table, we also
compared SHRINK against the SLINK implementation in the
Cluster 3.0 library [18], and we found SHRINK to be faster
than SLINK (up to twice as fast), likely due to the fact that we
do not transform the dendrogram from pointer representation
into packed representation, as well as the reduced amount of
pre- and postprocessing.

TABLE I
STRUCTURAL PROPERTIES OF THE TESTBED (REAL,

SYNTHETIC-CLUSTER, AND SYNTHETIC-RANDOM) AND THE TIME TAKEN
BY SHRINK USING ONE AND THIRTY-SIX PROCESS CORES (t1 AND t36 ,

RESPECTIVELY). NOTE THAT t1 TYPICALLY OUTPERFORMED THE SLINK
IMPLEMENTATION IN THE CLUSTER 3.0 LIBRARY [18], LIKELY DUE TO

OUR MODIFICATION TO THE SLINK ALGORITHM (ALGORITHM 2)

Time (seconds)
Name Points Dimensions t1 t36
t5.8k 24,000 2 6.47 0.445
t7.10k 30,000 2 9.41 0.512
t8.8k 24,000 2 5.96 0.346
edge 17,695 18 6.72 0.464
texture 17,695 20 7.04 0.389
clust50k 50,000 10 36.16 2.02
clust100k 100,000 10 147.09 7.84
clust150k 150,000 10 341.92 18.36
clust200k 200,000 10 609.30 33.21
clust250k 250,000 10 953.65 50.99
rand50k 50,000 10 42.95 2.21
rand100k 100,000 10 174.55 9.10
rand150k 150,000 10 397.08 20.42
rand200k 200,000 10 710.49 36.60
rand250k 250,000 10 1,124.49 58.68

Figure 2 shows the speedup obtained by SHRINK (Al-
gorithm 1) for various numbers of process cores (threads).
The raw runtime taken by SHRINK on one process core
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Fig. 2. Speedup of SHRINK. Top row: Computation time of modified SLINK algorithm in SHRINK. Bottom row: Total time (SLINK + merging) of
SHRINK.

appears in Table I. The top row in Figure 2 shows the speedup
obtained by considering only the time taken by the modified
SLINK algorithm (Algorithm 2), whereas the bottom row
shows results using the total time (SLINK plus merging) for
the three datasets.

As discussed in Section IV-B, SHRINK incurs a cost of
some repeated distance computations as the number of threads
increases. While the amount of overhead depends on both the
data size and the number of threads, for sufficiently large
datasets, the influence of the data size is quite small. In
particular, for datasets between 17,695 and 250,000 points,
the amount of redundant computation on 36 threads ranges
between 77.74% and 77.78% of the distance calculations per-
formed in the serial case, leading to a theoretically maximum
speedup of 20.250 to 20.254. In light of the overhead induced
by our approach, the speedup results for the SLINK phase
is nearly ideal for all cases. Moreover, since the time taken
by the merging phase was quite short (less than a second for
all datasets with less than 200k points), the speedup behavior
of the SLINK phase is very similar to that of the overall
execution, though it does affect the speedup results for the real
datasets, which were much smaller than our synthetic datasets.

Figure 3 presents a more detailed analysis of the speedup
results for SHRINK. The top row in Figure 3 shows a
comparison between ideal speedup, theoretical maximum, and
the achieved speedups for the best dataset from each of the

three categories, real, synthetic-cluster, and synthetic-random.
As noted earlier, the theoretical maximum approaches one half
of ideal scaling due to the redundant distance computations,
though our speedup results match these values very closely
for all three datasets. The bottom row in Figure 3 shows a
comparison between the amount of time spent in the merging
phase relative to the SLINK phase. While the merging time
was short in all cases, it formed a larger fraction of the total
time on the smaller datasets, up to 40% of the time spent on
the SLINK phase, though this fraction decreases substantially
for the larger synthetic datasets. While many of the cases show
an overall trend towards a longer merging time for more cores
(as would be expected), there are several exceptions, possibly
due to the exact distribution of the data (i.e., how many merges
could be eliminated early on in the merging phase).

Figure 4 presents an analysis on the memory used by our
implementation of SHRINK. The top row shows how the
memory requirements change with the data size and number of
threads. (Since the cores are running SLINK and performing
merges independently, the memory requirements increase with
the number of threads.) As a point of comparison, a triangular
distance matrix for 250,000 points would require more than
100 GB to store. The bottom row shows a breakdown of
the memory used by variable for one of the datasets from
each category. The variables are as follows: data stores
the full dataset, rowid stores the IDs for the data points
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Fig. 3. Top row: Comparing the ideal, theoretical maximum, and the achieved speedups for three datasets (t7.10k, clust100k, and rand150k), one from each
category. Bottom row: Comparing the time taken by merging over SLINK in percentage for varying number of threads.

(a) Required memory (real) (b) Required memory (syn-clust.) (c) Required memory (syn-random)

(d) Memory distribution (t7p10k) (e) Memory distribution (clust100k) (f) Memory distribution (rand250k)

Fig. 4. Top row: Memory requirement in MB for varying number of threads. Bottom row: Detailed memory breakdown for three datasets (t7.10k, clust100k,
and rand150k).



that belong to each thread, mytree stores the thread-local
dendrogram, mergetree is a buffer for merging two den-
drograms, unionfind is the Union-Find data structure used
for merging dendrograms, and temp and vector are arrays
used by the SLINK algorithm (M and Π, respectively). As the
number of threads increase, data remains constant; rowid,
temp, and vector are allocated for each thread but decrease
individually as the data partitions shrink; and unionfind,
mytree, and mergetree are allocated for each thread but
remain the same size. Thus, we can see that the memory
requirements become dominated by the dendrogram and the
Union-Find data structure as the number of threads increases.

VI. CONCLUSION

In this paper, we have described SHRINK, a parallel al-
gorithm for single-linkage hierarchical clustering. We also
investigated some of the theoretical properties of SHRINK, in-
cluding a bound on the amount of duplicate work and a formal
proof of correctness. We also evaluated SHRINK empirically,
finding that it achieves speedup within 10% of our pre-
dicted optimal performance across a majority of our evaluated
datasets. Lastly, we have made the code for SHRINK openly
available for download at http://cucis.ece.northwestern.edu.
Future work on SHRINK may involve efforts to extend
SHRINK to a hybrid OpenMP-MPI platform to take advantage
of multi-processor, multicore environments. Additionally, we
may try to tighten the theoretical bounds on the complexity
or the amount of repeated work. Finally, the parallelization
strategy employed by SHRINK may be applicable to other
types of problems, particularly those that can be modeled as
dense graph problems.
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