
A Scalable Algorithm for Single-Linkage Hierarchical Clustering on
Distributed-Memory Architectures

William Hendrix∗

Northwestern University
Diana Palsetia†

Northwestern University
Md. Mostofa Ali Patwary‡

Northwestern University
Ankit Agrawal§

Northwestern University

Wei-keng Liao¶

Northwestern University
Alok Choudhary‖

Northwestern University

ABSTRACT

Hierarchical clustering is a fundamental and widely-used clustering
algorithm with many advantages over traditional partitional cluster-
ing. Due to the explosion in size of modern scientific datasets, there
is a pressing need for scalable analytics algorithms, but good scal-
ing is difficult to achieve for hierarchical clustering due to data de-
pendencies inherent in the algorithm. To the best of our knowledge,
no previous work on parallel hierarchical clustering has shown scal-
ability beyond a couple hundred processes. In this paper, we present
PINK, a scalable parallel algorithm for single-linkage hierarchical
clustering based on decomposing a problem instance into two dif-
ferent types of subproblems. Despite the heterogeneous workloads,
our algorithm exhibits good load balancing, as well as low memory
requirements and a communication pattern that is both low-volume
and deterministic. Evaluating PINK on up to 6050 processes, we
find that it achieves speedups up to approximately 6600.

Index Terms: I.5.3 [Information Systems Applications]:
Clustering—Algorithms; D.1.3 [Programming Techniques]: Con-
current Programming—Parallel Programming;

1 INTRODUCTION

Hierarchical clustering is the problem of discovering the large-scale
cluster structure of a dataset by forming a dendrogram that captures
a full range of clustering behavior in the dataset, from the most
general cluster that encompasses the entire dataset, to the most
stringent clusters that only include a single data point each. Hi-
erarchical clustering is a widely-used algorithm for evaluating the
cluster structure of a dataset. Hierarchical clustering offers sev-
eral advantages over partitional clustering in that the number of
clusters does not need to be specified in advance and the struc-
ture of the resulting dendrogram can offer insight into the larger
structure of the data, e.g., establishing a phylogenetic tree among
a set of species. However, due to the high computational cost of
hierarchical clustering, a scalable parallel approach is needed for
clustering large datasets. Hierarchical clustering has been applied
in document classification, bioinformatics, and chemoinformatics
(e.g., [13, 24, 25]), as well as others. Despite its utility, hierarchical
clustering is a challenging problem to parallelize, as the problem
exhibits high data dependence—each level in the resulting dendro-
gram relies on all of the earlier levels to make sense. Moreover,
many parallel algorithms for hierarchical clustering store the dis-
tance matrix for a dataset explicitly, limiting the size of the problem

∗Email: whendrix@northwestern.edu
†Email: palsetia@u.northwestern.edu
‡Email: m-patwary@northwestern.edu
§Email: ankitag@eecs.northwestern.edu
¶Email: wkliao@ece.northwestern.edu
‖Email: choudhar@eecs.northwestern.edu

that can be tackled due to memory constraints. While other paral-
lel hierarchical clustering algorithms exist, few of these algorithms
have been evaluated on a large scale.

In this paper, we present PINK (parallel single linkage), a highly
scalable parallel algorithm for single-linkage hierarchical cluster-
ing. As PINK does not explicitly store a distance matrix, it can be
applied to much larger problem sizes and could be used as a com-
ponent in a high performance, in situ data analytics pipeline. The
overall strategy for PINK is to divide a large hierarchical clustering
problem instance into a set of smaller sub-problems, calculate the
hierarchical clustering dendrogram for each of these sub-problems,
and reconstruct the solution for the original dataset by combining
the solutions to the sub-problems. We evaluate our algorithm em-
pirically on real and synthetic datasets with up to 5.2 million data
points, and we find that it achieves an estimated speedup of up to
6596 on 6050 processes. The main contributions of this paper are:

• A scalable algorithm for parallelizing single-linkage hierar-
chical clustering

• A proof of correctness for our approach

• An empirical evaluation of the scalability of the computation,
memory, and communication requirements for our algorithm
on synthetic data

• Application of the algorithm to cluster cosmology data

The rest of the paper is organized as follows. We discuss re-
lated work in Section 2. We then describe our parallel algorithm
and its correctness in Section 3 and 3.1, respectively. In Section 4,
we present our scaling results on synthetic and cosmology data. Fi-
nally, we conclude in Section 5.

2 RELATED WORK

One the most widely-used serial algorithms for the single-linkage
hierarchical clustering (SHC) problem is SLINK [22]. SLINK cal-
culates the dendrogram of the dataset by iterating through the data
points one at a time, calculating the distance from the new data
point to all of the previously added data points, and calculating the
dendrogram for the extended dataset through the use of a pointer ar-
ray (Π). The efficiency of SLINK is due to the fact that is calculates
the distance between each pair of points just once, taking O(n2)
time. Moreover, it has a space requirement of only O(n) because it
calculates and stores only a single row of the distance matrix at a
time, making it ideal for solving larger hierarchical clustering prob-
lems.

One of the first parallel single-linkage hierarchical clustering al-
gorithms was described by Bentley [3]. The algorithm was pre-
sented in terms of calculating the minimum spanning tree (MST)
of a complete weighted graph with edge weights given by a dis-
tance function applied on the vertices, which is equivalent to solv-
ing the single-linkage hierarchical clustering problem. The algo-
rithm assigns computation to various “tree” processors to calculate
the MST.

7

IEEE Symposium on Large Data Analysis and Visualization 2013
October 13 - 14, Atlanta, Georgia, USA
978-1-4799-1658-0/13/$31.00 ©2013 IEEE

Olson [19] presents two parallel algorithms for single-linkage
clustering.The first of these merges clusters in order of increas-
ing distance and is appropriate for a parallel RAM (PRAM, shared
memory) architecture, while the second builds an MST starting
from a random point and is appropriate for a parallel machine with
a butterfly interconnection.

Hendrix et al. [15] present SHRINK, an algorithm for parallel
single-linkage hierarchical clustering based on the SLINK algo-
rithm [22]. SHRINK exhibits good scaling and communication be-
havior, but it trades repeated computation (up to double the original
amount of work) for reduced communication cost. Moreover, the
authors only evaluate SHRINK on up to 36 shared memory cores,
achieving a speedup of roughly 19.

CLUMP [18] is a parallel clustering algorithm that related to
single-linkage hierarchical clustering and minimum spanning tree
problems. The authors report a speedup of up to 100 on 150 pro-
cessors on a dataset of 1.2 million points; however, they claim that
this result is very close to the maximum theoretical speedup for this
size dataset, suggesting that this approach is somewhat limited in
its scalability.

Dash et al. [9] present a parallel hierarchical algorithm based on
partitioning the data points into groups based on a rectangular grid
with overlapping cells. As pPOP computes a distance matrix for
each cell, the algorithm has O(n2/c) space complexity, where n is
the number of data points and c is the number of cells. The authors
evaluate pPOP on up to 8 shared memory processors, achieving a
speedup of about 5.7 on datasets of up to 30k points.

Du and Lin [12] present one of the few distributed parallel hi-
erarchical clustering algorithms. Their algorithm, which relies on
distributing the distance matrix and iteratively calculating the near-
est pair of points, shows a speedup of 25 on 48 processors when
clustering a microarray dataset with 277 data points in 7452 dimen-
sions.

Johnson and Kargupta [16] describe an algorithm for the related
problem of distributed hierarchical clustering, in which the data to
be clustered exist at different sites with potentially different fea-
tures, and the amount of communication between the data sites
needs to be controlled. While their algorithm requires at most a
constant factor overhead based on the number of sites across which
the data is distributed, they do not present empirical results for their
algorithm.

The design of PINK relies on the connection between single-
linkage hierarchical clustering and the minimum spanning tree
(MST) problem. This connection, discussed more thoroughly
in [14], was also used in several of the preceding works. While
much work has been done on parallel algorithms that explicitly
calculate the MST of a graph, most present purely theoretical re-
sults (e.g., [7], [21], [20]) or focus on sparse graphs ([6], [1], [2]).
However, Dehne and Götz [11] present and evaluate a distributed
parallel algorithm for calculating the MST of dense graphs. The
algorithm is based on dividing the edges of the graph, performing
Borůvka’s algorithm on the partitions, and combining the resulting
MSTs. Dehne and Götz report a speedup of 3.5 on 4 processors on
two graphs with 1k vertices and 400k edges.

3 PARALLEL SINGLE-LINKAGE HIERARCHICAL CLUSTER-
ING

In this section, we detail our parallel algorithm for calculating the
single-linkage hierarchical clustering (SHC) dendrogram. As we
show formally in Section 3.1, calculating the SHC dendrogram of a
dataset is equivalent to finding the minimum spanning tree (MST)
of a complete weighted graph where the edge weights are given by
the distance between the corresponding points.

The main parallelization strategy we employ in developing our
parallel hierarchical clustering algorithm is to break a large prob-
lem instance into multiple subproblems of two different types, solve

Algorithm 1: Outline of distributed single-linkage hierarchical
clustering algorithm, PINK

1 Divide the data into k subsets of the same size, D1, D2, . . ., Dk.
2 Form

(k
2
)

subgraphs containing the complete bipartite graph
on (Di,D j) for each pair of subsets Di and D j.

3 Form dk/2e subgraphs containing the union of the complete
graphs for Di−1 and Di for all even i. Also, if k is odd, form a
subgraph containing just the complete graph of Dk.

4 Have each process compute the MST of one subgraph using
Prim’s algorithm.

5 Sort the edges of each MST independently.
6 Combine the resulting MSTs by iteratively adding the edge

with the minimum weight, eliminating edges that form a cycle.
(Algorithm 2)

7 Repeat Step 6 until only one MST remains.

each sub-problem independently, and combine the subproblem so-
lutions into a solution for the original problem instance. To form
the subproblems, we first divide the data into several partitions (k).
The first type of subproblem we form is composed of the bipartite
complete subgraphs defined by every pair of partitions, while the
second type consists of the complete subgraphs within each parti-
tion. In this way, we ensure that all edges (distances) are assigned
to some subgraph. As each partition is roughly the same size, the
complete bipartite graphs will contain slightly more than double
the number of edges in the complete subgraphs. So, to achieve
good load balance, we assign one complete bipartite subgraph or
two complete subgraphs to each process. For an odd number of
partitions, the “odd” complete subgraph will get assigned to a pro-
cess by itself, so that one process may have a reduced workload. In
total, partitioning the data into k partitions results in a total of

⌈
k2

2

⌉
distinct processes.

Figure 1: (a) Problem domain de-
composition with k = 4 partitions;
(b) Two processes are each as-
signed two complete subgraphs;
(c) Six processes are assigned
one bicomplete subgraph for the
six pairs of partitions

An illustration of this
problem domain decom-
position using k = 4 parti-
tions (8 processes) appears
in Figure 1. Note that
while this decomposition
partitions the edges of the
graph, the data partitions
will each be distributed
to several processes at the
outset of the algorithm.
Also, the parallel problem
decomposition reverts to
a sequential MST (SHC)
problem when we use k =
1 partition. An outline of
our algorithm, which assumes that we have p =

⌈
k2

2

⌉
processes for

some k ≥ 1, appears in Algorithm 1.
In step 4 of Algorithm 1, we need to calculate the SHC dendro-

gram of a subproblem of the original data. As this dendrogram is
equivalent to a MST of a related graph, we use Prim’s algorithm
to solve the subproblems. The advantages of Prim’s are threefold.
First, by using Prim’s algorithm and finding an MST, rather than
an algorithm specific to finding the SHC dendrogram, we can solve
subproblems that are not complete weighted graphs; i.e., subgraphs
that do not represent a single-linkage hierarchical clustering prob-
lem. Without this property, we would be forced to overlap the sub-
problems, as in [15], resulting in duplicated computation. The sec-
ond advantage we gain by using Prim’s algorithm is its efficiency in
computing the MST. Lastly, we can implement Prim’s so that both

8

types of subproblems can be solved in-place, that is, without any
data structures beyond what is required to store the output. We dis-
cuss our implementations of Prim’s algorithm for each of the two
types of subproblems in the next two paragraphs.

The first type of subproblem to solve is the case in which the
subgraph consists of one or two complete subgraphs. As the MST
of disconnected components will just be the union of the two re-
spective MSTs, we just focus on how to apply Prim’s algorithm to
a complete subgraph in which edge weights are determined by the
distance between pairs of data points. The main data structure we
use is an array of (vertex, vertex, distance) triples. During the al-
gorithm, these triples represent a vertex that has not been added to
the current subgraph, the subgraph vertex that is nearest this vertex,
and the distance between these vertices. To start, we select the first
data point as the start of our subgraph, and populate the array with
triples containing the distance of every other data point to this point.
As we update these distances, we calculate the minimum distance
and add the corresponding edge, with its endpoints and weight, to
our MST. Afterwards, we update every other distance value with
respect to the newly added vertex, simultaneously calculating the
minimum distance. We continue to add vertices until our subgraph
spans all of the data, and the array consists of the MST edges for the
graph. By swapping the selected edges out of the “active” portion
of the array every time we add an edge to the MST, the algorithm
can operate using only the memory allocated for storing the MST
edges. To further improve efficiency, we abort distance computa-
tions that exceed the current minimum distance to the subgraph for
a vertex.

The other type of subproblem consists of the bipartite complete
subgraph between two data partitions. The main difference between
this subgraph and the previous case (aside from having twice as
many vertices as a single complete graph), is that we separate the
array into two parts, one for each data partition. We start by se-
lecting the first data point in the first partition, computing distances
to every vertex in the second partition, selecting the minimum dis-
tance for the second partition, and computing the distance between
this vertex and every vertex in the first partition. Thereafter, when
we select a vertex to add to the subgraph, we only need to update the
distances for vertices in the opposite partition as the vertex, though
we need to perform a scan of the distances in the same partition in
order to find the second (new) minimum distance for that partition.
Like the previous case, we swap the edge triples to the end of their
respective halves of the array as we add edges to the MST, and we
halt distance calculations early when they are too large.

Figure 2: Example for binary
merging of six partial dendrograms
in three rounds. Each round, half
of the processes pass their den-
drograms, while the others merge
them.

In steps 5–7 of Al-
gorithm 1, we iteratively
combine MSTs into larger
MSTs until we have the
MST for the entire graph.
We combine MSTs two at
a time by iterating through
their edges in sorted or-
der, adding any edge that
does not join vertices that
are already in the same
component. Effectively,
we are applying Kruskal’s
algorithm to combine the
MSTs. By sorting the
MST edges (step 5) and
using a Union-Find (or
Disjoint Set) data structure
to keep track of the com-
ponent to which each data
point belongs, we can combine MSTs efficiently [8]. A pseudocode
description of this procedure appears in Algorithm 2. By combin-

Algorithm 2: Pseudocode for merging two MSTs
Input: M1: Sorted list of candidate MST edges
Input: M2: Second sorted list of candidate MST edges
Output: M3: Sorted edge list for MST of D1∪D2

1 Algorithm: Merge(M1, M2)
2 Initialize M3 to be empty
3 Initialize Union-Find data structure
4 Let (u1,v1,w1) be the vertices and weight of the min edge in

M1
5 Let (u2,v2,w2) be the vertices and weight of the min edge in

M2
6 while M1 and M2 have edges remaining do
7 if w1 < w2 then
8 if union(u1,v1) succeeds then
9 Add (u1,v1,w1) to M3

10 Let (u1,v1,w1) be the next lightest edge in M1
11 else
12 if union(u2,v2) succeeds then
13 Add (u2,v2,w2) to M3
14 Let (u2,v2,w2) be the next lightest edge in M2
15 end
16 end
17 Add the remaining edges (u,v,w) of M1 or M2 to M3 as long

as union(u,v) succeeds
18 return M3

ing the MSTs in a binary fashion, we can quickly eliminate edges
from the candidate MSTs, increasing the efficiency of this phase
of the algorithm (see Figure 2). Moreover, if we start by combin-
ing MSTs that have more vertices in common, we are even more
likely to eliminate incorrect edges sooner. For this reason, we as-
sign processes with one or two complete subgraphs to be located
near the process with the bipartite complete graph between those
partitions. Thus, when we combine the dendrograms from consec-
utive processes, these processes are very likely to have overlapping
data partitions, and we can detect and eliminate edges that create
cycles sooner, reducing the overall communication costs for the al-
gorithm.

3.1 Theoretical results
In this section, we discuss the correctness of our parallel algorithm.
As much of the parallel algorithm and problem decomposition de-
scribed in Section 3 is based on the idea of computing a minimum
spanning tree (MST), the first result we present here formally es-
tablishes the connection between these two problems. In particular,
we show that the single-linkage hierarchical clustering dendrogram
for a dataset and the MST of the corresponding complete graph pro-
duce identical clusters when we apply the same threshold to each.
This result is also useful in that it simplifies the terminology and
intuition behind the proof of correctness later in this section.

First, though, we formalize some of the language we will use for
this result. A dendrogram is a relationship on a dataset that induces
a partitional clustering of the dataset for each height h∈R≥0. More
formally, it is a function between R≥0 and the set of partitions on
the dataset such that (1) the partition at height 0 groups the data into
sets containing data points located at distance 0 from one another,
(2) the group or equivalence class containing a given data point at a
given height must be a superset of every group containing that data
point at a lower height, and (3) if C1 and C2 are distinct sets in the
partition at a given height h for which the minimum distance among
any pair of points between C1 and C2 is h′> h, then all vertices of C1
and C2 will be in the same cluster at height h′ and above. We assume
that all data points are comparable; that is, they have some distance

9

defined between them. As a consequence, every dendrogram must,
beyond a certain height, partition the data into one set containing
every data point. We refer to the sets or equivalence classes defined
by the partitions as clusters, and we say that a dendrogram merges
clusters C1 and C2 at height h′ iff h′ is the minimum distance among
any pair of points between C1 and C2.

Theorem 3.1. Let T represent the single-linkage dendrogram of
the dataset D, and let M be the minimum spanning tree of the com-
plete weighted graph induced by the distances between every pair
of points in D. The set of clusters formed by T at height h are
exactly the components of M formed by removing all edges with
weight greater than h.

Proof. We prove the claim by induction. Specifically, we show that
two clusters C1 and C2 are merged at height h in T if and only if the
corresponding components C′1 and C′2 in the MST are joined by at
least one edge of weight h and no lighter edge. While the domain of
the height and distance threshold is continuous, the dendrogram and
the MST only produce different clusterings at finitely many values.
As such, this condition will ensure that the dendrogram clusters and
MST components produce equivalent partitions of the data at every
height/distance.

At height h = 0, the clusters in T consist of the co-located (zero
distance) points in the dataset. In the complete graph induced by
distances between the data points, co-located points form cliques
with edges of weight 0, from which some spanning tree will be
chosen for the MST M. Moreover, any points in M that are con-
nected by edges of weight 0 in M must be co-located due to the
transitivity of distance metrics, so the components of M connected
by edges of weight 0 will be exactly the set of co-located points.

Now, suppose that every pair of clusters in T and components
in M partition the dataset equally at every height (edge weight) less
than h for some h> 0. If C1 and C2 are merged at height h in T , then
the minimum distance between C1 and C2 must be h. In particular,
there must be at least one pair of data points u and v between the
clusters that are separated by distance h. By the inductive hypothe-
sis, the corresponding vertex sets C′1 and C′2 must form components
in M with edges less than h. Since u and v are joined by an edge of
weight h, Kruskal’s Algorithm would join u to v at height h unless
(u,v) created a cycle. While this case is possible if there are mul-
tiple edges with weight h between C′1 and C′2, the components C′1
and C′2 will be joined into a larger component by an edge of weight
h, regardless. Moreover, there will be no edges with weight less
than h between C′1 and C′2 since h is the minimum distance between
clusters C1 and C2.

Conversely, suppose that the minimum-weight edge joining
components C′1 and C′2 in M has weight h. By the inductive hy-
pothesis, components C′1 and C′2 correspond to clusters C1 and C2 at
height less than h. Since h is the minimum distance out of all pairs
of vertices between C′1 and C′2, h will be the minimum distance be-
tween clusters C1 and C2. As such, C1 and C2 will be merged at
height h.

We now prove the correctness of Algorithm 1. We break this
proof into two parts, first showing (in Lemma 3.2) that the out-
put of Algorithm 1 is a spanning tree, then showing that the output
must have the same weight as a true MST (in Theorem 3.3). Per
Theorem 3.1, this implies that the dendrogram produced by the al-
gorithm will merge the same clusters at the same height as the true
dendrogram. Notably, in these proofs, we do not try to show that
the output of Algorithm 1 will exactly match the output of a serial
MST algorithm—or even match its own output using different pro-
cess counts—just that the result will be a minimum-weight span-
ning tree. This distinction is useful as there are many cases in real
datasets in which two or more pairs of data points may have equal

distances between them. As the algorithm does not distinguish be-
tween distances (edge weights) that are equal, we do not guarantee
that we will find the same MST every time.

Lemma 3.2. The output of Algorithm 1 is a spanning tree.

Proof. During the merging procedure (Algorithm 2), no edge will
be included in the result if it creates a cycle. Thus, the output of
Algorithm 1 will be acyclic, and we only need show that it spans
the entire graph. Let u and v be two arbitrary points in the graph.
We show inductively that some process will contain a (u,v)-path at
every step during the merging procedure.

As the problem decomposition partitions the edges of the graph,
there will be one subgraph that contains the edge (u,v). As every
subgraph is connected, the MST calculated by the process assigned
this subgraph must contain a (u,v)-path P at the outset of the merg-
ing procedure.

Suppose that intermediate results from two processes are being
merged, where one of the two contains a (u,v)-path P. When the
edges are merged, each edge (x,y) of P will be included in the
merged result unless (x,y) would create a cycle; i.e., unless there
is some (x,y)-path in the merged result composed of lighter edges.
In either case, the result will contain an (x,y)-path for every edge
(x,y) in the path P. After merging, these paths can be joined to
form a (u,v)-walk, implying the existence of a (u,v)-path in the re-
sult. As every pair of vertices in the result must be joined by a path
and the result contains no cycles, the output of algorithm must be a
spanning tree.

Theorem 3.3. Let M be a true MST of the graph induced by the
dataset, and let M′ be the output of by Algorithm 1. The total weight
of M′ equals the total weight of M, that is, w(M′) = w(M).

Proof. Clearly, as M′ is a spanning tree, w(M) ≤ w(M′) by virtue
of the fact that M is a minimum spanning tree. In order to prove that
w(M) =w(M′), we now show that w(M′)≤w(M) by contradiction.

Suppose that w(M′) > w(M). Let EM and EM′ be the edges of
M and M′ that are exclusive to M and M′, respectively. As span-
ning trees, M and M′ must have the same number of edges, so since
w(M′)>w(M), both EM and EM′ must be non-empty. Let e= (u,v)
be an arbitrary edge of EM , and consider the graph M′∪{e}. Since
M′ was a spanning tree, M′ ∪{e} contains a single cycle induced
by e and the unique (u,v)-path in M′. Let Eh be the set of edges
in this path not contained in M. Since M contains e but not the
complete cycle, Eh is not empty. If there were always some e′ ∈ Eh
such that w(e′) ≤ w(e), M′′ = M′ −{e′} ∪ {e} would be a span-
ning tree with w(M′′)≥ w(M′) that has one more edge in common
with M, and since M and M′ are finite, M′ could be converted into
M without reducing its weight, contradicting our assumption that
w(M′)> w(M). Thus, if w(M′)> w(M), there must be some such
set Eh and edge e with w(e′)> w(e) for all e′ ∈ Eh. We now prove
the contradiction by showing that the (u,v)-path in M′ must not
contain any edge of Eh.

Let e = (u,v). As every edge is distributed to some subgraph in
steps 2–3 of Algorithm 1, there will be some subgraph containing e.
The MST for this subgraph must include some (u,v)-path P com-
posed of edges with weight no more than w(e). As the MSTs of
the different processes are merged, an edge ep = (a,b) of P may be
removed from the result if there is some (a,b)-path in the current
solution that has weight no more than w(ep), but in either case, the
merged result must contain a (u,v)-path composed of edges with
weight no more than w(e). As this observation holds true for every
step of the merging procedure, the final merged output, M′ must
contain a (u,v)-path composed of edges with weight no more than
w(e). Notably, since w(e′) > w(e) for all e′ ∈ Eh, this (u,v)-path
cannot contain any edge of Eh, contradicting our definition of Eh as
a set of edges along the (u,v)-path in M′.

10

4 EXPERIMENTAL RESULTS AND PERFORMANCE ANALY-
SIS

In this section, we present empirical results on an implementation
of PINK. We evaluate the scalability of the algorithm, as well as
its memory and communication requirements. We do not report
any measures of clustering quality, as single-linkage hierarchical
clustering is a well-studied algorithm, with known strengths and
weaknesses. In addition, we verified that all of our results were
identical (up to the order of edges with the same distance) to the
serial Prim’s algorithm.

Our implementation of PINK is in C, with MPI for interprocess
communication. The code was compiled and run on the Edison
machine at NERSC. Edison is a Cray XC30 supercomputer at Na-
tional Energy Research Scientific Computing Center (NERSC). It
has 664 compute nodes with 64 GB memory per node. Each node
consists of two 8-core Intel Sandy Bridge processors at 2.6 GHz.
The high-speed interconnect has latency of 0.25 µs to 3.7 µs and
MPI bandwidth of 8 GB/sec. PINK was compiled with Cray com-
piler version 1.01 using the -O2 optimization flag.

All datasets are encoded as binary files, which are read in and
distributed among the MPI processes using MPI-IO. In order for
each process to read the correct points from the dataset, each pro-
cess calculates the length and offset for its two data partitions,
defines a file view using MPI Type create hindexed and
MPI File set view, and then reads in the two partitions us-
ing MPI File read all. The datasets are stored on the Lustre
filesystem on Edison. The file striping configuration used in our
experiments are 64 stripe count, 1MB stripe size, and the default
stripe offset. The I/O peak bandwidth is 36 GB/sec.

In reporting our timing results, we split PINK into four main
phases: initialization and reading in the data file, running Prim’s al-
gorithm to calculate the MST of the assigned subgraphs for the data
and sorting the resulting edges, merging the partial MSTs to calcu-
late the final answer, and outputting the result. We use the built-in
qsort function to sort the MST edges produced by Prim’s algo-
rithm on each process. We evaluate our algorithm using squared
Euclidean distance for our distance metric. As noted earlier, run-
ning PINK using one process results in applying Prim’s algorithm
to the entire dataset.

4.1 Datasets

We evaluated PINK on 12 synthetic datasets, as well as 4 sampled
cosmology datasets. We generated two types of synthetic data, clus-
tered and uniform random data, across both 10 and 20 dimensions
in three different data sizes: 100k, 500k, and 1M data points. For
the synthetic clustered data, we used 8 random cluster centers with
equal-size Gaussian distributions around each.

To perform the experiments on real-world data, we used a
testbed called millennium-run-simulation, which consists of four
datasets from the database on Millennium Run, the largest simu-
lation of the formation of structure with the ΛCDM cosmogony
with a factor of 1010 particles [17, 23]. The four datasets, MPA-
GalaxiesBertone2007 (MGal-B) [4], MPAGalaxiesDeLucia2006a
(MGal-D) [10], DGalaxiesBower2006a (DGal-B) [5], and MPA-
HaloTreesMhalo (MHalo) [4] are taken from the Galaxy and Halo
databases. To be consistent with the size of the other categories,
we have randomly selected 0.5% of the points from these datasets.
We also selected the first 3 dimensions from each dataset, as these
represent the particle coordinates and would produce a meaningful
result when clustered using Euclidean distance. Table 2 shows the
structural properties of the datasets.

4.2 Synthetic data

In this section, we present our scalability results on the twelve syn-
thetic datasets described in Section 4.1.

Table 2: Structural properties of the millennium-run-simulation
testbed. All datasets included 3 spatial dimensions.

Name Full size Sampled size
DGalaxiesBower2006a (DGal-B) 101,459,853 5,033,184
MPAGalaxiesBertone2007 (MGal-B) 105,592,018 5,242,900
MPAGalaxiesDeLucia2006a (MGal-D) 105,592,018 5,242,900
MPAHaloTreesMhalo (MHalo) 76,066,700 3,774,888

When reporting our results, we report timing results for the
Prim’s algorithm and sorting phase as “Prim’s,” the the merging
phase as “Merge,” the file reading and output phases as “I/O,” and
the sum of all four phases as “Total.” We consider the time spent
in each phase of the algorithm to be the maximum amount of time
spent by any MPI process in this phase, which may belong to dif-
ferent processes for the “Total” cases. Additionally, we calculated
speedup on p as:

S =
mtm
tp

,

where tp is the time taken to run PINK on p processes and m is the
fewest number of processes used for a given dataset. Timing results
for all of our datasets appear in Table 1.

Notably, the main computational part of the algorithm (“Prim’s”
phase) achieved near-linear or superlinear speedup across all
datasets, which we believe is due to a progressively larger portion
of the data fitting in the memory cache. Moreover, the time re-
quired to merge the subgraphs took a relatively small faction of
the total computation time, even at high process counts. All to-
gether, the scalability was quite good, especially for the larger, more
computationally-intensive runs. In general, datasets with more data
points and dimensions, as well as clustered datasets, tended to out-
perform datasets that were smaller or had a uniform random distri-
bution.

Figure 3: Speedup results for total time for PINK on all 12 synthetic
datasets up to 1k processes

We used up to 1013 processes on the smallest datasets (100k
points with 10 and 20 dimensions). From the results, we can see
that the time required for the algorithm is largely dominated by the
time required for Prim’s algorithm, which ranges from 177 to 0.2
seconds, whereas the merging phase, which includes all of the com-
munication performed by the algorithm, took at most 0.03 seconds.
The time required for reading in, distributing the dataset, and pro-
ducing the output was consistently between 0.1 and 0.2 seconds,
forming a larger portion of the total time at high process counts.

11

Table 1: Timing summary (in seconds) for synthetic uniform random (U) and random clustered (C) datasets with 100k, 500k, and 1M points
across 10 and 20 dimensions, as well as the four cosmology datasets. pmin and pmax represent the minimum and maximum number of processes
on which we evaluated each dataset, respectively, and speedups were calculated by approximating the serial time as the product of pmin and the
pmin Total time.

Dataset pmin
pmin pmin pmin pmin pmax

pmax pmax pmax pmax Prim’s Total
Prim’s Merge I/O Total Prim’s Merge I/O Total Speedup Speedup

U-100k-10 1 96.92 0.00 0.11 97.03 1013 0.12 0.030 0.205 0.36 801.66 272.59
U-100k-20 1 152.25 0.00 0.15 152.40 1013 0.18 0.03 0.19 0.40 842.41 380.13
U-500k-10 1 3326.54 0.00 0.50 3327.04 5101 0.59 0.20 0.75 1.54 5643.29 2154.14
U-500k-20 1 5873.83 0.00 0.68 5874.52 1013 5.93 0.17 1.23 7.32 990.78 802.23
U-1M-10 1 14651.04 0.00 1.16 14652.20 5101 2.82 0.45 1.17 8.78 5194.13 3210.17
U-1M-20 8 4289.99 0.19 1.24 4291.42 5101 2.82 0.45 1.38 7.12 6468.00 4821.43
C-100k-10 1 108.35 0.00 0.14 108.35 1013 0.15 0.03 0.19 0.18 743.07 299.74
C-100k-20 1 177.93 0.00 0.12 178.05 1013 0.20 0.03 0.18 0.41 889.67 438.38
C-500k-10 1 4320.02 0.00 0.46 4320.48 6050 0.56 0.19 0.77 1.52 7671.89 2836.07
C-500k-20 1 7206.01 0.00 0.59 7206.60 2048 3.15 0.18 0.67 4.01 2284.97 1798.64
C-1M-10 1 19882.84 0.00 1.02 19883.86 6050 2.47 0.41 1.27 4.15 8040.12 4787.01
C-1M-20 1 30062.03 0.00 1.13 30063.16 4050 7.20 0.41 1.28 8.89 4177.02 3382.76
DGal-B 32 8130.05 1.48 2.54 8134.06 6050 34.32 2.29 2.85 39.46 7580.90 6596.17
MGal-B 32 8573.54 1.53 2.76 8577.83 6050 36.29 2.40 2.98 41.67 7560.58 6587.16
MGal-D 32 8438.03 1.53 2.64 8442.20 1013 225.68 2.06 2.74 230.48 1196.48 1172.13
MHalo 32 5152.93 1.30 2.02 5156.25 2048 56.50 1.93 2.14 60.57 2918.62 2724.32

Overall, the scalability of the algorithm is quite good up to 242 pro-
cesses, achieving speedups of 155–180. Beyond this point, Prim’s
algorithm finishes in less than half a second, and the scalability suf-
fers.

On the medium-sized datasets (500k points with 10 and 20 di-
mensions), the time required for the merging phase is again a small
portion of the overall time, though this fraction increases with the
number of processes, up to roughly 13% of the total time when
running dataset U-500k-10 on 5101 processes. In addition, the
I/O time required to read and output the data was relatively low,
taking 5–6% of the total for all runs on 512 processes, though did
increase to nearly 50% of the total time on the highest-process runs.
The scalability for these datasets are also quite good, with a nearly
linear end-to-end speedup on the clustered data and 80% of linear
speedup for the uniform random datasets.

We tested PINK on the largest synthetic datasets using up to 6050
processes. From Table 1, we see that the amount of time taken by
the merging phase of the algorithm increased very slowly, taking
no more than 10% of the total time, while the I/O costs were again
more prominent, taking up to roughly 31% of the total algorithm
time at 6050 processes on dataset C-1M-10.

Figure 4: Empirical results for running PINK on the four sampled
cosmology datasets.

The largest datasets we tested were the sampled cosmology
datasets, with 3–5 million data points. With the increased amount
of computation, we saw even stronger scaling results, with super-

linear speedups on all four datasets up to 6050 processes, even after
I/O and communication costs were included.

4.3 Memory usage
In addition to its demonstrated scalability, PINK has an advantage
that it requires only linear amount of space. To reinforce the advan-
tage of not storing an explicit distance matrix, we draw a compari-
son between the memory used by PINK and the amount of memory
that would be required to store a distance matrix. We estimate the
memory usage of our PINK implementation for each process by
adding the memory allocated in all of the calls to malloc in terms
of the data size and number of processes. We evaluate the result-
ing expression using the datasets described in Section 4.2, rounding
up when the number of partitions divides the data points unevenly.
Comparatively, a distance matrix requires

(n
2
)

double-precision val-
ues. The results of this comparison appear in Table 3.

Table 3: Estimated memory usage per process for serial and par-
allel PINK algorithm. All values are in MB, unless otherwise noted.
The aggregate memory cost for storing a full distance matrix (DM) is
included for comparison.

Data 1 proc 50 512 8192 DM
U-100k-10 12.6 6.18 5.08 4.70 37.3 GB
U-500k-10 62.9 30.9 25.4 23.5 931 GB
U-1M-10 126 61.8 50.8 47.0 3.64 TB
U-1M-20 202 77.1 55.6 48.2 3.64 TB

From the table, we can see that the memory that would be re-
quired to store the distance matrix for a dataset of 100k points is
more than 35 GB, more than 900 GB for a dataset of 500k points,
and more than 3.5 TB for a dataset of 1 million points. For a dataset
of 1 million data points, even a fully-distributed distance matrix
would use 466 MB per process, nearly 10 times the entire amount
used by PINK. While PINK would use a grand total of 37.6 GB
across 8192 processes for the 100k dataset, the algorithm finished
in less than half a second on 512 processes, and it is not reasonable
to run the algorithm using 8k processes for a dataset of 100k points.

4.4 Communication scalability
Lastly, we wished to evaluate the communication behavior of
PINK. Recall that when two partial MSTs are being combined by
the algorithm, some of the edges in one or both MSTs may be

12

eliminated, making the overall communication behavior difficult to
evaluate analytically. So, to test the communication behavior, we
counted the number of edges received by process p0, the process
that collects the full MST at the end of the algorithm, during each
step of the merging phase for the C-1M-30 dataset.

Figure 5: Communication behavior on ran-
dom clustered dataset with 1 million data
points and 20 dimensions, in terms of the
number of edges received by p0 during each
step of the merging phase

The results,
which appear in
Figure 5, reveal
that, in spite of
the increasing
number of
MSTs received,
the total data
size (number of
edges) increases
very slowly
beyond 128
processes (16
data partitions).
This slowness in
communication
growth suggests that edges are being removed from the MSTs
efficiently as they are being merged. Furthermore, we note that the
communication volume increases following powers of two (when
the binary merging tree gains an additional level), but decreases as
the number of processes approaches the next power of two, due
to the decreasing size of the individual MSTs at the outset of the
merging process. These patterns were observed across all datasets
tested.

5 CONCLUSION

In this paper, we have described PINK, a memory-efficient scalable
parallel algorithm for single-linkage hierarchical clustering, includ-
ing a formal proof of its correctness. Moreover, we evaluated PINK
empirically, finding that it achieves near-linear or superlinear scal-
ing when more than 6,000 processes on both real and synthetic data,
due in part to its low communication costs.

ACKNOWLEDGEMENTS

This work is supported in part by the following grants: NSF awards
CCF-0833131, CNS-0830927, IIS-0905205, CCF-0938000,
CCF-1029166, and OCI-1144061; DOE awards DE-FG02-
08ER25848, DE-SC0001283, DE-SC0005309, DESC0005340,
and DESC0007456; and AFOSR award FA9550-12-1-0458.
This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

REFERENCES

[1] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). Journal of Parallel and Dis-
tributed Computing, 65(9):994–1006, 2005.

[2] D. A. Bader and G. Cong. Fast shared-memory algorithms for comput-
ing the minimum spanning forest of sparse graphs. Journal of Parallel
and Distributed Computing, 66(11):1366–1378, 2006.

[3] J. L. Bentley. A parallel algorithm for constructing minimum spanning
trees. Journal of Algorithms, 1(1):51–59, 1980.

[4] S. Bertone, G. De Lucia, and P. Thomas. The recycling of gas and met-
als in galaxy formation: predictions of a dynamical feedback model.
Monthly Notices of the Royal Astronomical Society, 379(3):1143–
1154, 2007.

[5] R. Bower, A. Benson, R. Malbon, J. Helly, C. Frenk, C. Baugh,
S. Cole, and C. Lacey. Breaking the hierarchy of galaxy formation.
Monthly Notices of the Royal Astronomical Society, 370(2):645–655,
2006.

[6] S. Chung and A. Condon. Parallel implementation of boruvka’s min-
imum spanning tree algorithm. In Parallel Processing Symposium,
1996., Proceedings of IPPS ’96, The 10th International, pages 302–
308, apr 1996.

[7] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning
forests in logarithmic time and linear work using random sampling.
In Proceedings of the eighth annual ACM symposium on Parallel al-
gorithms and architectures, SPAA ’96, pages 243–250, New York,
NY, USA, 1996. ACM.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

[9] M. Dash, S. Petrutiu, and P. Scheuermann. Efficient parallel hierar-
chical clustering. In M. Danelutto, M. Vanneschi, and D. Laforenza,
editors, Euro-Par 2004 Parallel Processing, volume 3149 of Lecture
Notes in Computer Science, pages 363–371. Springer Berlin / Heidel-
berg, 2004.

[10] G. De Lucia and J. Blaizot. The hierarchical formation of the brightest
cluster galaxies. Monthly Notices of the Royal Astronomical Society,
375(1):2–14, 2007.

[11] F. Dehne and S. Götz. Practical parallel algorithms for minimum span-
ning trees. In Reliable Distributed Systems, 1998. Proceedings. Sev-
enteenth IEEE Symposium on, pages 366–371, oct 1998.

[12] Z. Du and F. Lin. A novel parallelization approach for hierarchical
clustering. Parallel Computing, 31(5):523–527, 2005.

[13] A. El-Hamdouchi and P. Willett. Comparison of hierarchic agglomer-
ative clustering methods for document retrieval. The Computer Jour-
nal, 32(3):220–227, 1989.

[14] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 18(1):pp. 54–64, 1969.

[15] W. Hendrix, M. M. A. Patwary, A. Agrawal, W. keng Liao, and
A. Choudhary. Parallel hierarchical clustering on shared memory plat-
forms. In 19th IEEE International Conference on High Performance
Computing, HiPC’12, 2012.

[16] E. Johnson and H. Kargupta. Collective, hierarchical clustering from
distributed, heterogeneous data. In M. Zaki and C.-T. Ho, editors,
Large-Scale Parallel Data Mining, volume 1759 of Lecture Notes
in Computer Science, pages 803–803. Springer Berlin / Heidelberg,
2000.

[17] G. Lemson and the Virgo Consortium. Halo and galaxy forma-
tion histories from the millennium simulation: Public release of a
VO-oriented and SQL-queryable database for studying the evolution
of galaxies in the LambdaCDM cosmogony. Arxiv preprint astro-
ph/0608019, 2006.

[18] V. Olman, F. Mao, H. Wu, and Y. Xu. Parallel clustering algorithm for
large data sets with applications in bioinformatics. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 6:344–352, April 2009.

[19] C. F. Olson. Parallel algorithms for hierarchical clustering. Parallel
Computing, 21(8):1313–1325, 1995.

[20] S. Pettie and V. Ramachandran. A randomized time-work optimal par-
allel algorithm for finding a minimum spanning forest. SIAM Journal
on Computing, 31(6):1879, 2002.

[21] C. Poon and V. Ramachandran. A randomized linear work erew pram
algorithm to find a minimum spanning forest. In H. Leong, H. Imai,
and S. Jain, editors, Algorithms and Computation, volume 1350 of
Lecture Notes in Computer Science, pages 212–222. Springer Berlin /
Heidelberg, 1997.

[22] R. Sibson. Slink: An optimally efficient algorithm for the single-link
cluster method. The Computer Journal, 16(1):30–34, 1973.

[23] V. Springel, S. White, A. Jenkins, C. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly, et al. Simulations of the
formation, evolution and clustering of galaxies and quasars. Nature,
435(7042):629–636, 2005.

[24] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitro-
vsky, E. S. Lander, and T. R. Golub. Interpreting patterns of gene
expression with self-organizing maps: Methods and application to
hematopoietic differentiation. Proceedings of the National Academy
of Sciences, 96(6):2907–2912, 1999.

[25] J. Xu and A. Hagler. Chemoinformatics and drug discovery.
Molecules, 7(8):566–600, 2002.

13

