
The Design of VIP-FS: A Virtual, Parallel File System
for High Performance Parallel and Distributed Computing

NPAC Technical Report SCCS-628

Michael Harry, t Juan Miguel del Rosario*and Alok Choudhary §

Northeast Parallel Architectures Center
111 College Place, RM 3-201

Syracuse University
Syracuse, NY 13244-4100

May 17, 1994

A b s t r a c t

In the past couple of years, significant progress has been made in the development of message-passing
libraries for parallel and distributed computing, and in the area of high-speed networking. Both tech-
nologies have evolved to the point where programmers and scientists are now porting many applications
previously executed exclusively on parallel machines into distributed programs for execution on more
readily available networks of workstations. Such advances in computing technology have also led to a
tremendous increase in the amount of data being manipulated and produced by scientific and commercial
application programs. Despite their popularity, message-passing libraries only provide part of the sup-
port necessary for most high performance distributed computing applications - support for high speed
parallel I /O is still lacking.

In this paper, we provide an overview of the conceptual design of a parallel and distributed I /O
file system, the Virtual Parallel File System (VIP-FS), and describe its implementation. VIP-FS makes
use of message-passing libraries to provide a parallel and distributed file system which can execute over
multiprocessor machines or heterogeneous network environments.

Keywords: Parallel I /O, data distribution, parallel architectures, message-passing, distributed com-
puting, distributed file systems.

*Supported in part by NSF Young Investigator Award CCR-9357840, Intel SSD, IBM and USRA CESDIS contract no.
~5555-26. Aso supported in part by ARPA under contract ~ DABT63-91-C-0028. The content of the information does not
necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

t CIS Dept., Syracuse University
CIS Dept., Syracuse University

§ ECE Dept., Syracuse University

35

1 Introduction

In the past couple of years, significant progress has been made in the development of message-passing libraries
for parallel and distributed computing [14] [12] [2]. These libraries allow users to produce highly portable
application code by providing a consistent communication interface over a wide variety of existing parallel
machines and networks of workstations. Through collective user experience, a group of primitives which
form a set of basic, required communication functionalities has emerged and is currently supported in one
form or another by almost all existing message-passing libraries.

Another significant event that has occurred along-side the refinement of message-passing libraries has
been the recent development of more effective high-speed networking. Networking technologies such as
FDDI, DQDB, and ATM have allowed communication rates to increase to the 100Mbps to 1Gbps and over
range [1] [9] [10].

Both message-passing libraries and high-speed networks have evolved to the point where programmers and
scientists are now becoming encouraged to port many of their applications previously executed exclusively on
parallel machines into distributed programs for execution on more readily available networks of workstations.

Advances in computing technologies such as message-passing libraries and high-speed networking have led
to a tremendous increase in the amount of data being manipulated and produced by scientific and commercial
application programs. A data storage and retrieval infrastructure needs be constructed which will satify data
access rates and capacities required by these programs. In current computing environments, in order to save
data to disk, application programs must explicitly partition and store files in an application specific manner.
Programmers must rely on their site's network file system (e.g., NFS) structure and configuration. Therefore,
despite their increasing popularity, message-passing libraries only provide part of the support necessary for
most high performance distributed computing applications - support for high speed parallel I/O is still
lacking. Only recently has any attempt been made at providing I/O extensions to message-passing libraries
[11] [13]. Although these works recognized the deficiency in message passing libraries, they only constitute
partial solutions.

In order to deal with this issue in a general way, two problems need to be addressed: first, the problem
of designing a parallel I/O system with a coherent distributed, concurrent I/O functionality that can be
incorporated as an extension to any message-passing library; second, the problem of defining a consistent
high performance parallel I/O interface to these libraries. In this paper, we propose a solution to these
problems. We provide an outline of the conceptual design of a parallel and distributed I/O runtime system,
the Virtual Parallel File System (VIP-FS), and describe its implementation.

In the next section, we discuss the conceptual design and implementation of VIP-FS. In section 3,
we describe the communication mechanisms used in VIP-FS. In section 4 we present some preliminary
perfomance results. We conclude in section 5 with brief discussion of fu~ture work.

2 Design and Implementat ion

A key objective in designing VIP-FS is portability. If the file system is to be an extension to message passing
libraries, it must be portable across different libraries; as such, the design must employ only features which
are common to most, if not all, message passing libraries. Also, it must be capable of co-existing with other
(Unix based) data managment or network file systems that may be employed. Further, it must be capable
of operating in heterogeneous distributed system environments.

As illustrated in Figure 1, VIP-FS makes use of message-passing libraries (MPL) to provide a paral-
lel and distributed file system which can execute over multiprocessor machines or heterogeneous network
environments. The rest of this section outlines our conceptual design and describes the implementation of
VIP-FS.

36

Figure 1: The VIP-FS Infrastructure

2.1 Conceptua l Overv iew

VIP-FS has three functional layers: the Interface layer, the virtual parallel file (VPF) layer, and the I /O
device driver (IDD) layer. Figure 2 illustrates the logical configuration of VIP-FS.

The Interface layer provides a variety of file access abstractions to the application program. For example,
it may be a simple interface composed of standard Unix open, close, read, write functions. Or, the file
system may accept information describing the mapping of a parallel file to a partitioned data domain, and
transparently arbitrate access according to this mapping.

The VPF layer defines and maintains a unified global view of all file system components. It provides
the Interface layer with a single file image, allowing each parallel file to be viewed as a single large file
organized as a sequential stream of bytes. It achieves this by organizing and coordinating access to the

D

E
P PVF Layer i

V 4 ~ Message-Passing
F Application Process Library

S IDD Layer Process .~ ~ Daemon

Local File System I~ Network Interface

Figure 2: VIP-FS Functional Organization

37

homer.npac.syr.edu

illiad.npac.syr.edu

anaeid.npac.syr.edu

pfileA, pfileB, pfileC : cheetah.npac.syr.edu /usr/parallel/file/tmp

darth.npac.syr.edu /usr/parallel/file/tmp

shadow.npac.syr.edu /usr/parallel/file/tmp

Figure 3: VIP-FS Sample Configuration File

IDD's files in such a way that a global, parallel file is constructed whose component stripes are composed
of the independent IDD files. Any specification of a file offset by the Interface layer is resolved by the VPF
into an IDD address, file ID, and IDD file offset.

As shown, the IDD layer is built upon and communicates with the local host's file system. It manages each
file as an independent non-parallel file and provides a stateless abstraction to the VPF layer above. Thus,
the IDD layer acts as the mediator between the local host file system and the VPF layer. Communication
between layers within and across hosts is accomplished through the use of message-passing library primitives.

2 . 2 I m p l e m e n t a t i o n

In the following section we discuss the implementation of VIP-FS. The discussion proceeds in a bot tom-up
manner, from the IDD layer to the Interface layer. We begin with a brief description of the initialization
and configuration process.

2.2.1 I n i t i a l i z a t i o n

All message-passing libraries require some sort of configuration file to initialize processes and define the
computational domain on which the distributed application is to be executed. These configuration files
typically include a list of participating hosts, the number of processes to create on each host, plus some
additional path information indicating where the executable file is to be found. In order to accommodate
maximum flexibility within VIP-FS, we extended the configuration file to include file system configuration
information. This is provided by the user in the form of specifications for each parallel file that is to be used
by the distributed application.

Figure 3 shows a sample configuration file entry. The entry begins with a list of parallel file names as
they are to be referenced by the distributed application. The list is followed by several lines of hos t /path
information. Together, these lines indicate the set of hosts, and where on each host, the components of the
parallel files are to be stored; these lines constitute a single declaration. All parallel files with the same
configuration can be grouped together in a single declaration.

The VIP-FS intialization process uses the configuration file to spawn the necessary VIP-FS (IDD layer)
processes and initialize internal tables (e.g., parallel file file-descriptor tables).

2.2 .2 I D D L a y e r

As its pr imary function, the IDD layer is responsible for communicating with the local file system and
providing a stateless interface to the VIP-FS layer. The IDD layer is implemented in VIP-FS as a set of
Unix processes.

For initialization purposes, the VIP-FS configuration file is used to specify the set of hosts that are
participating in the distributed program. Some of these hosts will be associated with one or more parallel
files via a parallel file declaration in the configuration file. These are the hosts that will participate in storing

38

I SequenceNo. lSource(hostid) lCommandtype File descriptor index Offset Size l Data (optional)

Figure 4: IDD Request Message Format

struct IDDnode {

char hostname[MAX_NODE_NAME];

int rid;
};

struct ioNodefd {

int IDDtid;
int IDDfd;

};

/* task ID of io node */

/* file descriptor from IDD */

struct vpfFile {

char filename[MAX_FILENAME_LEN]; /*filename known to runtime system*/
int rtsfd; /*file desc. known to runtime system*/

struct ioNodefd fdList[MAX IO NODES];/* array oflDD file descriptors */
};

Figure 5: IDD Internal ID and File Structures

the parallel file and are typically a set of hosts possessing local disks. During initialization, IDD processes
will be spawned on this subset of hosts after which they will block pending the arrival of service requests.
Thus, IDD processes are spawned as processes cooperating and communicating with the VPF layer entities.

The IDD supports a non-parallel (i.e., Unix stream) view of files. It does not have knowledge of the logical
parallel file or of mapping functions; that is, it carries no knowledge of how data is distributed among the
disk set or among the processors. All communication with the IDD will take place through a communications
daemon. Requests will identify the requesting taskid, the desired operation (i.e.,Read, Write, Open, Close),
the number of bytes involved, and the data if necessary (i.e., for Read reqeusts).

IDD processes receive file access requests from the VPF layer in the form of messages sent through
the message-passing library being used. Requests can be made for any of the standard Unix file access
operations such as open, close, read, write, etc. The IDD process performs the requested operation and
sends an appropriate response back to the VPF layer. Figure 4 illustrates the IDD service request message
format. It contains information for request type, IDD layer file descriptor, and local offset into the file. The
IDD process has no notion of any global file space. The IDD file descriptor for each file is returned to the
requesting VPF layer during the open call request; it is an index into an array of file descriptors returned
when the IDD process makes an open call to the local file system.

The IDD data structures are shown in Figure 5. As shown, the IDD node (IDDnode) is composed of the
hostname and a task id assigned by the message passing library. The local I /O server IDD file descriptor
(ioNodefd) is identified by the task id and the local file system assigned file descriptor. The mapping for file
descriptors assigned to the VPF layer are stored in the structure vpfFile.

39

index

1

2

3

4

N

Parallel File Descriptor

IDD file index, global file offset, mapinfo

index

1 \ 2
3

4

N

IDD files ids

IDD host, IDD file id, offset

Figure 6: VPF Layer File Descriptor Table

2.2.3 V P F L a y e r

The VPF layer provides distributed applications with a single file image for every parallel file that is opened.
It 's key function is to enforce the mapping of the distributed application's (distributed) data domain to the
parallel file. It maintains the data structures necessary to support the view of logical parallel file structures.
It manages pointers to each of the Unix files that comprise every parallel file. Requests to the file system
(in the parallel file view) will be translated into requests to the IDD layer which are the custodians of the
Unix files comprising the parallel file. Response data returned by the IDD layer will be recomposed into
the necessary structure to satisfy the parallel view prior to sending it to the interface layer above. The
aforementioned information is stored in the VPF layer file descriptor table.

When a parallel file is opened, the VPF layer returns a file descriptor which is an index into the VPF's file
descriptor table. The basic structure of the file descriptor table is shown in Figure 6. Each entry of the table
(i.e., each parallel file descriptor) points to an array containing the IDD file descriptors that comprise the
parallel file. Along with every IDD file descriptor is stored the current offset of its file pointer. Additionally,
the global offset for the parallel file and some other mapping information is also stored in the table. The
IDD file descriptor and offset values are mapped by the VPF into a global offset value for the entire parallel
file.

The actual VPF layer file structure is shown in Figure 7. The ioNodeFPList is a pointer to the list of
IDD and IDD files that comprise the parallel file. Each entry into the list includes the host name of the IDD,
a communication id, and the IDD file descriptor assigned to the VPF layer. Data distributions for both the
computational array (i.e., application data distribution) and the parallel file are likewise stored; these are
found in arrayDistTable and fileDistTable respectively. Entries that have to do with Frame coordinates are
to be used for matr ix access and retain the coordinates of the current active submatrix in the dataset.

Figure 8 illustrates how the data domain of a distributed application might be mapped onto a parallel
file. In this example, the parallel file is striped across four hosts; the distributed application is executing
over eight hosts and thus the data domain is partitioned among them (in this case equally). The example
illustrates the special case where the hosts running the IDD processes are disjoint from those running the
application. The figure highlights a number of significant points. First, the local file maintained by each
IDD process is only one fourth the size of the complete parallel file. In general, the IDD layer files will
only be 1 /Dth the size of the parallel file, where D is the number of IDD hosts. Second, the IDD's local
file can actually be composed of discontiguous segments of the global parallel file; the same would be true
of data distribution over the computational nodes. The VPF layer uses the file descriptor table mapping
information to map each parallel file offset address to the proper IDD/offset pair (mapping information will
be discussed in further detail in the following section). Conceptually, the VPF layer maintains the global
file image, illustrated in the figure, as well the functions necessary to map file addresses to and from the file

40

struct pfile {

char *filename;

char *path;

IONodeFP **ioNodeFPList;

int numlONodes;

ArrayDist arrayDistTable;

FileDist fileDistTable;

int localFrameCoords [MAXARRAYDIM];

int localFrameSize;

int currentPosition;

int seqNum;

int fileStatus;

ParaFile *next;
};

[* file name */

/* file path name */

/* list of IDD file pointers */

/* number of I/0 nodes comprising this file */

/* comp. array data distribution format */

/* file data distribution format */

/* matrix coords, access */

/* matrix coords, access -- frame size */

/* current parallel file pointer position */

/* asynchronous communication seq. number */

/* current parallel file status */

/* pointer to next pfile struct *!

Figure 7: VPF Layer File Descriptor Structure

image, the parallel file, and the IDD files.
Access to the IDD process services is made available to the VPF layer through the following procedure

calls.

int CreatelDDFile (filename, mode, taskID, status)
Purpose: Sends a request to create a new file on a particular IDD node. The file will be created relative
to the root of the VIP-FS file structure.

int OpenIDDFile (filename, oflag, mode, taskID, status)
Purpose: Open a file on the specified IDD node.

int ReadIDDRequest (fd, buff, numBytes, offset, seqNum, taskID, status)
Purpose: Sends a read request to the specified IDD node.

int WritelDDFile (fd, data, numToWrite, offset, seqNum, taskID, status)
Purpose: Writes data to a file on the specified IDD node.

int GloselDDFile (fd, tasklD, status)
Purpose: Tells IDD node to close an active file.

int CollectiveReadlDDRequest (mapID, fd, offset, numBytes, mySPMDidNum)
Purpose: Implements collective reads (see assumed-requests below).

2.2.4 A p p l i c a t i o n I n t e r f a c e L a y e r

The application interface provided to a parallel file system is a very important consideration. Most parallel
file systems only provide Unix-like access to the file system [4] [8]. This allows for flexibility but can become
cumbersome to use. For example, when a distributed array is being used by the application, the burden
for maintaining a mapping from the array to the parallel file (not always trivial) is placed squarely on the
programmer. This may easily result in code which sacrifices better performance for ease of programming.

The function of the interface layer is to provide a logical, structural view of the parallel file to the
overlaying application. It will permit the application to engage in I /O by working with the data structure

41

Dataset as
Block-Block

£ ~ 4 6 7 5 N~ £

Dataset as
byte stream

1@! 0

2 ~

3 l~ 1 _......~

7 3

Dataset as
Row-Block
Matrix

0

1

2

3

Figure 8: Data Distribution in VIP-FS

that it is using, rather than by the file abstraction if it so wishes. The interface layer itself uses a parallel
file abstraction; it is responsible for translating each local I /O request by the application into a request to
the parallel file in the file abstraction (i.e., as an offset and number of bytes a certain parallel file), and for
converting or reorganizing data from the Parallel Virtual File Server (VIP-FS) back into the application's
desired logical structure.

The interface layer communicates with the VPF layer through the following Unix-like procedure calls.

in~ pvfs_open (filename, flags, mode)

inl pvfs_wri~e (fd, buf, nbytes)

int pvfs_read (fd, buf, nbytes)

in~ pvfs_lseek (fd, offset, whence)

in! pvfs_close (fd)

The interface layer of VIP-FS currently supports two types of parallel file access by the application:
conventional Unix-like access where, by default, all nodes have equal access to the entire parallel file, and
mapped access. Future implementations will include array access. We describe each of these below.

U n i x I n t e r f a c e
VIP-FS provides access to parallel files in the conventional Unix manner using open(), close(), read(),

write(), lseek0, etc. calls. When using this interface, each host executing the application will have access
to the entire parallel file. It is the responsibility of the programmer to arbitrate and schedule host access to
the parallel files to ensure the desired results are obtained. As with Unix, first-come-first-served semantics
apply.

M a p p e d Access
In many distributed and parallel applications, parallelism is obtained by using data decomposition. Data

is partitioned, usually equally, among the host computers and operated on concurrently. When data is
partitioned for this purpose, some mapping is often involved. The mapping associates the global position of
each data element with a host and a local address on that host, and vice versa. The complexity involved in

42

File stream

0._

I 1 pol l l t iii~iiiiiiiiiiiiiiiiiiiiiiiiiii~iiiiiii:~iii:~i~i~i~i~:i~i~i~ M1 3" M2

i iiiiiiiiiiiiiiiiiiiii;ii; :::i;iiiii;ii : ;iiiii;ii:i:iii!i i:i!ii 4__- ,
5_

MI-loM2

Figure 9: Mapping Function Construction

doing this is often manageable, and libraries have been developed to assist programmers in performing such
decompositions.

The way in which a parallel file is distributed among disks can likewise be viewed in terms of a data
decomposition mapping. This map is maintained by VIP-FS to allow transparent access to parallel files.

The situation becomes much more complex when a distributed application wishes to perform I/O oper-
ations in a distributed manner. In this case, the host location and local address of each distributed element
has to be mapped to disk location, file, and an offset within the local file. This map will change for every data
decomposition, number of computational hosts, and number of disks employed by the application. Maintain-
ing this mapping in a general way for every application becomes a tremendous burden for the programmer.
Futher, any application which is written to perform optimally for a given configuration would require major
revisions whenever execution under a different data decomposition or system configuration is required.

VIP-FS supports mapped access to parallel files in a general way. VIP-FS views the I/O mapping as
illustrated in Figure 9. As shown, the mapping function from the data element (on a client) to the I/O
device element (disk offset) is broken down into two different mapping functions, and the composition defines
the overall mapping. To use mapped access, the programmer is required to define the data decomposition
mapping, and the parallel file mapping to disk. (Alternatively, the programmer can simply employ the parallel
file default mapping). This is done by passing a pre-defined data structure to the file system through an
ioctl 0 call. Figure 10 provides an example code segment for both data decomposition and parallel file
mapping specification.

Once the desired mappings have been declared, I/O access can be performed by each host using the
standard Unix calls. VIP-FS will maintain the mappings in complete transparency.

Array References
The dataparallel programming model has emerged as the most popular programming model for parallel

and distributed applications. As a result, many languages have been designed to support such a programming
model. Within the scientific computing community, languages such as High Performance Fortran (HPF) [5]
[15] [3] [6] have been developed to facilitate the migration of massive quantities of legacy Fortran applications
to parallel and distributed environments.

A dataparallel interface to the parallel I/O system would greatly enhance the power of dataparallel
languages. In such a system, data could be viewed entirely as a data structure, commonly an array of some
sort. Performing parallel I/O operations on the array data would require merely reading or writing the

43

mapinfo_t info;

fd = pvfs_open("tesffi le", O_CREAT I O_WRONLY I O_TRUNC, 0666);

info.globalsize[O] = 2048;

info.globalsize[1] = 2048;

info.distcode[0] = O ; / * Row-Block (row not distributed) */

info.distcode[1] = 1;/* (column is distributed) */

info.blocksize[O] = 0;

info.blocksize[1] = 0;

info.nprocs[0] = 1 ; / * procs, per row */

info.npmcs[1] = 4 ; / * procs, per column */

status = pvfs_ioctl(fd, IOCTL_LOADADT, &info); /* Load Data Distribution */

info.globalsize[0] = 2048; /* N x N */

info.globalsize[1] = 2048;

info.distcede[0] = 0 ; / * Col-Block (row is distributed) */

info.distcode[1] = 1;/* (col is not distributed) */

info.blocksize[0] = O;

info.blocksize[1] = 0;

info.nprocs[0] = 1 ; / * 4 proc. per row */

info.nprocs[1] = 4 ; / * 1 procs, per column */

status = pvfs_ioctl(fd, IOCTL_LOADFDT, &info); /* Load Striped-fi le Distribution */

Figure 10: Mapping Specification Sample Code Segment

4 4

host 0 ~ ~ . iiiiiiiiiiiiiiiiiiiiii!i!iii!i!!i!!il 0

host 1 ~

. !:iii iii!i:!ili : iii!:iiiiiiii!!iiiii :iii:iiiii:i
host3 ~ ~ 3

Figure 11: Array Access in VIP-FS

desired section of the array as shown by Figure 11. In the figure, a portion of the global data array is
being accessed. Each client will issue the same I/O instruction. By making use of the data decomposition
information (previously declared), the file system will transparently deliver only the appropriate portion to
the associated client.

2 .3 D e s i g n T r a d e o f f s

All three functional layers of VIP-FS could be combined, along with the application, into a single executing
process. The advantage of such an organization would be that interlayer communication would involve the use
of intraprocess communication mechanisms (e.g., procedure calls) resulting in a reduction of overhead versus
the interprocess communication otherwise necessary. This cost savings could be significant depending upon
the message passing library used. Further, it would simplify message handling within the entire distributed
system. On the other hand, such a design would have one serious limitation. All I/O requests on a given
host would have to be controlled and directed by the VIP-FS process (now also the application process) on
that host. This renders all I/O requests to be blocking calls, serializing them at the host.

By separating the IDD layer as a distinct process from the rest of the layers, any communication to
the IDD layer can be done asynchronously. Requests for I/O on a given host will be controlled by the IDD
process on that host. Furthermore, all I/O requests can be made non-blocking allowing the system to overlap
communication with I/O which, in lower-bandwidth networks, results in great performance benefits.

3 C o m m u n i c a t i o n i n V I P - F S

In this section, we describe the communication strategies used during data access in VIP-FS. Three strategies
for data access have been incorporated into VIP-FS: direct access, two-phase access, and assumed requests.
This will facilitate research in data access and availability schemes - one of the primary objectives of the
project.

3 .1 D i r e c t A c c e s s

The direct access strategy is the traditional access method used for parallel and distributed file systems. In
this scheme, every I/O request is translated into requests to the appropriate I/O device.

Each distributed application is composed of one or more clients. The file system services each client
independently of the others. There is no globally organized access strategy as with the remaining two
methods. This scheme is used when each client obeys a self-scheduled access pattern.

45

l~lllllllillUllillilllillllll |
Processors I/O device I i

. . = e .g . . ,D=4 ~ ~ ~

' " :i:::i!iii!!!!":!"; :~:::!:!:!:~:!:::!:!"!:!i!::"":"i!:!:!:i;i:i:!"l ~.1 ~ ! i :~:!i!i!i!iii!!!iii.

: :: ,~!~:!ii~:i!~:~i:i:iii:i:!i!ii:iiii::~: ~

I

Figure 12: Assignment of Clients to I /O Devices

3 . 2 T w o - P h a s e A c c e s s

When all clients in the distributed application perform I /O access with some global pattern, then it is useful
to employ a more efficient access strategy. The two-phase access strategy has been shown to provide more
consistent performance across a wider variety of data distributions th~n direct access methods [7]. With
two-phase access, all clients access data approximately simultaneously. T h e file system schedules access so
that data sotrage or retrieval from the I /O devices follow a near optimal pattern with a reduction in the total
number of requests for the entire I /O operation. In a second stage, the data is buffered and redistributed to
conform with the data decomposition used by the application (the target decomposition).

3 . 3 A s s u m e d - R e q u e s t s

The two-phase access strategy gains its effectiveness by relying upon the existence (assumed) of a higher
degree, less congested interconnection networks between clients versus the network used to access data to and
from the storage system; this is often the case in parallel machines. However, in distributed systems, shared
media networks are commonly employed, and the basis for two-phase ~strategy's improved performance is
lost. We have designed an alternative approach which may significantly improve read performance by greatly
reducing the number of requests seen by each I /O device; we call this the assumed-requests technique.

With assumed-requests, data decomposition information is distributed to the IDD processes as part of
the file description information. Clients are assured to make requests in a collective manner as in two-phase
access. Tha t is, we assume a Single-Program-Multiple-Data (SPMD) of computation. A one-to-one or
many-to-one mapping is established from the set of I /O devices to a subset of clients (the latter case occurs
when the number of I /O devices exceeds the number of clients). We say that the members of the subset are
assigned to the I /O devices. This configuration is illustrated in Figure 12 for both a parallel machine, and a
network of workstations where a dark line represents a logical connection between an I /O device (host with
local disk) and a client. Note that in the case of distributed systesms, it is possible for hosts with disks to
serve as both clients and I /O devices.

When a read operation is performed by the application program, only the assigned clients have their
requests actually delivered to I /O devices. Thus, each I /O device only receives a single request each. From
the request the I /O device receives, along with data decomposition information, each I /O device computes
the amount of data required by all clients (assigned or not). It then satisfies the portion of requests which
involve locally stored data by delivering this data directly to the appropriate client. The access pattern is
illustrated in Figure 13 where two hosts act as the I /O servers or devices, and four hosts act as clients. Two
of the clients are assigned to the servers and place requests for all four clients running the application. The

46

Figure 13: Assumed-Requests Read Access Strategy

T a b l e 1: P e r f o r m a n c e o v e r E t h e r n e t o n t h e S P / 1

Compute
nodes

YO
nodes

Distribution
1 MByte

Bandwidth at various dataset sizes

4 MByte 16 MByte 64 MByte

4 1 RB:RB 208.9 KBytes/s 301.62 KBytes/s 396.3 KBytes/s 404.5 KBytes/s

4 4 RB:RB 671.9 KBytes/s 610.1 KBytes/s 623.9 KBytes/s 693.7 KBytes/s

4 8 RB:RB 463.3 KBytes/s 426.2 KBytes/s 515.5 KBytes/s 540.9 KBytes/s

servers, using the da ta decomposition information, sends the appropriate requested information to all the
clients.

By reducing the number of I / O requests that actually traverse the network to a minimum, it is hoped
that assumed-requests will provide great improvements in read performance.

4 P e r f o r m a n c e R e s u l t s

In this section we present our initial results for VIP-FS. These results cover only a small set of configurations
and apply only to a single transmission medium - Ethernet. We are primarily concerned with gaining some
indication of the feasibility of this approach for building a parallel virtual file system. The results are shown
in Table 1.

5 C o n c l u s i o n s a n d F u t u r e W o r k

We have described a system for incorporating a parallel I / O virtual file system with message-passing libraries.
We have briefly described a number of message-passing mechanisms that may improve performance on
heterogeneous systems. We have provided our initial results which indicate some promise in this using
approach to construct a portable, scalable, parallel virtual file system.

In order to improve the performance of our system, we have a number of future research plans which we
are optimistic will lead to ideas for design improvement which we can then incorporate into VIP-FS. For
instance, the effects of incorporating caches at the I /O devices or the clients will be studied. Further studies

47

on access (communication) methods in relation to various transmission media and architectures will also be
carried out. At the interface level, an MPI compatible interface is being planned.

R e f e r e n c e s

[1] A. Danthine and O. Spaniol. High Performance Networking, IV. In International Federation for Infor-
mation Processing, 1992.

[2] A. Geist and A. Beguelin and J. Dongarra and W. Jiang and R. Manchek and V. Sunderam. PVM 3
User's Guide and Reference Manual. Technical Report ORNL/TM-12187, Oak Ridge National Labora-
tory, May 1994.

[3] S. Benkner, B. Chapman, and H. Zima. Vienna fortran 90. Scalable High Performance Computing
Conference, April 1992.

[4] Thomas H. Cormen and David Kotz. Integrating Theory and Practice in Parallel File Systems. In The
Proceedings of the 1993 DAGS/PC Symposium, Hanover, NtI, pages 64-74, June 1993.

[5] CRPC technical report, Rice University. High Performance Fortran Language Specification, version 0.3,
1992.

[6] D. M. Pase. MPP Fortran Programming Model,Draft 1.0. Technical Report Technical Report, Cray
Research, October 1991.

[7] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel I/O via a two-
phase run-time access strategy. In The 1993 IPPS Workshop on Input/Output in Parallel Computer
Systems, pages 56-70, 1993.

[8] Juan Miguel del Rosario and Alok Choudhary. High Performance I/O for Parallel Computers: Problems
and Prospects. IEEE Computer, March 1994.

[9] F.E. Ross. An Overview of FDDI: The Fiber Distributed Data Interface. IEEE Journal on Selected
Areas in Communications, pages 1043-1051, Sept. 1989.

[10] H.T. Kung. Gigabit Local Area Networks: A systems perspective. IEEE Communications Magazine,
April 1992.

[11] M. Henderson and B. Nickless and R. Stevens. A Scalable High-Performance I/O System. In Scalable
High-Performance Computing Conference, May 1994.

[12] Ralph Butler and Ewing Lusk. User's Guide to the P4 Programming System. Technical Report ANL-
92/17, Argonne National Laboratory, October 1992.

[13] S.A. Moyer and V.S. Sunderam. PIOUS: A Sealable Parallel I/O System for Distributed Computing
Environments. In Scalable High-Performance Computing Conference, May 1994.

[14] University of Tennessee. MPI: A Message-Passing Interface Standard, May 1994.

[15] Zeki Bozkus,Alok Choudhary,Geoffrey Fox,Tomasz Haupt and Sanjay Ranka. Compiling Distribution
Directives in a Fortran 90D Compiler. Technical Report SCCS-388, NPAC, Syracuse University, July
1992.

48

