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nologies have evolved to the point where programmers and scientists are now porting many applications 
previously executed exclusively on parallel machines into distributed programs for execution on more 
readily available networks of workstations. Such advances in computing technology have also led to a 
tremendous increase in the amount of data being manipulated and produced by scientific and commercial 
application programs. Despite their popularity, message-passing libraries only provide part of the sup- 
port necessary for most high performance distributed computing applications - support for high speed 
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In this paper, we provide an overview of the conceptual design of a parallel and distributed I /O 
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1 Introduction 

In the past couple of years, significant progress has been made in the development of message-passing libraries 
for parallel and distributed computing [14] [12] [2]. These libraries allow users to produce highly portable 
application code by providing a consistent communication interface over a wide variety of existing parallel 
machines and networks of workstations. Through collective user experience, a group of primitives which 
form a set of basic, required communication functionalities has emerged and is currently supported in one 
form or another by almost all existing message-passing libraries. 

Another significant event that has occurred along-side the refinement of message-passing libraries has 
been the recent development of more effective high-speed networking. Networking technologies such as 
FDDI, DQDB, and ATM have allowed communication rates to increase to the 100Mbps to 1Gbps and over 
range [1] [9] [10]. 

Both message-passing libraries and high-speed networks have evolved to the point where programmers and 
scientists are now becoming encouraged to port many of their applications previously executed exclusively on 
parallel machines into distributed programs for execution on more readily available networks of workstations. 

Advances in computing technologies such as message-passing libraries and high-speed networking have led 
to a tremendous increase in the amount of data being manipulated and produced by scientific and commercial 
application programs. A data storage and retrieval infrastructure needs be constructed which will satify data 
access rates and capacities required by these programs. In current computing environments, in order to save 
data to disk, application programs must explicitly partition and store files in an application specific manner. 
Programmers must rely on their site's network file system (e.g., NFS) structure and configuration. Therefore, 
despite their increasing popularity, message-passing libraries only provide part of the support necessary for 
most high performance distributed computing applications - support for high speed parallel I/O is still 
lacking. Only recently has any attempt been made at providing I/O extensions to message-passing libraries 
[11] [13]. Although these works recognized the deficiency in message passing libraries, they only constitute 
partial solutions. 

In order to deal with this issue in a general way, two problems need to be addressed: first, the problem 
of designing a parallel I/O system with a coherent distributed, concurrent I/O functionality that can be 
incorporated as an extension to any message-passing library; second, the problem of defining a consistent 
high performance parallel I/O interface to these libraries. In this paper, we propose a solution to these 
problems. We provide an outline of the conceptual design of a parallel and distributed I/O runtime system, 
the Virtual Parallel File System (VIP-FS), and describe its implementation. 

In the next section, we discuss the conceptual design and implementation of VIP-FS. In section 3, 
we describe the communication mechanisms used in VIP-FS. In section 4 we present some preliminary 
perfomance results. We conclude in section 5 with brief discussion of fu~ture work. 

2 Design and Implementat ion 

A key objective in designing VIP-FS is portability. If the file system is to be an extension to message passing 
libraries, it must be portable across different libraries; as such, the design must employ only features which 
are common to most, if not all, message passing libraries. Also, it must be capable of co-existing with other 
(Unix based) data managment or network file systems that may be employed. Further, it must be capable 
of operating in heterogeneous distributed system environments. 

As illustrated in Figure 1, VIP-FS makes use of message-passing libraries (MPL) to provide a paral- 
lel and distributed file system which can execute over multiprocessor machines or heterogeneous network 
environments. The rest of this section outlines our conceptual design and describes the implementation of 
VIP-FS. 
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Figure 1: The VIP-FS Infrastructure 

2.1 Conceptua l  Overv iew 

VIP-FS has three functional layers: the Interface layer, the virtual parallel file (VPF) layer, and the I /O 
device driver (IDD) layer. Figure 2 illustrates the logical configuration of VIP-FS. 

The Interface layer provides a variety of file access abstractions to the application program. For example, 
it may be a simple interface composed of standard Unix open, close, read, write functions. Or, the file 
system may accept information describing the mapping of a parallel file to a partitioned data domain, and 
transparently arbitrate access according to this mapping. 

The VPF layer defines and maintains a unified global view of all file system components. It provides 
the Interface layer with a single file image, allowing each parallel file to be viewed as a single large file 
organized as a sequential stream of bytes. It achieves this by organizing and coordinating access to the 
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Figure 2: VIP-FS Functional Organization 
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homer.npac.syr.edu 

illiad.npac.syr.edu 

anaeid.npac.syr.edu 

pfileA, pfileB, pfileC : cheetah.npac.syr.edu /usr/parallel/file/tmp 

darth.npac.syr.edu /usr/parallel/file/tmp 

shadow.npac.syr.edu /usr/parallel/file/tmp 

Figure 3: VIP-FS Sample Configuration File 

IDD's files in such a way that  a global, parallel file is constructed whose component stripes are composed 
of the independent IDD files. Any specification of a file offset by the Interface layer is resolved by the VPF 
into an IDD address, file ID, and IDD file offset. 

As shown, the IDD layer is built upon and communicates with the local host's file system. It manages each 
file as an independent non-parallel file and provides a stateless abstraction to the VPF layer above. Thus, 
the IDD layer acts as the mediator between the local host file system and the VPF layer. Communication 
between layers within and across hosts is accomplished through the use of message-passing library primitives. 

2 . 2  I m p l e m e n t a t i o n  

In the following section we discuss the implementation of VIP-FS. The discussion proceeds in a bot tom-up 
manner, from the IDD layer to the Interface layer. We begin with a brief description of the initialization 
and configuration process. 

2.2.1 I n i t i a l i z a t i o n  

All message-passing libraries require some sort of configuration file to initialize processes and define the 
computational domain on which the distributed application is to be executed. These configuration files 
typically include a list of participating hosts, the number of processes to create on each host, plus some 
additional path information indicating where the executable file is to be found. In order to accommodate 
maximum flexibility within VIP-FS, we extended the configuration file to include file system configuration 
information. This is provided by the user in the form of specifications for each parallel file that  is to be used 
by the distributed application. 

Figure 3 shows a sample configuration file entry. The entry begins with a list of parallel file names as 
they are to be referenced by the distributed application. The list is followed by several lines of hos t /path  
information. Together, these lines indicate the set of hosts, and where on each host, the components of the 
parallel files are to be stored; these lines constitute a single declaration. All parallel files with the same 
configuration can be grouped together in a single declaration. 

The VIP-FS intialization process uses the configuration file to spawn the necessary VIP-FS (IDD layer) 
processes and initialize internal tables (e.g., parallel file file-descriptor tables). 

2.2 .2  I D D  L a y e r  

As its pr imary function, the IDD layer is responsible for communicating with the local file system and 
providing a stateless interface to the VIP-FS layer. The IDD layer is implemented in VIP-FS as a set of 
Unix processes. 

For initialization purposes, the VIP-FS configuration file is used to specify the set of hosts that  are 
participating in the distributed program. Some of these hosts will be associated with one or more parallel 
files via a parallel file declaration in the configuration file. These are the hosts that  will participate in storing 
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I SequenceNo. lSource(hostid) lCommandtype File descriptor index Offset Size l Data (optional) 

Figure 4: IDD Request Message Format 

struct IDDnode { 

char hostname[MAX_NODE_NAME]; 

int rid; 
}; 

struct ioNodefd { 

int IDDtid; 
int IDDfd; 

}; 

/* task ID of io node */ 

/* file descriptor from IDD */ 

struct vpfFile { 

char filename[MAX_FILENAME_LEN]; /*filename known to runtime system*/ 
int rtsfd; /*file desc. known to runtime system*/ 

struct ioNodefd fdList[MAX IO NODES];/* array oflDD file descriptors */ 
}; 

Figure 5: IDD Internal ID and File Structures 

the parallel file and are typically a set of hosts possessing local disks. During initialization, IDD processes 
will be spawned on this subset of hosts after which they will block pending the arrival of service requests. 
Thus, IDD processes are spawned as processes cooperating and communicating with the VPF layer entities. 

The IDD supports a non-parallel (i.e., Unix stream) view of files. It does not have knowledge of the logical 
parallel file or of mapping functions; that  is, it carries no knowledge of how data is distributed among the 
disk set or among the processors. All communication with the IDD will take place through a communications 
daemon. Requests will identify the requesting taskid, the desired operation (i.e.,Read, Write, Open, Close), 
the number of bytes involved, and the data  if necessary (i.e., for Read reqeusts). 

IDD processes receive file access requests from the VPF layer in the form of messages sent through 
the message-passing library being used. Requests can be made for any of the standard Unix file access 
operations such as open, close, read, write, etc. The IDD process performs the requested operation and 
sends an appropriate response back to the VPF layer. Figure 4 illustrates the IDD service request message 
format. It contains information for request type, IDD layer file descriptor, and local offset into the file. The 
IDD process has no notion of any global file space. The IDD file descriptor for each file is returned to the 
requesting VPF layer during the open call request; it is an index into an array of file descriptors returned 
when the IDD process makes an open call to the local file system. 

The IDD data structures are shown in Figure 5. As shown, the IDD node (IDDnode) is composed of the 
hostname and a task id assigned by the message passing library. The local I /O server IDD file descriptor 
(ioNodefd) is identified by the task id and the local file system assigned file descriptor. The mapping for file 
descriptors assigned to the VPF layer are stored in the structure vpfFile. 
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Figure 6: VPF Layer File Descriptor Table 

2.2.3 V P F  L a y e r  

The VPF layer provides distributed applications with a single file image for every parallel file that  is opened. 
It 's key function is to enforce the mapping of the distributed application's (distributed) data  domain to the 
parallel file. It maintains the data structures necessary to support the view of logical parallel file structures. 
It manages pointers to each of the Unix files that  comprise every parallel file. Requests to the file system 
(in the parallel file view) will be translated into requests to the IDD layer which are the custodians of the 
Unix files comprising the parallel file. Response data returned by the IDD layer will be recomposed into 
the necessary structure to satisfy the parallel view prior to sending it to the interface layer above. The 
aforementioned information is stored in the VPF layer file descriptor table. 

When a parallel file is opened, the VPF layer returns a file descriptor which is an index into the VPF's  file 
descriptor table. The basic structure of the file descriptor table is shown in Figure 6. Each entry of the table 
(i.e., each parallel file descriptor) points to an array containing the IDD file descriptors that  comprise the 
parallel file. Along with every IDD file descriptor is stored the current offset of its file pointer. Additionally, 
the global offset for the parallel file and some other mapping information is also stored in the table. The 
IDD file descriptor and offset values are mapped by the VPF into a global offset value for the entire parallel 
file. 

The actual VPF layer file structure is shown in Figure 7. The ioNodeFPList is a pointer to the list of 
IDD and IDD files that  comprise the parallel file. Each entry into the list includes the host name of the IDD, 
a communication id, and the IDD file descriptor assigned to the VPF layer. Data distributions for both the 
computational  array (i.e., application data distribution) and the parallel file are likewise stored; these are 
found in arrayDistTable and fileDistTable respectively. Entries that have to do with Frame coordinates are 
to be used for matr ix  access and retain the coordinates of the current active submatrix in the dataset. 

Figure 8 illustrates how the data  domain of a distributed application might be mapped onto a parallel 
file. In this example, the parallel file is striped across four hosts; the distributed application is executing 
over eight hosts and thus the data domain is partitioned among them (in this case equally). The example 
illustrates the special case where the hosts running the IDD processes are disjoint from those running the 
application. The figure highlights a number of significant points. First, the local file maintained by each 
IDD process is only one fourth the size of the complete parallel file. In general, the IDD layer files will 
only be 1 /Dth  the size of the parallel file, where D is the number of IDD hosts. Second, the IDD's local 
file can actually be composed of discontiguous segments of the global parallel file; the same would be true 
of data distribution over the computational nodes. The VPF layer uses the file descriptor table mapping 
information to map each parallel file offset address to the proper IDD/offset pair (mapping information will 
be discussed in further detail in the following section). Conceptually, the VPF layer maintains the global 
file image, illustrated in the figure, as well the functions necessary to map file addresses to and from the file 
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struct pfile { 

char *filename; 

char *path; 

IONodeFP **ioNodeFPList; 

int numlONodes; 

ArrayDist arrayDistTable; 

FileDist fileDistTable; 

int localFrameCoords [MAXARRAYDIM]; 

int localFrameSize; 

int currentPosition; 

int seqNum; 

int fileStatus; 

ParaFile *next; 
}; 

[* file name */ 

/* file path name */ 

/* list of IDD file pointers */ 

/* number of I/0 nodes comprising this file */ 

/* comp. array data distribution format */ 

/* file data distribution format */ 

/* matrix coords, access */ 

/* matrix coords, access -- frame size */ 

/* current parallel file pointer position */ 

/* asynchronous communication seq. number */ 

/* current parallel file status */ 

/* pointer to next pfile struct *! 

Figure 7: VPF Layer File Descriptor Structure 

image, the parallel file, and the IDD files. 
Access to the IDD process services is made available to the VPF layer through the following procedure 

calls. 

int CreatelDDFile ( filename, mode, taskID, status) 
Purpose: Sends a request to create a new file on a particular IDD node. The file will be created relative 
to the root of the VIP-FS file structure. 

int OpenIDDFile ( filename, oflag, mode, taskID, status) 
Purpose: Open a file on the specified IDD node. 

int ReadIDDRequest ( fd, buff, numBytes, offset, seqNum, taskID, status) 
Purpose: Sends a read request to the specified IDD node. 

int WritelDDFile ( fd, data, numToWrite, offset, seqNum, taskID, status) 
Purpose: Writes data to a file on the specified IDD node. 

int GloselDDFile ( fd, tasklD, status) 
Purpose: Tells IDD node to close an active file. 

int CollectiveReadlDDRequest ( mapID, fd, offset, numBytes, mySPMDidNum) 
Purpose: Implements collective reads (see assumed-requests below). 

2.2.4 A p p l i c a t i o n  I n t e r f a c e  L a y e r  

The application interface provided to a parallel file system is a very important  consideration. Most parallel 
file systems only provide Unix-like access to the file system [4] [8]. This allows for flexibility but can become 
cumbersome to use. For example, when a distributed array is being used by the application, the burden 
for maintaining a mapping from the array to the parallel file (not always trivial) is placed squarely on the 
programmer. This may easily result in code which sacrifices better performance for ease of programming. 

The function of the interface layer is to provide a logical, structural view of the parallel file to the 
overlaying application. It will permit the application to engage in I /O by working with the data structure 
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Figure 8: Data Distribution in VIP-FS 

that  it is using, rather than by the file abstraction if it so wishes. The interface layer itself uses a parallel 
file abstraction; it is responsible for translating each local I /O request by the application into a request to 
the parallel file in the file abstraction (i.e., as an offset and number of bytes a certain parallel file), and for 
converting or reorganizing data from the Parallel Virtual File Server (VIP-FS) back into the application's 
desired logical structure. 

The interface layer communicates with the VPF layer through the following Unix-like procedure calls. 

in~ pvfs_open (filename, flags, mode) 

inl pvfs_wri~e (fd, buf, nbytes) 

int pvfs_read (fd, buf, nbytes) 

in~ pvfs_lseek (fd, offset, whence) 

in! pvfs_close (fd) 

The interface layer of VIP-FS currently supports two types of parallel file access by the application: 
conventional Unix-like access where, by default, all nodes have equal access to the entire parallel file, and 
mapped access. Future implementations will include array access. We describe each of these below. 

U n i x  I n t e r f a c e  
VIP-FS provides access to parallel files in the conventional Unix manner using open(), close(), read(), 

write(), lseek0, etc. calls. When using this interface, each host executing the application will have access 
to the entire parallel file. It is the responsibility of the programmer to arbitrate and schedule host access to 
the parallel files to ensure the desired results are obtained. As with Unix, first-come-first-served semantics 
apply. 

M a p p e d  Access  
In many distributed and parallel applications, parallelism is obtained by using data decomposition. Data 

is partitioned, usually equally, among the host computers and operated on concurrently. When data is 
partitioned for this purpose, some mapping is often involved. The mapping associates the global position of 
each data element with a host and a local address on that  host, and vice versa. The complexity involved in 
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Figure 9: Mapping Function Construction 

doing this is often manageable, and libraries have been developed to assist programmers in performing such 
decompositions. 

The way in which a parallel file is distributed among disks can likewise be viewed in terms of a data 
decomposition mapping. This map is maintained by VIP-FS to allow transparent access to parallel files. 

The situation becomes much more complex when a distributed application wishes to perform I/O oper- 
ations in a distributed manner. In this case, the host location and local address of each distributed element 
has to be mapped to disk location, file, and an offset within the local file. This map will change for every data 
decomposition, number of computational hosts, and number of disks employed by the application. Maintain- 
ing this mapping in a general way for every application becomes a tremendous burden for the programmer. 
Futher, any application which is written to perform optimally for a given configuration would require major 
revisions whenever execution under a different data decomposition or system configuration is required. 

VIP-FS supports mapped access to parallel files in a general way. VIP-FS views the I/O mapping as 
illustrated in Figure 9. As shown, the mapping function from the data element (on a client) to the I/O 
device element (disk offset) is broken down into two different mapping functions, and the composition defines 
the overall mapping. To use mapped access, the programmer is required to define the data decomposition 
mapping, and the parallel file mapping to disk. (Alternatively, the programmer can simply employ the parallel 
file default mapping). This is done by passing a pre-defined data structure to the file system through an 
ioctl 0 call. Figure 10 provides an example code segment for both data decomposition and parallel file 
mapping specification. 

Once the desired mappings have been declared, I/O access can be performed by each host using the 
standard Unix calls. VIP-FS will maintain the mappings in complete transparency. 

Array References  
The dataparallel programming model has emerged as the most popular programming model for parallel 

and distributed applications. As a result, many languages have been designed to support such a programming 
model. Within the scientific computing community, languages such as High Performance Fortran (HPF) [5] 
[15] [3] [6] have been developed to facilitate the migration of massive quantities of legacy Fortran applications 
to parallel and distributed environments. 

A dataparallel interface to the parallel I/O system would greatly enhance the power of dataparallel 
languages. In such a system, data could be viewed entirely as a data structure, commonly an array of some 
sort. Performing parallel I/O operations on the array data would require merely reading or writing the 
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mapinfo_t info; 

fd = pvfs_open("tesffi le", O_CREAT I O_WRONLY I O_TRUNC, 0666); 

info.globalsize[O] = 2048; 

info.globalsize[1] = 2048; 

info.distcode[0] = O ; / *  Row-Block (row not distributed) */ 

info.distcode[1] = 1;/* (column is distributed) */ 

info.blocksize[O] = 0; 

info.blocksize[1] = 0; 

info.nprocs[0] = 1 ; / *  procs, per row */ 

info.npmcs[1] = 4 ; / *  procs, per column */ 

status = pvfs_ioctl( fd, IOCTL_LOADADT, &info); /* Load Data Distribution */ 

info.globalsize[0] = 2048; /*  N x N */ 

info.globalsize[1] = 2048; 

info.distcede[0] = 0 ; / *  Col-Block (row is distributed) */ 

info.distcode[1] = 1;/* (col is not distributed) */ 

info.blocksize[0] = O; 

info.blocksize[1] = 0; 

info.nprocs[0] = 1 ; / *  4 proc. per row */ 

info.nprocs[1] = 4 ; / *  1 procs, per column */ 

status = pvfs_ioctl( fd, IOCTL_LOADFDT, &info); /* Load Striped-fi le Distribution */ 

Figure 10: Mapping Specification Sample Code Segment 
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Figure 11: Array Access in VIP-FS 

desired section of the array as shown by Figure 11. In the figure, a portion of the global data array is 
being accessed. Each client will issue the same I/O instruction. By making use of the data decomposition 
information (previously declared), the file system will transparently deliver only the appropriate portion to 
the associated client. 

2 .3 D e s i g n  T r a d e o f f s  

All three functional layers of VIP-FS could be combined, along with the application, into a single executing 
process. The advantage of such an organization would be that interlayer communication would involve the use 
of intraprocess communication mechanisms (e.g., procedure calls) resulting in a reduction of overhead versus 
the interprocess communication otherwise necessary. This cost savings could be significant depending upon 
the message passing library used. Further, it would simplify message handling within the entire distributed 
system. On the other hand, such a design would have one serious limitation. All I/O requests on a given 
host would have to be controlled and directed by the VIP-FS process (now also the application process) on 
that host. This renders all I/O requests to be blocking calls, serializing them at the host. 

By separating the IDD layer as a distinct process from the rest of the layers, any communication to 
the IDD layer can be done asynchronously. Requests for I/O on a given host will be controlled by the IDD 
process on that host. Furthermore, all I/O requests can be made non-blocking allowing the system to overlap 
communication with I/O which, in lower-bandwidth networks, results in great performance benefits. 

3 C o m m u n i c a t i o n  i n  V I P - F S  

In this section, we describe the communication strategies used during data access in VIP-FS. Three strategies 
for data access have been incorporated into VIP-FS: direct access, two-phase access, and assumed requests. 
This will facilitate research in data access and availability schemes - one of the primary objectives of the 
project. 

3 .1 D i r e c t  A c c e s s  

The direct access strategy is the traditional access method used for parallel and distributed file systems. In 
this scheme, every I/O request is translated into requests to the appropriate I/O device. 

Each distributed application is composed of one or more clients. The file system services each client 
independently of the others. There is no globally organized access strategy as with the remaining two 
methods. This scheme is used when each client obeys a self-scheduled access pattern. 
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Figure 12: Assignment of Clients to I /O Devices 

3 . 2  T w o - P h a s e  A c c e s s  

When all clients in the distributed application perform I /O access with some global pattern,  then it is useful 
to employ a more efficient access strategy. The two-phase access strategy has been shown to provide more 
consistent performance across a wider variety of data distributions th~n direct access methods [7]. With 
two-phase access, all clients access data  approximately simultaneously. T h e  file system schedules access so 
that  data  sotrage or retrieval from the I /O devices follow a near optimal pattern with a reduction in the total 
number of requests for the entire I /O operation. In a second stage, the data is buffered and redistributed to 
conform with the data  decomposition used by the application (the target decomposition). 

3 . 3  A s s u m e d - R e q u e s t s  

The two-phase access strategy gains its effectiveness by relying upon the existence (assumed) of a higher 
degree, less congested interconnection networks between clients versus the network used to access data to and 
from the storage system; this is often the case in parallel machines. However, in distributed systems, shared 
media networks are commonly employed, and the basis for two-phase ~strategy's improved performance is 
lost. We have designed an alternative approach which may significantly improve read performance by greatly 
reducing the number of requests seen by each I /O device; we call this the assumed-requests technique. 

With assumed-requests, data  decomposition information is distributed to the IDD processes as part of 
the file description information. Clients are assured to make requests in a collective manner as in two-phase 
access. Tha t  is, we assume a Single-Program-Multiple-Data (SPMD) of computation.  A one-to-one or 
many-to-one mapping is established from the set of I /O devices to a subset of clients (the latter case occurs 
when the number of I /O  devices exceeds the number of clients). We say that  the members of the subset are 
assigned to the I /O devices. This configuration is illustrated in Figure 12 for both a parallel machine, and a 
network of workstations where a dark line represents a logical connection between an I /O device (host with 
local disk) and a client. Note that  in the case of distributed systesms, it is possible for hosts with disks to 
serve as both clients and I /O devices. 

When a read operation is performed by the application program, only the assigned clients have their 
requests actually delivered to I /O devices. Thus, each I /O device only receives a single request each. From 
the request the I /O  device receives, along with data decomposition information, each I /O device computes 
the amount  of data  required by all clients (assigned or not). It then satisfies the portion of requests which 
involve locally stored data  by delivering this data directly to the appropriate client. The access pattern is 
illustrated in Figure 13 where two hosts act as the I /O servers or devices, and four hosts act as clients. Two 
of the clients are assigned to the servers and place requests for all four clients running the application. The 
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Figure 13: Assumed-Requests Read Access Strategy 

T a b l e  1: P e r f o r m a n c e  o v e r  E t h e r n e t  o n  t h e  S P / 1  

Compute 
nodes 

YO 
nodes 

Distribution 
1 MByte 

Bandwidth at various dataset sizes 

4 MByte 16 MByte 64 MByte 

4 1 RB:RB 208.9 KBytes/s 301.62 KBytes/s 396.3 KBytes/s 404.5 KBytes/s 

4 4 RB:RB 671.9 KBytes/s 610.1 KBytes/s 623.9 KBytes/s 693.7 KBytes/s 

4 8 RB:RB 463.3 KBytes/s 426.2 KBytes/s 515.5 KBytes/s 540.9 KBytes/s 

servers, using the da ta  decomposition information, sends the appropriate  requested information to all the 
clients. 

By reducing the number  of I / O  requests that  actually traverse the network to a minimum,  it is hoped 
that  assumed-requests will provide great improvements in read performance. 

4 P e r f o r m a n c e  R e s u l t s  

In this section we present our initial results for VIP-FS. These results cover only a small set of configurations 
and apply only to a single transmission medium - Ethernet. We are primarily concerned with gaining some 
indication of the feasibility of this approach for building a parallel virtual file system. The results are shown 
in Table 1. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have described a system for incorporating a parallel I / O  virtual file system with message-passing libraries. 
We have briefly described a number of message-passing mechanisms that  may improve performance on 
heterogeneous systems. We have provided our initial results which indicate some promise in this using 
approach to construct a portable,  scalable, parallel virtual file system. 

In order to improve the performance of our system, we have a number of future research plans which we 
are optimistic will lead to ideas for design improvement  which we can then incorporate into VIP-FS. For 
instance, the effects of incorporating caches at the I /O  devices or the clients will be studied. Further studies 
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on access (communication) methods in relation to various transmission media and architectures will also be 
carried out. At the interface level, an MPI compatible interface is being planned. 
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