Architectural Support for

Designing Fault-Tolerant
Open Distributed Systems

Salim Hariri and Alok Choudhary, Syracuse University
Behcet Sarikaya, Bilkent University

A distributed voting
algorithm and a two-
level hierarchy for
permanent memory are
key elements in this
scheme for supporting
fault tolerance in open
distributed systems.

50

distributed system consists of autonomous computing modules that inter-
act with each other using messages. Designing distributed systems is more
- difficult than designing centralized systems for several reasons. Physical
separation and the use of heterogeneous computers complicate interprocessor
communication, management of resources, synchronization of cooperating activ-
ities, and maintenance of consistency among multiple copies of information. The
main advantages of distributed systems include increased fault-tolerance capabil-
ities through the inherent redundancy of resources, improved performance by
concurrently executing a single task on several computing modules, resource
sharing, and the ability to adapt to a changing environment (extensibility).!

Distributed systems cover a wide range of applications. Recent advances in
VLSI devices and network technology will further increase the use of distributed
systems. As the complexity of these systems increases, so does the probability of
component failure, which can adversely affect the performance and usefulness of
such systems. Thus, reliability, availability, and fault tolerance become important
design issues in distributed systems. Fault tolerance is the system’s ability to
continue executing despite the occurrence of failures. Increasing the reliability and
fault tolerance of a system involves a trade-off between the cost of failure (for
example, costs incurred by incomplete or incorrect computations) and the cost of
incorporating redundancy and recovery mechanisms.

Because of their inherent redundancy, distributed systems provide a cost-
effective way to apply fault-tolerance techniques. Open distributed systems pro-
vide universal connectivities among their components because their designs are
based on the standard protocols adopted by the International Standards Organi-
zation (ISO). In this computing environment, interacting processes communicate
through messages that traverse a stack of software layers. Consequently, applying
fault-tolerance techniques to execute critical tasks can be costly in terms of
execution time.

In this article, we first provide an overview of the main techniques for designing

0018-9162/92/0600-0050$03.00 © 1992 IEEE COMPUTER

fault-tolerant software and hard-
ware systems. We identify the
important features of the build-
ing blocks (computers, memo-
ries, buses, etc.) that can sup-
portan efficient 1mplementat10n
of fault-tolerant open distribut-
ed systems (FTODS). Taking
into account the features of these
building blocks, we propose an
organization for FTODS. In
FTODS, the algorithms needed
for transferring files and syn-

chronizing the concurrent activ-

ities of the computing modules
— and for recovery — are ISO
standard protocols. We propose
the use of low-level voting and
recovery algorithms thatcanrun
as a layer of software above the
operating system to make the
open distributed system an at-
tractive environment for apply-
ing fauit-tolerant techniques.

Desig gn
considerations for
fault tolerance

Glossary of acronyms

AAT - Atomic action tree

- ACSE — Association control service element
. ASE — Application service element

CCR — Commitment, concurrency, and recovery
DVA — Distributed voting algorithm
FTAM — File transfer and management

- FTMP — Fault-folerant multiprocessor
. FTODS — Fault-tolerant open distributed systems

HPM — Hierarchical permanent memory
JTM — Job transfer and manipulation
MPM — Maunetic usrmanent mamory
MTTF — Mean time to tailure

- ODP = Open dis!ﬂbuwd processing

0DS — Open distributed systems

‘08I — Open Systems Interconnection -

RDA — Renmote database access
SIFT — Software-implemented fault tolerance
SPM — Semiconductor permanent memory

TP — Transaction processing
““TR — Transaction reliability

VTP — Virtual terminal protoco!

the design to concurrently mask faults
and prevent their propagation to other
modules. The most common example of
static redundancy is the triple modular
redundant system. Another approach

hybrid redundancy — applies
static and dynamic redundancy
to achieve fault tolerance. In
general, the design of a fault-
tolerant computer involves one
or more of the following strate-
gies: fault masking, fault detec-
tion, fault containment, fault
diagnosis, repair/reconfigura-
tion, and fault recovery’ (see
the sidebar “Strategies for de-
signing fault-tolerant comput-
ers”

Designing a fault-tolerant dis-
tributed systemis more involved
than designing a fault-tolerant
centralized system. Two main
problems must be addressed
during design:

(1) Concurrency control,
which involves scheduling con-
current execution of tasks on
different nodes such that their
results are identical to a serial
execution of the tasks (serializ-
ability requirement).

(2) Redundancy management, which
involves preserving consistency among
replicated resources and maintaining
the state information with backup mod-

Fault tolerance, a system’s ability to
continue executing its tasks despite the
occurrence of failures, can be achieved
by fault masking. Masking (also called
static redundancy) is incorporated into

for providing fault tolerance is dynamic
redundancy, which uses spare compo-
nents to replace faulty modules once
they are detected. Still another approach
— a combination of these two, called

ules to support recovery.

Transactions are an important pro-
gramming paradigm for simplifying the
design of reliable distributed applica-

Strategies for designing fault-tolerant computers

Many techniques have been used to build fault-tolerant
computers. They include

Fault masking: Concurrent masking and correction of gen-
erated errors.

Fault detection: Use of hardware and software mechanisms
to determine the occurrence of a failure. Fault detection
mechanisms include concurrent fault detection, stepwise com-
parison, and periodic lesting to determine whether computers
or communication links are operating correctly.

Fault containment: Prevents propagation of erroneous or
damaged information in the system after-a fault occurs and
before it is detected.

Fault diagnosis: Locates and identifies the faulty module re-
sponsible for a detected error.

Repair/reconfiguration: Eliminates or replaces the faulty
module, or provides means to bypass it.

Fauit recovery: Corrects the system to a state acceptable
for continued operation.

Most of these techniques have been used to build such
computers as the Tandem 16 NonStop system, the Stratus

June 1992

computer system, the VAXft 3000, the Teradata and Sequoia
systems, the fault-tolerant multiprocessor (FTMP), the soft-
ware-implemented fault-tolerance (SIFT) system, and AT&T's
Electronic Switch System (ESS).'2 The effectiveness of fauit-
tolerance techniques can be measured by the “coverage,” de-
fined as the conditional probability of recovering from a fault
once it occurs.? It is difficult to measure this parameter be-
cause it involves evaluating the probability that fault detec-
tion, fault diagnosis, repair/reconfiguration, and recovery al-
gorithms are operating correctly.

References

1. D.P. Siewiorek and R.S. Swarz, The Theory and Practice of Reli-
able System Design, Digital Press, Bedford, Mass., 1982.

2. D.P. Siewiorek, “Fault Tolerance in Commercial Computers,”
Computer, Vol. 23, No. 7, July 1990, pp. 26-37.

3. J.B.Dugan and K.S. Trivedi, “Coverage Modeling of Fault- Toler-

ant Systems,” IEEE Trans. Computers, Vol. C-38, No. 6, June
1989, pp. 775:787.

51

Transactions

A transaction can be defined as a collection of operations having the following

three properties’:

Failure atomicity: Either all operations are performed successfully or their re-

sults are undone when a failure occurs.

Permanence: The results of committed transactions will not be lost.

Serializability: The results of executing transactions concurrently are the same

as if they were executed serially.

Use of the transaction concept to mode! distributed computations provides a
convenient means to solve the concurrency control and redundancy management
problems.! The concurrency control problem consists of three tasks: assigning an
order to all transactions, identifying conflicting transactions, and synchronizing
transactions to resolve the identified conflicts. Basically, there are three ap-
proaches to concurrency control: time-stamp-based schemes, locking protocols,

and optimistic techniques.?

References

1.

Distributed Systems, S. Muliender, ed., Addison-Wesley, Reading, Mass., 1989.

2. P.A.Bemnstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, Reading, Mass., 1987.

tions (sce the “Transactions” sidebar).
Techniques for managing redundancy
and maintaining consistency of repli-
cated objects are broadly character-
ized as centralized- and decentralized-
control algorithms. The centralized-
control approach supports strong con-
sistency requirements and prevents
deadlocks, but it is susceptible to single
points of failure. The decentralized-con-
trol approach supports weak

consistency requirements

from all nodes before processing the
next transaction. The main problem with
this scheme is that it permits no paral-
lelism among transaction executions.
Voting algorithms have also been used
to ensure consistency of replicated re-
sources. In this scheme, managers of
replicated resources use a common set
of rules to determine whether an up-
date can be made. The algorithm’s con-

trol can be centralized or decentralized,
depending on whether the voting is done
at one site or multiple sites.’ In addition
to maintaining consistency of replicat-
ed resources, redundancy management
isresponsible for systemrecovery in the
presence of node crashes and communi-
cation link failures.

Open distributed
systems

In this article, we investigate tech-
niques for providing architectural sup-
port to improve the execution of dis-
tributed applications that use the Open
Systems Interconnection standards. The
main goal of the OSI reference model is
to provide universal connectivity among
heterogeneous computers. The refer-
ence model is designed to structure com-
munication hardware and software in a
layered architecture.” ISO committees
are working on an architecture in line
with the reference model for open dis-
tributed processing (ODP). This effort
aims to combine the OSI model with a
database model to arrive at a global
framework for designing distributed
systems. In such an environment, any
computer would be open for communi-
cation and could be integrated easily
with the existing distributed systems to
perform certain tasks. Implementation
of the communication protocols as lay-
ered software tends to be very slow and
consequently limits the scope of appli-

cations for open distribut-
ed systems.

(when it is permissible to The application layer is
have the state of some rep- implemented as several ap-
lica out of date for a short Application layer plication service elements
period of time), and there-] User l (ASEs). with one ASE
fore it can potentially in- A serving them all. This ele-
crease a system’s through- ment is called the associa-
put. The primary-copy) - tion control service element
algorithm?® applies the cen- Commitment, Er%réiizﬁfg Association (ACSE), and it provides
tralized-control strategy to conc;r:rCiency, «—»| application |« ggrr:/tig association (connection) es-
ensure the consistency of recovery service elements tablishment/disconnection
replicated resources. In this elements service to other ASEs. In
scheme, one node is desig- \ 4‘ A open distributed systems,
nated as the primary node Y y y distributed applications are
and made responsible for I Presentation layer J implemented by the servic-
serializing updates. When es that the ASEs provide.
the update values have been / The application layer ser-
computed, the primary node \ vices can be in the form of
broadcasts them to all oth- l Session and other layers J file transfers using the
er nodes in the system. The FTAM (file transfer and
primary node then waits to

receive acknowledgments

52

Figure 1. The structure of an application layer.

management) protocol, re-
mote database access using

COMPUTER

the RDA protocol, job transfers using
the JTM (job transfer and manipula-
tion) protocol, a virtual terminal using
the VT protocol, and transaction pro-
cessing using the TP protocol.
Toachieve reliable and fault-tolerant
computing in open distributed systems,
the ASEs use the commitment, concur-
rency, and recovery (CCR) services pro-
vided by a special ASE called the CCR
protocol.* CCR is a standard two-phase
commit protocol that provides the ser-
vices needed to achieve concurrency
control and recovery during execution
of applicationlayer taskssuchasFTAM,
TP, VTP, etc. Figure 1 shows the OSI

communication model and the interac-
tions among the ASEs of the applica-
tion layer.

Architectural support
for FTODS

In this section we identify features
that should be supported by the com-
puting modules of open distributed sys-
tems to facilitate an efficientimplemen-
tation of fault-tolerant algorithms. On
the basis of this criteria, we propose an
organization for fault-tolerant open dis-

tributed systems, the architecture of its
building blocks, and the required algo-
rithms and protocols. The architecture
of the computing modules should sup-
port reliable broadcasting, self-repair/
recovery, selective fault tolerance, and
permanent memory (see the sidebar
“FTODS computing module capabili-
ties”).

Organization of the FTODS. An
FTODS comprises a set of computing
modules we refer to as nodes. Nodes
communicate and interact with each
other by broadcasting their messages
on a redundant broadcast medium. A

FTODS computing module capabilities

The architecture of the computing modules should facilitate
the efficient implementation of fault-tolerant algorithms. This
architectural support. can be provided by the following capa-
bilities:

Reliable broadcasting. Reliable broadcasting provides
means for a set of processes to communicate in spite of fail-
ures and is used frequently as a primitive operation to imple-
ment reliable distributed applications.! it has been shown that
reliable broadcasting provides an efficient solution to many
problems — for example, distnbuted consensus, distributed
synchronization, replicated update, and transaction. manage-
ment in database systems.2 Furthermore, these reliable pro-
tocols will run efficiently on the underlying architecture if its
communication network 'has a broadcast capability.

Self-repairfrecovery. Recovery in distributed systems with
replicated resources, ecmputatlons, and database systems is
a nontrivial task. Moreover, the overhead of recovery can de-

“'grade system performance significantly.? Hardware recovery
blocks have been proposed to reduce overhead during the
save ‘operations of systemn state and 1o speed up recovery
when faults are detected in a multiprocessor system.? The lit-
erature. is rich with techniques that can be used to support
self-repair-and recovery, For exampie, the use of static re-
dundancy to achieve fault masking has been used in the

erations in a fault-tolerant mode and the rest in a normal
mode. This will lead to a significant improvement in perfor-
mance without compromising the fault-tolerance require-
ments. Consequently, the arc t:tedture of the computing mod-‘
ules shouid support dynamm con vthat
processors within a node can ccnﬁgured foruse asa
masking redundancy during critical operations and as a multi-
processar system during noncritical operations. This capabili-
ty has been supported by the c.vmp, which contains three’

processor-memory pairs mat can operate mdependenﬂy and

can also prowde fau!t‘mterant operaﬁans £

Hierarchical permm' memory symam Mosi recovery
algorithms needed to
permanent starage.’
checkpoints of a syste fstats,fthe chsekpoims will be used
to restore the system to the previous fauit-free checkpoint
state when a failure occurs during normal operation, Stable
storage is normally constructed using dual magnetic disks.
Performance of fault-tolerant aigorithms can be improved sig-
nificantly if stable smrage is implemented in a two-level hier-
archy in-which semiconductor nanent memory is used in
the first level and ma

and the MPM

c.vmp (computer-voted mutttpmcessor) computer.‘ Also, Kuht -

and Reddy® have addressed fault diagnosis at the system
leve! and the conditions under which nodes can diaghose the
failure of other nodes to achieve self-test,

The architecture of the computing modules should support
a hierarchical approach for recovery such that most of the

time-consuming tasks are axecuted at a lower leval of this hi- -

erarchy. Thé use of static (masking) redundancy and diag-
nostic routines simplifies the tasks involved in fault detection,
self-reconfiguration and repair; and recovery. Providing the
computing modules with these features could significantly re-
duce the complexity of recovery at the application level. With
the proliferation of VLSI chips, /O processors, controllers,
and memory, it is now reasonable to use redundant compo-
nents in designing the ccmputmg tmodules.

Selective fault tolerance. Since not all task operauons re-
quire fault tolerance, it is des:rab!g to run only the critical op-

June 1992

References

1. Distributed Systems; 8 Muﬂender eﬂ Adﬁlscm-Wssley, Read-
ing; Mass 1909 ,[

2. J.Changand NE. Sﬂaxenm:k ‘Reliable’ Bmadcast Protocols”
ACM Trans Gompma Systems. vm 2,No. 3, Aug 1984, pp.

lﬁpmc‘esscru ng mmﬂaeomslwks IEEE
Trans. Compufets \M «38 N 2, Feb 1984, PP 113—124

5. J.G. Kuhland S:M. Redéy “Famtbmwgmsis in Fulty Distributed
Systems.” Proc. 11th Int’} Symp. Fault-Tolerant Computing, IEEE
CS Press, Los Alamitos; Calif.; OidarNa 350 (microfiche only),
June 1981 pp. 100-105

J -toiaram aemputmg rely on

ti nent memory is usedinthe
second, The SPM. acts asa uﬁsr batwean the prucessor e

53

set of nodes forms a cluster. A cluster
(C,) communicates with another cluster
(C)) through the gateway associated with
each cluster (see Figure 2).

Cluster 1

.
'

H

v

|

H

f

h

H

.

: 1 2 1 2
% Gateway } »»

'

'

H Bus controller Bus controller
H

¥

'

'

)

'

H

: I :

: .

I

H

H

: Nodearchitecture. Each node hassev-
: eral processing elements which can be

Bus controller b . i
configured dynamically to form either a

redundant computing module or a
shared-bus multiprocessor system. The
processing elements communicate with
-- : each other via a redundant node bus.
el e Components of a node (as shown in
: Figure 3) include a general-purpose
microprocessor,aninput/output system,
: and bus controller subsystems. The num-
‘Hcateway) om ber of processing elements needed at
' each node depends on the reliability
: and fault-tolerance requirements. A
: node has two operational modes: fault
: tolerant and multiprocessing. For non-
, critical tasks, a node’s processors can be
2 DRI P T EEEE configured as a shared-bus multipro-
cessor system. For critical tasks, the
node’s processors execute the same task
: synchronously and use a voting proce-
dure to mask out the effect of faulty
processors. The coordinator processor

: — '

G G e e : (P.), which is chosen from the set of
‘ w ! fault-free processors according to a pre-
: L___‘:I I:J:] ':.I:I H defined selection procedure, supervises
1 Bus controller Bus controller Bus controller ' . . .

: : the voting algorithm and communica-

Local broadcast medium

Cluster n

U

tion with other nodes.

Local broadcast medium

Hierarchical permanentmemory. Per-
--- manent memory provides secure data

- storage for the state of a node and any
Figure 2. Organization of the fault-tolerant open distributed system. other information relevant to the exe-

cution of a transaction. Consequently,
it is possible to commit the transaction
atomically or undo all its actions should
that transaction be aborted. Permanent

} memory can be implemented using mag-

L:r I Iﬁ) ”Mlem' r‘x’ Il lﬁ) ”Mﬁm’l netic or semiconductor technology. Fig-
ure 4 shows the organization of the hier-

< <Y . Y, -) Y, | archical permanent memory (HPM),
A / . which uses a semiconductor permanent

) A ; memory (SPM) at the first level and

co,?{,’;‘e, cor?tlr’g"er ‘ magnetic permanent memory (MPM)

A A ; at the second level. The SPM contains

: L g two battery-backup RAM units, a com-

¥ + 4 e parator unit, and several bus interface

units. The MPM consists of dual mag-

y ; LY netic disks and a comparator.
Hierarchical Bus ‘ L In the proposed HPM, the SPM acts
permanent controlier : asabuffer between the coordinator pro-
memory : P
g cessor of a node and the MPM; as a

;) . result, the HPM unit’s effective access
y Local broadcast medium time is reduced. The coordinator pro-
cessor of a node updates the SPM atom-
ically according to the following proce-
Figure 3. Node architecture. dure:

<
<

\/

54 COMPUTER

(1) After obtaining a majority con-
sensus on the data to be committed, the
coordinator processor places the data
on the node bus with a write signal.

(2) The values from the bus are writ-
ten into the two semiconductor memo-
ries simultaneously.

(3) The comparator module immedi-
ately reads back and compares the up-
dated locations.

(4) If the values differ, an abort sig-
nal is sent to the coordinator processor
via the node bus indicating that the
values need to be rewritten. This pro-
cess can be repeated up to a predefined
number of times before an error signal
is generated. If the comparison opera-
tion produces a match, then the updat-
ed values are committed and an appro-
priate signal is sent to the coordinator
processor.

Figure S is a flowchart describing an
atomic write operation. Error detection
and correction codes can also be used to
increase the reliability and simplify the
diagnosis of the memory system. How-
ever, coding techniques alone cannot
provide fault tolerance against crashes
of memory devices. A similar proce-
dure is used for a read operation. In
addition to the fault-tolerance capabil-
ity hierarchical permanent memory pro-
vides, its use also improves the perfor-
mance of recovery protocols.

Cluster coordinator and gateway. For
each set of nodes forming a cluster (C,),
there is a node designated as the cluster
coordinator (C,). The nodes of a cluster
are ordered in a predetermined priority
list so that any fault-free node knows
the procedure for selecting the C, node.
The C,node periodically receives status
messages from the nodes in its cluster.
Also, the C, supervises the recovery
procedure when one of its nodes is in a
crashed state. A cluster’s gateway for-
wards all messages routed to nonlocal
nodes through the gateways connected
to the intercluster communication link.
The remote gateways pick up the mes-
sages addressed to one of their nodes.

Selective fault-tolerance capability.
Redundancy and fault-tolerant algo-
rithms are used to ensure atomic execu-
tion of critical tasks and system recov-
ery when faults occur. For example,
updating a bank account is a critical
task, and its execution should be con-
trolled by a commit protocol. In this

June 1992

Node bus

Interface
unit
Magnetic
disk

| Comparator

- Interface
unit

Cluster-bus

-

Semiconductor
battery-backup RAM

Semiconductor
battery-backup RAM

Comparator

Figure 4. Hierarchical permanent memory.

case, the critical operations are those
that update the bank accounts. Howev-
er, there are other operations that do
not affect the system consistency re-
quirements (reading a set of records,
searching the database, etc.), so they do
not need a commit protocol to control
their execution.

Since critical operations constitute
only a small part of all the operations,
redundancy in the architecture can be
exploited to improve performance
through parallel processing. However,
for a node to operate in two modes —
redundant mode and multiprocessing
mode — the system should provide tech-
niques for reconfiguration.

Support for two processing modes is
provided by monitors. A monitor is a
layer of software embedded above the
operating system. The tasks are repre-
sented using a graph whose nodes rep-
resent computational structures and
whose arcs represent the dependency
constraints between the computations.
Critical tasks are distinguished from
noncritical tasks using system primitives
and semantics of the computation. The
monitor maintains a queue of ready tasks
that can be executed concurrently as
soon as a processor is available. The
monitor schedules the tasksin a first-in,
first-out manner. However, scheduling

Put data on
node bus

Write to two
SPMs

\

Read from
two SPMs

Different

Compare

Same

Commit

Figure 5. An atomic write operation.

must incorporate execution of critical
tasks, since they require all the proces-
sors on a node.

Two scheduling schemes can be used
for scheduling critical tasks. The first
uses preemptive scheduling in which a
critical task to be scheduled preempts
all other tasks. When the monitor rec-

55

ognizes that the next task is critical, it
preempts the tasks on other processors.
In the second scheme, the monitor waits
for all current tasks to complete before
scheduling a critical task, and it does
not schedule any noncritical tasks dur-
ing that period, even if processors are
available. The first scheme has the ad-
vantage that critical tasks are complet-
ed as soon as possible. But the overhead
of preempting tasks can be significant
because the state of all the current pro-
cesses must be saved. The second scheme
does not require saving the states of the
current processes, but the processors
may remain idle for a long period, re-
ducing utilization and throughput.

Distributed voting algorithm. In our
analysis, we assume that a faulty pro-

cessor either stops producing data (fail-
stop model) or produces corrupted data
that the voting algorithm can recognize
and use as a symptom of a faulty proces-
sor. Processor faults can be caused by a
malfunction of its hardware and/or soft-
ware. A processor can assume only two
states: faulty or fauit free. During the
fault-tolerance mode of operation, a
node’s processors are configured to ex-
ecute the same task (static redundancy)
and the system memory is reconfigured
as a hierarchical permanent memory. A
coordinator processor (P,) is associated
with each node. The P, supervises the
distributed voting algorithm and com-
mits the tasks’ execution. Selection of
the P, follows a predefined procedure.
For example, if each processor is identi-
fied by a number (ID), then P, can be

selected as the fault-free processor with
the maximum ID value.

Figure 6 describes the voting algo-
rithm and related procedures for distrib-
uted voting in the FTODS environment.
Each processor P, computes a result (or
a set of results) that must be voted on
before it can be committed. The func-
tions used to compute these results de-
pend on the application transactions. In
phase 1, these results are computed and
each P, participating in the distributed
computation broadcasts its results on
the node bus using the broadcast primi-
tive. Phase 2 involves voting on the re-
sult and determines whether the result
can be committed. Each P, receives the
values from all other P;’s and indepen-
dently determines the confidence in the
values by comparing them.

vote[j] = recv_msg (P,
If (voteli] =
begin -

result = vote[z], !F‘“

end;

begm

end;
- else *no ma)cnty *l
begm

if (P (status) = Okay")
o g o

if(P,=
/ vate

end;

;en"d. E

Each P, in a node does the féﬁbﬁing, (1<i<n)
- 1. vote = function (“parameters”) [*computation depends on the application*/
2. broadcast (“node”, vote, P _name) /*broadcast “vote” to all processors (P_name) in “node™*/

'/¥Ea¢hf1>i does ‘thcyfoiyzwi;‘xg;(i <isn)¥ ‘
” vote, P_name) 1 <j<n,j#i/*rec. vote from all processors*/
Vﬁtﬁb])vw, 1 .<.l,]$ n

esult contains yote to be committed*/
vote commxt (“all”) f*vate commit with param “all”*/

else if (vote{l} votefj}) for at least k votes s.t. k 2 h/ﬂ

result = vote of mapnty, I*result contams value of the majonty*l

iocaLjrecovery (for aii P notin ma}omy) /*start recovery of processors not in majority*/

P (status) local dmgnost:c (P) 1gi<n /*stan local dlagnosucs*/

seleet_poordmatm (“node”) *select new coordinator from “okay” processors*/
P} *new coordinator does the followmg*l
’g‘t (new majomy), /*commzt new maj(mty*/

g else if (P, (status) # “okay”) Vi, 1 Lign/*all precessors have failed*/
prmtn ; Vcomplf;me node failure, external recovery zequxred”)

56

Figure 6. The distributed voting algorithm.

COMPUTER

There can be three possible outcomes
of this comparison. First, all values match
with each other — a complete consen-
sus. Inthis case, the coordinator proces-
sor P, broadcasts the result to all P/s.
Each P; acknowledges by sending a
broadcast acknowledge message, and
the result is written in the permanent
memory.

In the second outcome, only a major-
ity is obtained on the result and the
values of some P/s do not agree with
that of the majority. In this case, there
are two groups of processors, those be-
longing to the majority and those that
don’t. Since a majority is sufficient to
commit a new value, the distributed
voting algorithm (DVA) isexecuted such
that it uses the majority result as the
correct one. If the current coordinator
is part of the majority, it coordinates the
current DVA and initiates a recovery
procedure for the P;’s in the minority. If
the current coordinator is not in the

majority, then the P;’s belonging to the
majority select a new coordinator using
the “select_coord()” procedure. This
new coordinator now coordinates com-
mit and recovery for the minority pro-
CessoTs.

In the third outcome, a majority is not
obtained. This triggers the “self-diag-
nostic()” procedure associated with each
P, Theself-diagnostic procedure returns
the status of each processor as either
“okay” or “failed” (actually, obtaining
anything other than “okay” implies
“failed”). If none of the processors re-
turn a status “okay,” the node (all n
processors in the node) is considered
“failed.” This requires external recov-
ery, which the cluster coordinator will
perform as part of the distributed node
recovery algorithm. If some P;’s are okay
after the self-diagnostic procedure, they
broadcast their status and then select a
new coordinator from this new set. Vot-
ing is repeated for the new set, and the

recovery procedure is initiated for oth-
er P/’s.

Distributed node recovery algorithm.
One node is designated as the cluster
coordinator (C,) for each cluster. Selec-
tion of the C, follows a predefined pro-
cedure similar to that used in selecting
the P, of a node.

Figure 7 describes the distributed node
recovery algorithm. Each P, of a node
periodically broadcasts a status mes-
sage on the local broadcast medium.
The current C, checks the status of all
node coordinators. If any node is crashed
and does not send a status message to
the C,, the C, copies the state of that
node as well as the node’s task_queue.
It then assigns these tasks to other nodes
in the cluster, choosing nodes with the
minimum load. If a node that crashed
earlier has recovered and sends an
“okay” message to the C,, the C, up-
dates its own record to reflect this

Forever do /*periodically*/

begin

begin

failure occurred)*/

‘end;

‘end;

end.

Each Pc¢; (node coordinator) in a cluster does the following, (1 <i<m)

broadcast (“cluster”, status, P,) /*broadcast “status” to all node coordinators in the cluster*/
/*The cluster coordinator is one of the node coordinators*/

recv_msg (Pc;, status, P_name) 1 < j < m, j # i /*rec. status from all node coordinators*/
If (P¢; = C,) /*if 1 am the cluster coordinator*/

For (i = 1 tom) do /*check status of all nodes*/
If (status (Pc;) = “okay”) /*any failed node?*/

state.= Read (Pc, state_block) /*read the state of Pc, from its HPM*/
task_queue = Read (Pc, task_queue) /*Obtain the tasks of Pc*/

Pc; = select (minload, cluster) /*choose a node with minimum load currently*/
Send (Pe;, state) /*copy state of crashed node to the chosen node*/

Send (Pc;, task_queue) /*assign tasks to the new node*/
rec_status (Pc)) = failed /*record this with C*/

recover (Pc;) /*recover the crashed node by copying updated information*/

i”?this?freéavet‘ymay nﬁfgﬂiviays'be possible if the failed node’s hardware needs to be replaced (i.e., if catastrophic

else if ({statas (Pc;) = okay) .and. (rec_status (Pc;) = failed)) /*Pc, was repaired but record was not*/
rec_status (Pc;) = okay /*update C, record*/

else if (Pc; # C.) /*if I am not the cluster coordinator*/
if {status (C,) # “okay™) /*the cluster coordinator failed*/
select_cluster_coordinator(); /*select new cluster coordinator*/

Figure 7. The distributed node recovery algorithm.

June 1992

57

(2=
begi

forj=1tok
set_processor*/.
exit;
end;

begin

end;
return;
end vote_commit,

if (my_node (status) = “okay”)
begin -

mynode =
end;
return;]
end select_coordinator

Procedure vote_commit (parameter: set_processor);
/*set_processor: a list of processors that are fault-free, e.g. all, majority etc.*/
P) /*iflam the coordmator*/

broadcast (“set_: precessot" result, P.name); /*reliable broadcast result to processors in “set_processor”*/
.k = |l set. processor Ii; *cardinality of set_processor*/

recv.msg (PjE set_,pmcessor bcast ack, P_name); /*rcv. acknowledgment from processor in

else if ((P, 2 P) .and. (P, & set_processor)) /*other than coordinator processor*/

recy msg (.P¢, result, P_name); /*rec. result from coordinator*/
beast._ack (P, P_name); /*acknowledge to the coordinator*/

Procedure select_coordinator (parameter: set_processor);

broadcast (set_processor, status, P_name); /*broadcast status*/
recv_msg (set_processor, status, P_name); /*rec. status from other processor*/

if (my‘node = max (set_processor)) /*e.g: largest node_id */
P *I am new coordinator®/

Figure 8. Some procedures used in the distributed voting algorithm.

change. If other node coordinators do
not receive a status message from the
C,, that is, if the C. itself failed, then
node coordinators select a new C, fol-
lowing a procedure similar to that for
selecting a node coordinator (see Fig-
ure 8). Once a new C, is selected, it
repeats the above procedure to check
for node failures.

Implementation issues. The architec-
tural support provided by the comput-
ing modules of fault-tolerant open dis-
tributed systems supports the trend
toward open distributed systems. In
FTODS, each computing module of a
node has its own operating system and a
runtime system that includes the dis-
tributed voting algorithm, the distribut-
ed node recovery algorithm, and the
monitor (to schedule tasks and switch
them between the two modes of opera-
tion, and to do other housekeeping
tasks). The fault-tolerance, concurren-
cy control, and redundancy management

58

algorithms use standard protocols and
are implemented at the application lay-
er as application service elements. In
this environment, development of reli-
able applications is significantly easier
because they are not concerned with
implementing the fault-tolerance, con-
currency, and recovery techniques; these
techniques are provided to the applica-
tions as services by an ASE such as the
CCR protocol.

We can better understand this archi-
tectural support by studying the main
steps incurred during execution of a
standard two-phase commit protocol
(such as the CCR protocol). For exam-
ple, to execute a transaction atomically,
the master node running this transac-
tion broadcasts a message (C-Begin) to
all nodes involved in the transaction
execution, indicating the beginning of
an atomic execution. Since the underly-
ing communication structure of FTODS
supports broadcasting, we expect the
transfer of the C-Begin message to be

efficient. Once the C-Begin message is
received at each slave node, the moni-
tor switches to the fault-tolerant mode
of operation, stores the system state in
the hierarchical permanent memory, and
checks the possibility of running the
actions associated with the transaction.
If an action can run successfully, the
slave node sends an “okay” message
(C-Prepare); otherwise, it sends a “fail-
ure” status message (C-Refuse).
Redundant execution of actions in
the fault-tolerant mode, use of the dis-
tributed voting algorithm with provi-
sion to recover by itself, and use of two-
level permanent memory will all
contribute to improved performance,
reliability, and fault tolerance. In the
second phase, if the master node re-
ceives a C-Prepare message from all
the slave nodes, it commits the transac-
tion by broadcasting the C-Commit mes-
sage; otherwise, it broadcasts the C-
Rollback message. Also, tasks in this
phase will complete quickly because the

COMPUTER

proposed architecture supports the
broadcast capability and the rollback
procedure.

We believe that providing architec-
tural support at the node level and using
standard protocols will significantly sim-
plify the development of reliable dis-
tributed applications, thereby making
open distributed systems an attractive
computing environment.

Reliability analysis of
FTODS

Node reliability. Assume that r rep-
resents the reliability of each processor
for a given period of time 7. This reli-
ability measure should take into account
the failures caused by hardware as well
as by software. Detailed Markovian
methods can be used to predict the com-
bined reliability measure that takesinto
consideration hardware faults and soft-
ware errors — for example, design er-
rors related to system overloads, over-
flow/underflow of queues, etc. Assume
also that a processor failure is exponen-
tially distributed with a failure rate A.
Let the number of processors in a node
be N, and f denote the number of faulty
processors at a given time ¢. Depending
on the number of faults, the distributed
voting algorithm uses different proce-
dures, as follows:

Case I:Number of faults f< [N, /2]. In
this case, a majority vote is attainable
and the results obtained by the faulty
processors can be masked out concur-
rently by the coordinator processor with-
out any extra delay.

Case 2: Number of faults |_N,,/21 <f<
N, — 1. In this case, the majority of
processors are faulty. However, there is
at least one fault-free processor that
can be identified by the diagnostic rou-
tines. This processor ensures reliable
execution of the tasks assigned to its
node, but with a time penalty that re-
sults from invoking the local diagnostic
procedures.

Case 3: Number of faults f=N,. In this
case, all processors of a node are faulty;
consequently, the node is in a failed
state. The cluster coordinator invokes
the distributed node recovery proce-
dure to start a higher level recovery
procedure, as previously described.

Node reliability can thus be defined
as the probability of the node’s being in

June 1992

either case 1 or case 2, thatis, f< N, - 1.
The expression for node reliability is
obtained by computing the probability
that at least one processor is operating
successfully and is given by

N,-1

R,(N,)=CXRy, Z (1\]/:]rN"’f(l -ryf
7=0
1)

where C denotes the coverage of the
recovery procedure, R, denotes the
reliability of the system bus, and

(7)
f
is the binomial factor and is given by

N,!
(N, = D!

In the above expression, the term
r¥a-s denotes the probability of having
N,—ffault-free processors, while (1 —r)
denotes the probability of having ffaulty
processors. The

(%)

f

denotes the number of combinations in
which there are f faulty processors cho-
sen from N, in a node. If the coverage
factor is equal to one, the node can be
viewed as a parallel redundant system
with a redundancy level of N,. Node
reliability can be evaluated as (1 —
(1 - r)*).

Nodereliability can be expressed with
respect to time, if we assume that the
processors fail according to an expo-
nential distribution function with a fail-

ure rate A. Consequently, node reliabil-
ity at a given time ¢ is given by

Ry(N,)=CxRype 3 (N)
o\ S

(exp™)" T (1-exp™)
@

Coverage C is an important parameter,
and system reliability is extremely sen-
sitive to its value. The coverage factor
reflects the system’s ability to recover
automatically from a fault once it oc-
curs during normal operation. It de-

pends on the techniques used to detect,
mask, locate, and repair faults, and to
reconfigure and recover from the ef-
fects of a failure. The methods used to
predict coverage are therefore based on
assumptions about the expected behav-
ior of faults and how they are handled
once they occur. Dugan and Trivedi®
presented several methods for predict-
ing the coverage factor for different
types of error behavior assumptions. In
FTODS, a distributed voting algorithm
is used to detect faulty processors and
tomask their errors dynamically. There-
fore, no recovery is needed as long as a
majority vote can be obtained (case 1).
Also, this algorithm uses a redundant
system bus for comparing the results
obtained by the processors. Since there
is nosingle point of failure in the FTODS
architecture and in the fault-tolerant
algorithms, the coverage C is expected
to be high; in this analysis it is assumed
tobe 1.

A node’s mean time to failure can
also be evaluated from the above ex-
pression (Equation 2) by integrating
the node reliability expression:

MTTF = [5R,

To measure the reliability improvement
as a result of introducing redundancy,
we define a measure called the reliabil-
ity improvement factor (RIF). This
measure describes the relative increase
inreliability for using N, redundant pro-
cessors to the maximal possible increase
in reliability. Let’s assume that R,(1)
denotes the simplex reliability of a node.
The maximal increase in reliability is
obtained when R,(1) is increased to 1.
The RIF for a given redundancy level
(N,) is computed as

R,(N,)-R,(1)
1-R,(1)

RIF =

Figure 9 shows the RIF obtained for
three different levels of redundancy (3,
4, and 5). In this analysis, the reliability
of a simplex bus is assumed to be a
constant and equal to 0.95, because we
are interested in studying the effect of
redundancy level on node reliability. It
is clear that more than 95 percent of
the possible reliability improvement can
be achieved when four processors are
used. However, a triple modular re-
dundancy configuration (level 3) could

59

R |]] Py
1 1 1 -

08

2 0.84 0.86 0.88 0.90 092 094 096 0.98

Processor reliability

1
1.0

be sufficient for situations in which
the processor’s initial reliability is high.
The same analysis can be used to mea-
sure the improvement in the MTTF
when different redundancy levels are
used.

Reliability analysis of an atomic trans-
action. Let T denote a transaction with
a collection of n actions, that is, T = a,,
a,,...,da, where a, represents an action
to run on a node.

The set of nodes that run the actions
of a given transaction (T) and the set of
links connecting them form a tree re-
ferred to in CCR protocol as an atomic
action tree. An AAT is assumed opera-
tional when all its components (nodes
and links) are operational.

Figure 10shows a transaction consist-
ing of three actions a,, 4,, and a, in which
each action can run redundantly on two
nodes of a cluster. In this example, ac-

60

Figure 9. The effect of redundancy level on node reliability.

tion a, can run on node x, or x,, 4, can
run on node x, or x,, and g, can run on x;
or x,. Because of this redundancy, eight
possible trees can be used to run this
transaction:

AAT, =Xy X, Xy Xp, Xy X g X X1X3Xs

AAT, =X, %), X, X Xo X Xo X1X3Xg
AAT; =Xy Xy, Xy, Xp X X, X X1X4Xs
AAT, =Xy, X, X X X Ko Xy X1X4Xg

AAT =X, X, X X, X, X X X5 XX
AAT =2, Xy, X Xp Xg X Xg X2 X3X g
AAT; =X, X, X X, Xo X Xp XpX X5
AAT g =Xy, Xy, Xy, Xp, X g X, Xp X2 X4 Xg

Transaction reliability (TR) can be
defined as the conditional probability
that at least one of these trees is opera-
tional. The literature is rich with algo-
rithms to evaluate this probability, and

if we apply the Syrel algorithm,* TR can
be given as

TR = 1y 1y 1o 70, Fe Ty o [N a5 + 1Tl

218 83
+ Nrrsqs * rirgegsqs + rrirsq,

+1arsteqigs + Farrsqigs + Naf y7s419:9s)

where g; denotes the unreliability of
node i and is equal to (1 —r,).

A transaction’s reliability can be in-
creased by introducing redundancy so
that its actions can be executed on sev-
eral processors. Redundant execution
of actions can be performed on proces-
sors located at remote nodes, all at one
node, or a combination of these two
cases. For the network shown in Figure
10, the transaction reliability is ana-
lyzed for the following three cases:

Case 1: Execution of redundant ac-
tions at remote nodes. In this case, each
node has only one processor and the
actions are executed on remote nodes.
Concurrency control and redundancy
management are complicated because
of the remote distribution of the redun-
dant computations.

Case 2: Execution of redundant ac-
tions at local nodes. In this case, each
node has four redundant processors that
can concurrently execute an action of 7.
Since all of the redundant computa-
tions run on the processors of the same
node, concurrency control and redun-
dancy management are simplified sig-
nificantly.

Case 3: Execution of redundant ac-
tions on remote redundant nodes. This
is a combination of the first two cases.

Figure 11 shows the transaction reli-
ability for these three cases. Note that
the transaction reliability for the sec-
ond case is better than that of case 1.
However, case 2 has twice as many re-
dundant processors as case 1. Further-
more, there is no significant improve-
ment in reliability for case 3 over case 2
in spite of the fact that case 3 uses twice
the redundancy of case 2. Moreover,
the algorithms needed to achieve con-
currency control and redundancy man-
agement in case 3 are more complicated
than those of case 2 because the redun-
dant actions run on both local and re-
mote nodes.

From this analysis, we can conclude
that replicating the computations local-
ly represents a cost-effective solution
that maximizes reliability and also sim-

COMPUTER

plifies the algorithms required to achieve
recovery and consistency control. In
FTODS, the computing modules are
designed to provide architectural sup-
port to run transactions in a configura-
tion similar to that described in case 2.

he computing modules of the
I proposed FTODS support an
efficient implementation of
fault-tolerant algorithms. The use of
staticredundancy within each node guar-
antees fault tolerance and reliable exe-
cution of critical tasks. Furthermore,
the use of local diagnostic routines to
identify faulty components reduces the
complexity of recovery algorithms sig-
nificantly, along with traffic on the com-
munications network, since these func-
tions are executed using the processors
available at a node. In transaction-pro-
cessing-based distributed systems, per-
manent memory is required for achiev-
ing atomic transactions. In FTODS, the
permanent memoryis designed as a two-
level hierarchy with semiconductor tech-
nology used in the first level and mag-
netictechnologyin the second. Providing
semiconductor permanent memory im-
proves performance significantly be-
cause transactions can be committed
much faster than by accessing magnetic
disks. B

References

1. J.A. Stankovic, “A Perspective on Dis-
tributed Computer Systems,” IEEE
Trans. Computers,Vol.C-33,No.12,Dec.
1984, pp. 1,102-1,115.

2. V.P. Nelson, “Fault-Tolerant Comput-
ing: Fundamental Concepts,” Computer,
Vol. 23, No. 7, July 1990, pp. 19-25.

3. Distributed Systems, S. Mullender, ed.,
Addison-Wesley, Reading, Mass., 1989.

4. A.S. Tanenbaum, Computer Networks,
Prentice Hall, Englewood Cliffs, N.J.,
1988.

5. J.B. Dugan and K.S. Trivedi, “Coverage
Modeling of Fault-Tolerant Systems,”
IEEE Trans. Computers, Vol. C-38, No.
6, June 1989, pp. 775-787.

6. S. Hariri and C.S. Raghavendra, “SYR-
EL: A Symbolic Reliability Algorithm
Based on Path and Cutset Methods,”
IEEE Trans. Computers, Vol. C-36, No.
10, Oct. 1987, pp. 1,224-1,232.

June 1992

[Bus controlter |
X

[Bus controller |

| Bus controller I

2

I

[Bus contraler |

%

[Bus controller|

X

I Bus controller

[Bus controller |

| Bus controtier |

Figure 10. An example of a transaction execution.

Redundancy level 4
and redundant action.
\Gase 3

!
0.80 ﬂ. /

0.75

Redundancy level 4
but no redundant action.
0.70 + Case 2

0.65 —

\‘Noroac.!um"ia'ni

0.60 whits
but duplicate action.
Casel

0.55 —

0.50 —~

Transaction reliability

0.45

0.40

030+

08 082 084 086 0.88 090 092 0.94 0.96 098 10

Procsssor reliability

Figure 11. The effect of redundancy level on transaction reliability.

Salim Hariri is an assistant professor in the
Electrical and Computer Engineering De-
partment at Syracuse University, Syracuse,
New York, and has worked and consulted at
AT&T Bell Labs. His research focuses on
computer architecture, distributed systems,
fault-tolerant computing, and reliability and
performance analysis of parallel and distrib-
uted systems. He is the program chair for the
First International Symposium on High-Per-
formance Distributed Computing (HPDC
1), scheduled for September 9-10.

Hariri received a BSEE, with distinction,
from Damascus University, Damascus, Syr-
ia, in 1977; an MSc from Ohio State Univer-
sity, Columbus, Ohio, in 1982; and a PhD in
computer engineering from the University
of Southern California. He is a member of
the IEEE, the IEEE Computer Society, and
the ACM.

Alok Choudhary has been on the faculty of
the Department of Electrical and Computer
Engineering at Syracuse University since
1989. His research interests include parallel
computer architectures, software develop-
ment environments for parallel computers,
and computer vision. He was a guest editor
for the February 1992 issue of Computer on
parallel processing for computer vision and
image understanding.

Choudhary received his BE in electrical
and electronics engineering from the Birla
Institute of Technology and Science, Pilani,
India. He obtained an MS from the Univer-
sity of Massachusetts, Amherst, and a PhD
from the University of [llinois, Urbana-Cham-
paign, both in electrical and computer engi-
neering. He is a member of the IEEE Com-
puter Society and the ACM.

Behcet Sarikaya is on the faculty of Bilkent
University, Ankara, Turkey, and was previ-
ously with the Department of Computer Sci-
ence and Operations Research at the Uni-
versity of Montreal. His research interests
include all aspects of conformance testing
and high-speed networks. Ile has authored
numerous published papers on communica-
tion protocols and served on the program
committees of three protocol conferences.
Sarikaya received a BSEE, with honors,
and an MSc in computer science from the
Middle East Technical University, Ankara,
Turkey, in 1973 and 1976, respectively, and a
PhD in computer science from McGill Uni-
versity, Montreal, in 1984. He is a senior
member of the IEEE, and a member of the
IEEE Computer Society and the ACM.

Hariri and Choudhary can be contacted at Syracuse University, Department of Electrical and Computer Engineering, Syracuse, NY 13244-
4100; e-mail hariri@cat.syr.edu or choudhar@cat.syr.edu. Sarikaya’s address is Bilkent University, Department of Computer Engineering
and Information Sciences, Bilkent, Ankara 06533, Turkey; e-mail sarikaya% trbilun.bitnet@cunyvm.cuny.edu.

THIRD INTERNATIONAL WORKSHOP ON
NETWORK AND OPERATING SYSTEM SUPPORT
FOR DIGITAL AUDIO AND VIDEO

November 12-13, 1992, San Diego, California

D

Sponsored by IEEE Communications and Computer Societies
In cooperation with ACM SIGCOMM, SIGOIS, and SIGOPS

CALL FOR PAPERS

4

Technological advances are revolutionizing computers and networks so as to support digital continuous video and

audio, leading to new design spaces in computer systems and applications.

Program Committee: P. Venkat Rangan (Program Chair), Sid Ahuja, Gordon Blair, Rita Brennan, S.
Christodoulakis, Flaviu Cristian, Domenico Ferrari, Riccardo Gusella, Ralf Herrtwich, Andy Hopper, Jim
Kurose, Desai Narasimhalu, Duane Northcutt, Craig Partridge, Jon Rosenberg, Jean-Bernard Stefani, David
Sincoskie, Daniel Swinehart, Stephen Casner, David Tennenhouse, and R. Popescu-Zeletin.

Relevant Areas: Multimedia Communication, Collaboration Management, Multimedia Storage Architectures,
Media Synchronization, Multimedia Programming, Operating System Extensions for Multimedia, Admission
Control and Real-Time Support, Multimedia Environments

Instructions for Submitting Papers: Authors are requested to submit a 500-2000 word position paper or

extended abstract of a full paper (in raw, unformatted text) by electronic mail to av-workshop@cs.ucsd.edu.
Attendance will be limited to about 60 active researchers. For further information, contact the Program Chair at
(619) 534-5419 or by e-mail to venkat@cs.ucsd.edu.

Proceedings will be published by Springer-Verlag, and best papers forwarded to selected journals for publication.

IMPORTANT DATES: Abstracts due: August 15, 1992, Acceptance notification: September 15, 1992,
Final paper due: October 15, 1992

