
FPGA HARDWARE SYNTHESIS FROM MATLAB
�

Malay Haldar, Anshuman Nayak, NagrajShenoyNU , Alok Choudhary and Prith Banerjee
MACH Design Systems, Inc.

Schaumberg, IL. USA.

NU Northwestern University
Evanston, IL 60208-3118

ABSTRACT

Field Programmable Gate A rrays (FPGAs) have been re-
cently use d as an e�e ctive platform for implementing many im-
age/signal pr ocessing applic ations.MATLAB is one of the most
popular languages to model image/signal processing applic ations.
We present the MATCH compiler that takes MATLAB as input
and pr oduces a hardware in RTL VHDL, which can be mapp ed
to an FPGA using commercial CAD tools. This dramatic ally
reduces the time to implement an application on an FPGA. We
present results on some image and signal processing algorithms
for which har dwar ewas synthesize d using our c ompiler for the
Xilinx XC4028 FPGA with an external memory. We also present
comp arisonswith manually designed hardwar es for the applica-
tions. Our results indic ate that FPGA hardware can be generated
automatically reducing the design time from days to minutes,
with the tr adeo� that the automatically generated hardware is 5
times slower than the manually designed hardwar e.

1. INTRODUCTION

Recon�gurable Computing is characterized by hardware
that can be recon�gured to implement speci�c functional-
ity more suitable for specially tailored hardware than on a
simple general purpose uniprocessor. Though the concept
of using FPGAs for custom computing evolved in the late
1980's, certain recen t advancements in FPGA technology
has made recon�gurable computing more feasible. Current
trends indicate that FPGAs have a faster gro wth of tran-
sistor densit y than even general processors. Newer FPGAs
such as the Xilinx V ertex serieshave a densit y of around
one-million gates which is projected to grow to ten million
gates in the next few years. This implies that more complex
designs can be put on the FPGAs. How ever, the absence of
high level design tools can stretch the design time for com-
plex designs, compromising the bene�ts of putting an appli-
cation on FPGAs. This is the principal motivation behind
pro viding a high level language such as MATLAB, C/C++,
Java for designing and implementing complex systems in
hardware. A lot of work in the research communit y has
demonstrated the potential of achieving high performance
from FPGAs for a range of applications [2]. However, per-
formance improvements from such systems depends on the
expertise of the hardware designer who must possess an ac-
curate knowledge of the underlying FPGA board architec-
ture. With new FPGA board architectures being proposed
almost every year, designs coded for a particular board has
to be rewritten for a newer architecture. Also, since it is dif-
�cult to understand the cycle-by-cycle behavior of millions
of gates spanning multiple FPGA chips, writing such codes

itself is very di�cult. Though VHDL, which is a widely used
hardware description language (HDL), gives us the ability
to design hardware at a higher level of abstraction, the lack
of e�ectiv e debugging tools make coding in such HDLs very
di�cult. Further, a new designer has to go through the ex-
tra e�ort of learning a new language. Hence, a lot of e�ort
has been made both in the industry and in academia to de-
velop a compiler that would help the designer accomplish
adequate performance improvements without the need to
be involved in complex low level manipulations.

A lot of work [9, 10, 11, 12, 13, 15, 14] has been done in
targeting existing programming languages like C, C++ and
Java as the next hardware description language. Although
C/C++ has been the popular choice as a language for syn-
thesis, our choice of MATLAB is guided by the following
factors

1. MATLAB is more intuitiv e and easier to use and learn.
It pro vides a higher level of abstraction than C, and
hence developmental time is orders of magnitude less.

2. MATLAB has a well de�ned rich set of library functions
related to matrix manipulation and signal/image pro-
cessing. Starting the hardware synthesis process from
MATLAB enables the compiler to use optimized de-
signs for these library functions. This gives an easy
w ay to reuse design.

3. Absence of pointers and other complex data structures
make optimizations easier and the compiler less error
prone.

4. Extracting parallelism from the input program is the
most critical step in synthesizing an optimal hardware.
Compilers targeting automatic extraction of parallelism
from C loops su�er from complex data dependency
analysis. Other compilers shift the burden of speci-
fying parallelism to users, and most programmers are
not comfortable with parallel programming. On the
other hand, most of the computation in MATLAB is ex-
pressed as matrix operations which are v ery amenable
to parallelization. Users can specify parallelism by
\v ectorizing" their MATLAB code, which enables them
to specify parallelism within the MATLAB framework.

5. MATLAB is a very popular language within the sig-
nal/digital processing community and our belief is that
the next generation of embedded systems will be mod-
eled in MATLAB. By providing a synthesis tool from
MATLAB to hardware, we aim to close an important
gap.

In this paper w e present a compiler framework to pro-
duce hardware described in RTL VHDL from MATLAB.
Section 2 describes the WildChild Arc hitectureon whic h

1

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

most of the our curren t syn thesized hardwares ha vebeen
tested. Section 3 gives an overview of the compilation pro-
cess. Section 4 and 5 describe the MATLAB AST and the
VHDL AST, that are two intermediate representations used
by the compiler. Section 6 gives the details involv ed in trans-
forming the MATLAB AST into a VHDL AST. In Section
7 we presen t some of our experimental results and Section
8 concludes the paper.

2. WILDCHILD ARCHITECTURE

Our MATLAB to VHDL compiler generates code for an y
FPGA board architecture, the speci�cs of which are de-
scribed in an architecture �le. Figure 1 shows the WildChild
board from Annapolis Micro Systems and is our target ar-
chitecture on whic hmost of our curren t applications are
tested. A brief description of the WildChild architecture is
given belo w.

The WildChild custom computing engine is an integrated
system consisting of the WildChild m ulti-FPGArecon�g-
urable hardware unit and a host that controls it and pro-
vides a conventional soft w are in terface to the complete sys-
tem. The WildChild FPGA unit is a VME-compatible
board that is installed in a standard chassis along with a
VME-compatible host computer. The WildChild board con-
sists of 9 FPGAs of the popular Xilinx 4000 family. Eight of
these are 4010 FPGAs with 400 CLBs (about 10000 gates)
each and are identical. The ninth is a 4028 FPGA with 1024
CLBs (about 30000 gates). The nine FPGAs are arranged
in a master-slave con�guration as shown in Figure 1. Each
FPGA on the board is connected to a pseudo dual-ported
memory, which can be accessed by both the FPGA and the
host. The memories connected to the 4028 master FPGA is
32 bits wide and contains 218 addressable locations, while
the memories connected to the 4010 slave FPGAs are 16
bits wide.

The architecture of the system enables high-throughput
systolic computation using the 36-bit bus that connects each
4010 FPGA neighbors and also to the on-board FIFOs.
There is also a crossbar netw ork that can be used to realize
an y arbitrary interconnection of the FPGAs thus enabling
irregular computations.

Figure 1. WildChild Board Architecture

3. SYNTHESIS FLOW

Figure 2 shows the overview of the synthesis process. The
fron tend parses the input MATLAB program and builds
a MATLAB AST. The input code may con tain directives
[6]regarding the types, shapes and precision of arrays that
cannot be inferred, whic hare attached to the AST nodes

as annotations. This is followed by a type-shape inference
phase. MATLAB variables have no notion of type or shape.
The type-shape phase analyzes the input program to infer
the type and shape of the variables present whos type shape
is not provided by directiv es. This is followed by a scalar-
ization phase where the operation on matrices are expanded
out into loops. In case optimized library functions are avail-
able for a particular operation, it is not scalarized and the
library function is used instead. Scalarization is follow ed b y
levelization where a complex statement is brok en down into
simpler statements. Scalarization facilitates VHDL code
generation and optimizations. Most of the hardware related
optimization are performed on the VHDL AST. A precision
inference sc heme �nds the minimum number of bits required
to represen t each variable in the AST. Transformations are
then performed on the AST to optimize it according to the
memory accesses presen t in the program and characteris-
tics of the external memory. This is follow ed by a phase to
perform optimizations related to resources present and the
opportunities of parallel execution and pipelining available.
Finally a traversal of the optimized VHDL AST produces
the output code. In this paper we restrict our focus to the
basic compiler framework which involv es transforming the
input MATLAB code into a hardware description in VHDL.
The optimizations are part of our ongoing work.

4. THE MATLAB AST

The input MATLAB code is parsed based on a formal gram-
mar and an abstract syntax tree (AST) is generated. The
detailed grammar used for MATLAB 5.2 is giv en in [7].
Figure 3 shows a graphical view of the hierarchy captured
by the grammar. An example MATLAB code and the cor-
responding AST is also shown. Certain type-shape informa-
tion can be input to the compiler with the help of directives.
The information presented by the directives are parsed by
the compiler and is used to annotate the AST. After the
AST is constructed, the compiler invokes a series of phases.
Each phase processes the AST either by modifying it or
annotating it with more information.

5. THE VHDL AST

VHDL serves as a hardware description language for sim-
ulation as well as synthesis. Most commercial tools today
support only a subset of VHDL for synthesis. For example
constructs like �le operations, assertion statements, timing
constructs are not supported by most synthesis tools. Also,
certain tools require certain speci�c coding styles if accu-
rate hardware is expected to be generated. For example,
BehavioralCompilerTM [4] from Synopsys expects the user
to specify the clock boundaries using speci�c wait state-
ments while SynplifyTM [5] from Synplicity does not re-
quire it. Since we are interested in portability and expect
the VHDL code generated by our compiler to be compati-
ble with the good commercially available high-level syn the-
sis tools, w e operate on a subset of VHDL which is sensibly
synthesized by most of the tools.

6. GENERATION OF VHDL AST FROM
MATLAB AST

It was necessary to have a VHDL AST in spite of having
an AST based on a MATLAB grammar so that not only
the �nal VHDL code generation is simpli�ed, but also that
certain hardware related optimizations like memory pipelin-
ing are made possible. These optimizations require the no-
tion of clock cycles which cannot be easily introduced in
the MATLAB AST. While generating the VHDL AST, we

2

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

Output VHDL Code

Levelization

Scalarization

Type-Shape Analysis

MATLAB AST

Input MATLAB code

VHDL AST

Precision Analysis

Memory Optimizations

Scheduling

Figure 2. Synthesis ow.

Matlab Program

Files(.m files)

List of functions

Function definitions

List of statements

(c)

statement

if for expression

constants variables

while

atom operator function calls

pc_filter = rand(63,1);
pc_filter_time = zeros9512,1);
pc_filter_frq = fft(pc_filter_time);
for i = 1:6
 pc2(i,:) = pc1(i,:)*pc_filter_freq
end;

stmt_list

stmt expression

=

pc_filter rand(,)

63 1

stmt

stmt

for_stmt

i=1:6

pc2(i,:)=pc1(i,:)*pc_filter_freq

.....................

...................

.................

.....................

(a)

(b)

Figure 3. Abstract Syntax T ree: (a) The hierarch y captured b y the formal grammar (b) A sample code
snippet (c) Abridged syntax tree for the code snippet.

3

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

assume that the corresponding MATLAB AST is already
scalarized. This is necessary as MATLAB is an array-based
language.

6.1. Scalarization of the MATLAB AST

for i = 1:n
 for j = 1 : m

 A(i,j) = B(i,j) + C(i,j);

 end;
end;

 A = B + C ;

% matrix multiplication

% a and b are matrices

scalarization

Figure 4. Example of Scalarization

Scalarization of the MATLAB AST is necessary when the
objectiv e is to perform a source-to-source transformation to
a target language that is statically typed and which only
supports elemental operations. MATLAB is an array-based
language with lots of built-in functions to support array op-
erations. Hence, to generate a VHDL AST, it is necessary
that the corresponding MATLAB AST is scalarized. But,
scalarizing MATLAB vector constructs requires an accurate
knowledge of shape and size of the arrays. MATLAB being
a dynamically typed language, does not carry explicit ba-
sic data type and shape declarations. Hence, inferring an
array's shape becomes a vital step. An example of scalariza-
tion is shown in Figure 4, where a tw o dimensional matrix
addition is scalarized. T o produce the scalarized code it is
necessary to know the dimensions of matrices A;B and C
and also their sizes (the values of m and n).

We ha veestablished a static inferencing mechanism to
establish at compile-time, what these attributes will be at
run-time. In [8] a framework is described for symbolically
describing the shape of a MATLAB expression at compile-
time using a methodology based on systematic matrix for-
m ulations. The represen tation exactly captures the shape
that the expression assumes during execution.

6.2. Levelization of the MATLAB AST

The scalarized MATLAB AST is subjected to a leveliza-
tion phase which modi�es the AST to have statements with
only three operand format (Figure 5). The adv an tageof
levelization is that the di�erent operators can be scheduled
independently, guided by the optimization algorithms. For
example the operations can be spread across di�erent states,
so that an optimal clock frequency can be obtained.

Levelization also enables optimizations like pipelining,
operator c haining, loop body scheduling to enhance the per-
formance of the output hardware. Also, since statements
having large number of operations are broken do wn to a se-
ries of statements having only one operation, resources can
be reused as these smaller statements can be distributed
across di�erent states.

Details of the mechanism of generating state machine
descriptions from loops, conditionals and function calls are
discussed in [1].

6.3. Handling Memory Accesses

Currently the compiler maps all arrays to an external mem-
ory and instantiates registers on the FPGA for scalars. The

Unlevelized

a = b * c * d + k;

j = j + a;

i = i + 1;

 t1 = b * c ;

Levelized

t2 = t1 * d;
a = t2 + k ;
j = j + a ;
i = i + 1;

state 1 :
 a = b * c * d + k;

state 2 :
 j = j + a ;

state 3 :
 i = i + 1 ;

state 1 :
 t1 <= b * c;

state 2 :
 t2 <= t1 * d;

Operations can
be scheduled
individually.

state 3 :
 i <= i + 1 ;

a <= t2 + k;
state 4 :

 j <= j + a ;

All the operation
must be scheduled
in the same state

Figure 5. Example of Levelization .

levelization phase ensures that a statement has at most one
memory access with no other associated operation. The ex-
act mechanism and signals involved in accessing the memory
is speci�ed in a �le that is read by the compiler. The com-
piler then uses this information to produce the states nec-
essary to read/write memory corresponding to each array
access that appears in the levelized and scalarized MAT-
LAB code. Figure 6 shows an example.

a[i + 1] = b + c ;

t1 = b + c ;
t2 = i + 1;
a[t2] = t1 ;

Levelization when state 1 => t1 <= b + c ;
 next_state <= state 2 ;
when state 2 => t2 <= i + 1 ;
 next_state <= state 3 ;
when state 3 => mem_request <= ’0’ ;
 mem_write_enable <= ’0’ ;
 next_state <= state 4 ;
when state 4 => mem_address <= Base_a + t2 ;
 mem_data_out <= t1 ;
 next_state <= state 5 ;
when state 5 => if(mem_grant = ’0’) then
 next_state <= state 6;
 else
 next_state <= state 4 ;
 endif;

(a) (b)

Figure 6. (a) Array statement in MAT-
LAB and it's levelization (b) VHDL corre-
sponding to the MATLAB code. The signals
mem request;mem data out;mem grant;mem write enable
and their particular states and assignments are spec-
i�ed in an external �le read by the compiler. Base a
is a constant denoting the starting address of the
array a in memory.

A simple tree traversal of the VHDL AST then produces
the output VHDL code.

7. EXPERIMENTAL RESULTS

In this section we present some of our experimental results.
The benc hmarks presented include matrix m ultiplication,
FIR �lter, sobel edge detection algorithm, average �lter and

4

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

Table 1. Experimental Results : T - Execution time in secs. F - Synthesized frequency in MHz. S - Number
of states in the inner most loop. Manual : Hand optimized designs. Compiler : Compiler generated designs.

Matrix Mult. Sobel FIR Motion Est. Av erage Filter
T F S T F S T F S T F S T F S

Manual 4.6 19.9 8 0.06 18.6 14 16.35 20.1 10 3.28 15.0 11 14168.3 13.1 6
Compiler 19.3 9.8 23 0.72 9.9 116 51.98 9.8 23 6.79 17.1 29 59132.7 14.2 32

the motion estimation algorithm. The matrix multiplication
algorithm multiplies t w oinput matrices. Matrix multipli-
cation is at the core of many signal and imageprocessing
algorithms. FIR (Finite Impulse Response) �lter is very im-
portant in the signal processing domain as it suggests a sys-
tem that passes certain frequency components and rejects
all other frequencies. Sobel edge detection algorithm takes
an input image and performs a tw o dimensional linear con-
volution with 3�3 kernels. The average �lter takes an input
image and for each pixel of the image computes the aver-
age v alues of the pixels in the neighborhood. A comparison
is then made betw een the pixel and the average value. The
motion estimation algorithm is used to low er the bandwidth
requirement in video transmission by comparing blocks of
the current frame with blocks of the previous frame and se-
lecting a best match. We have chosen these applications as
benc hmarks as they are represen tativ eof the applications
that are most suitable for implementation in hardware.

For each benc hmark, a description of the algorithm in
MATLAB w as written and passed through the MATCH
compiler. The hardware generated was v eri�ed in t wo ways

� By simulating the generated hardware using a VHDL
simulator and correlating the results with the output
of the algorithm executed in the MATLAB interpreter.

� By manually designing hardwares for eac h of the bench-
marks and correlating the output of the compiler gen-
erated hardware with the manually designed ones. For
this purpose the hardwares w ere run b y con�guring the
X C4028 FPGA.

0

2

4

6

8

10

12

Matrix Mult Sobel FIR Motion Est. Average Filter

Figure 7. Ratio of the execution times of the com-
piler generated hardwares to the hand optimized
hardwares.

The manually designed hardwares were highly optimized
for performance. A comparison of the performance of the
compiler generated hardware with the manually designed
hardware indicates the tradeo� involved betw een design
time and design qualit y. It also gives an idea about the

performance gains expected by implementing optimization
techniques in the compiler. Table 1 shows a summary of the
experimental results. Figure 7 shows the ratioof the exe-
cution times of the compiler generated hardwares with the
manually designed ones. As can be seen, the compiler gen-
erated hardwares w ere on the average 5 times slower than
the manually optimized designs. The total execution time
to complete a function is given by the number of state tran-
sitions required to complete the function times the clock
period. The total number of state transitions required to
complete a function is dominated by the number of states
in the loop bodies, as most of the time is spent in executing
loops. Figure 8 shows the ratio of the number of states in the
inner most loop for the compiler generated and the manu-
ally designed hardware for each benchmark. On the average,
the number of states produced by the compiler were 3 times
more when compared to manually designed hardware. The
largest con tribution to increased states came from memory
access statements. The compiler generated a sequence to
4 statements for every memory read and a sequence of 3
statements for every memory write. On the other hand, the
memory accesses in the manually designed hardwares w ere
pipelined, e�ectiv ely making memory accessestak e only 1
cycle. Also some of the memory accesses w ere eliminated
in manually designed hardwares b y reusing data accessed in
previous iterations. The e�ect is most pronounced in the
sobel benchmark, whic hhas lots of memory reads. Auto-
matically pipelining the memory accesses and caching data
fetched require sophisticated data and control ow analysis
and is the focus of our future research.

0

1

2

3

4

5

6

7

8

9

Matrix Mult Sobel FIR Motion Est. Average Filter

Figure 8. Ratio of the n umber of states of the in-
nermost loop of the compiler generated hardwares
to the hand optimized hardwares.

The second factor which contributes to the increased ex-
ecution time of compiler generated hardware is the larger
clock period. The clock period is dictated by the place and
route CAD tools. The synthesized clock period cannot be
directly controlled by the compiler, it can only be set as
a target. Ho wever, the amount of resources used on the

5

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

FPGA has a high correlation with the synthesized clock
period, whic hcan be inuenced by the compiler. On an
average, the compiler generated hardware used twice the
resources used by manually designed hardware. Figure 9
shows the synthesized cloc k periods for the compiler gener-
ated and manually designed hardware for eac h of the bench-
marks. The low er clock period (and low er resource utiliza-
tion) for the manually designed hardware w as due to the
fact that manually designed hardware included clever reuse
of computation and resources. Again, some complex com-
piler analysis is required to match the manually designed
hardwares.

The main advan tage of the compiler is that it reduces de-
sign time from months to minutes, and enables much more
complex designs by pro viding a higher level of abstraction.
The focus of our future w ork is to reduce the number of
clocks required and increase the synthesized frequency so
that the execution time is comparable to manually opti-
mized designs.

0

5

10

15

20

25

Matrix Mult Sobel FIR Motion Est Average Filter

Hand Compiler

Figure 9. The synthesized frequency from the place
and route tools. The frequencies are in MHz.

8. CONCLUSIONS AND FUTURE WORK

In conclusion, we have presen ted a compiler that takes al-
gorithms described in MATLAB as input, and produces a
hardware description in VHDL for the algorithm, suitable
to run on an FPGA with an external memory. We have
presen ted methodologies to generate hardware correspond-
ing to high level constructs presen t in MATLAB such as
loops, conditional statements and function calls. We have
demonstrated the e�ectiveness of our compiler by generating
hardware for some signal and image processing algorithms
described in MATLAB. The generated hardwares ha ve been
veri�ed functionally by running on an Xilinx XC4028 FPGA
with an external memory.

The primary focus of our ongoing research is to improve
the quality of the designs produced by the compiler. In this
direction we are targeting some critical optimizations :

� Pipelining : Our attempt is to pipeline the loops in the
input program and pipeline the accesses to the external
memory.

� Cac hing : Synthesize small on-c hip caches on the
FPGA to reduce tra�c to the external memory.

� Memory Packing : All accesses to the memory fetches
32 bits. For data t ypes that require 16 or less bits, pack
more than one data accesses into one memory access.

� Precision Analysis : Find the minimum number of bits
necessary to represent a variable and produce hardware
accordingly.

� P arallelizing : Automatically parallelizing the input
program and map it to multiple FPGAs.

With these optimizations w eexpect that the hardware
generated by the compiler will be very close to manually
designed hardware in performance.

REFERENCES

[1] M. Haldar, A. Nayak, N. Shenoy, A. Choudhary and P. Ba
nerjee,FPGA Hardwar e Synthesis from MATLAB, Techinal
Report, Northw esetrn University, September 2000.

[2] Villasenor, J., Mangione-Smith, W. H. Con�gurable Com-
puting, Scienti�c American, June 1997, pp. 66-71

[3] P eter J. AshendenThe Designers's Guide To VHDL

[4] Behavior al Compiler Coding Styles, Synopsis Inc.

[5] Synplify and Synplify Pro Reference Manual, Synplicity Inc.

[6] Prith Banerjee, Nagraj Shenoy, Alok Choudhary, Scott
Hauck, Chris Bachmann, Malay Haldar, Pramod Joisha,
Alex Jones, Abhay Kanhare, Anshuman Nayak, Suresh
Periyacheri, MikeWalkden and David Zaretsky ,A MATLAB
Compiler for Distributed, Heter ogeneous, R econ�gurable
Computing Systems , Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM'00,
April 2000.

[7] Pramod G. Joisha, Abhay Kanhere, Prith viraj Banerjee,
U.Nagaraj Shenoy and Alok Choudhary, The Design and
Implementation of a Parser and Scanner for the MATLAB
Language in the MATCH Compiler , Technical Report, Cen-
ter for Parallel and Distributed Computing, North w estern
Univ ersity, CPDC-TR-9909-017, Sep. 1999.

[8] P .G. Joisha, A.Kanhere, U.N. Sheno y, A. Choudhary, P .
Banerjee A nA lgebraic Framework for A rray Shape Infer-
encing in MATLAB

[9] A. Duncan, D. Hendry, and P. Gray, A n Overview of
the COBRA-ABS High Level Synthesis System for Multi-
FPGA Systems, Proc. Field-Programmable Custom Com-
puting Machines, April 1998.

[10] J. Babb, M. Rinard, C.A. Moritz, W. Lee, M. Frank, R.
Barua, S. Amarasinghe Parallelizing Applications into Sili-
con, FCCM 1999

[11] G. De Micheli, Har dware Synthesis from C/C++ Models,
Proc. Design, Automation and Test in Europe Conference
and Exhibition, March 1999.

[12] J. Hammes, B. Rinker, W. Bohm and W. Najjar, Cameron:
High Level Language Compilation for R econ�gurable Sys-
tems, Proc. P arallel Arc hitecturesand Compilation Tech-
niques (P A CT'99), October 1999.

[13] M. Gokhale, J. Stone, J. Arnold and M. Kalinowski, Stream-
Oriente dFPGA Computing in the Streams-C High Level
Language, Proc. Field-Programmable Custom Computing
Machines, April 2000.

[14] R. Helaihel and K. Olukotun, Java as a Speci�cation
Language for Hardware-Softwar e Systems, Proc. Interna-
tional Conference on Computer-Aided Design, pp. 690-697.
No vember 1997.

[15] B. L. Hutchings and B. E. Nelson,Using General-Purpose
Pr ogramming Languages for FPGA Design, Proc. 37th De-
sign Automation Conference, June 2000.

6

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

