
Match Virtual Machine : An Adaptive Runtime System to execute

MATLAB in Parallel

Malay Haldar, Anshuman Nayak,Abhay Kanhere,

Pramod Joisha, Nagaraj Shenoy,Alok Choudhary

and Prithviraj Banerjee

Center for Parallel and Distributed Computing

Northwestern Universit y

Evanston, IL 60208-3118

Abstract

MATLAB is one of the most popular languages for desk-

top numerical computations as well as for signal and im-

age processing applic ations. Applying parallel processing

techniques to improve performance of MATLAB codes has

been the goal of many recent works. Most current frame-

works require the user to specify parallelism and/or in-

formation regarding type/shap eof the variables, thereby

sacri�cing the user friendliness which is one of the most

popular MATLAB featur es. Other systems work on a re-

stricted subset of MATLAB, thereby limiting the class of

applic ationsMATLAB can supp ort. We present a run-

time system capable of executing MATLAB code in par-

allel without any user intervention. The runtime system

performs automatic parallelization and typ e/shap einfer-

ence of the code at runtime. A unique feature of the

runtime system is its capability to automatically adapt

to changes in the underlying architecture, making it par-

ticularly useful for systems where predicting p erformance

statically is di�cult. We present exp erimental results ob-

taine d for the runtime system running on SGI Origin2000

shared memory multiprocessor.

1 Introduction

With 400; 000 users in over 100 countries, MATLAB
is arguably one of the most popular languages for
desktop numerical computing as well as image and
signal processing. MATLAB is a high level lan-
guage supporting real and complex matrices as ba-
sic datatypes. Thus a few line of MATLAB code can
substitute hundred lines of C or Fortran codes. Along
with this, the user friendly syntax of MATLAB and
high qualit yof underlying numerical libraries have
contributed much to the popularity of MATLAB. Be-
cause of the computationally intensive nature of most
numerical algorithms, MATLAB seems to be an ideal
target for parallelization. Current approaches to par-
allelizing MATLAB can be categorized into three ba-
sic strategies :

� Parallelizing Libraries ([10]) : This approach
attempts to parallelize the underlying libraries
used by MATLAB. The limitation of this ap-
proach is that parallelism is restricted within
the individual libraries and higher parallelism
present at the algorithm level (e.g. task par-
allelism) cannot be exploited.

� Compiling ([8],[5],[13],[9],[14],[15],
[11],[28],[29],[16]) : This approach attempts to
compile the MATLAB code to another language
such as C/C++, Fortran, HPF etc. These tar-
get languages are considered more amenable to
optimizations than MATLAB which is an inter-
preted language. This approach how ev er su�ers
from complex type/shape analysis issues. Also
the parallelizing strategies at compile time de-
pend on static estimates of execution time of the
functions and worst case behavior of control
ow
in the code. These factors may be sub-optimally
handled through a compiler in situations where
obtaining accurate estimates of execution times
for functions is di�cult.

� Parallel Interpreter ([18], [12], [17],[19]) : This
approach involves adding user friendly paralleliz-
ing commands to the interpreter. The inter-
preter is modi�ed to in terpret these commands
and execute functions in parallel. The shortcom-
ing of this approach is that the user is required to
know how to parallelize his MATLAB code. This
may not be a feasible solution for most users.

In this paper we present a framework for executing
MATLAB code in parallel without any user interven-
tion. Thus a MATLAB code that runs on an inter-
preter can be run on multiple processors without any
modi�cation/addition to the code. The runtime sys-
tem was developed as part of the MATCH (MATlab
Compiler for Heterogeneous adaptive computing sys-
tems) project at Northw estern University [5], and is
called the MA TCHVirtual Machine (MVM). The
MVM models the behavior of an out-of-order mi-

1

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

croprocessor in software. The MVM relies on run-
time data dependency analysis to discover task paral-
lelism. Data parallelism is exploited by e�cient data
parallel libraries. The scheduling and allocation deci-
sions needed for mapping independent tasks on pro-
cessors are tak en at run timebased on estimates of
execution time of functions. On one hand the MVM
does not require the user to specify any directives re-
garding type/shape or parallelization, thus preserv-
ing the user friendly characteristics of MATLAB. On
the other hand it greatly simpli�es the compiler since
no type/shape analysis is required at compile time.
Note that the MVM represents a concept and not nec-
essarily any particular implementation. The back end
of the MVM can be tailored to run MATLAB code on
a variet y of parallel and heterogeneous architectures.
Figure 1 gives an overview of the framework.

The rest of the paper is organized as follows - Sec-
tion 2 describes an overview of the MVM archi-
tecture, therun time system and an associated com-
piler. Section 3 deals with some experimental re-
sults obtained for an implementation of the MVM on
SGI Origin2000. Section 4 discusses future exten-
sions and Section 5 presents some conclusions of the
present work.

2 Overview of the MATCH

Virtual Machine

In the MVM framework, the task of executing MAT-
LAB code in parallel is broken down into two steps
- (1) Compiling the given MATLAB code to MVM
assembly instructions, follow ed b y(2) Executing the
MVM assembly instructions in parallel by data de-
pendency analysis on the instructions at runtime.
First we describe the architecture of the MVM which
models a contemporary high performance micropro-
cessor in software. MVM views the di�erent compo-
nents of a multiprocessor system as functional units
on which functions (such as �lter,�t etc) can be exe-
cuted. The scheduling and allocation of the instruc-
tions are dependent on cost estimates of executing
the instructions which can be modi�ed during execu-
tion. Next w e describe a compiler that takes MAT-
LAB code as input and compiles it to the MVM as-
sembly , ready for execution by the MVM.

2.1 The MVM Architecture

The MVM simulates the behavior of an out-of-order
microprocessor execution core. The input to the
MVM is an executable written in the MVM assem-
bly language. Each of these assembly instructions

may represent functions/operations present in MAT-
LAB (e.g. �t, * etc). In addition, there are other
instructions such as control
o w instructions (jump
), scalar comparisons (set-less-than, set-greater-than
) etc that are necessary for handling arbitrary data
and control
ow. The output of the MVM is the re-
sult obtained by executing the input executable code.

T ypically, the MVM runs on a processor that has
the ability to initiate execution of functions on other
processors in the multiprocessor system. Executing
an MVM assembly instruction involves initiation of
execution of the function by the MVM and collecting
bac kthe results. MVM primarily relies on e�cient
libraries on the di�erent components of the multi-
processor system (which may be heterogeneous) to
execute the functions. How ev er,if the computation
involv ed in executing an instruction is very small (like
scalar operations, jumps etc.), the instructions are ex-
ecuted locally by the MVM itself, without using the
remote execution mechanism.

Figure 2 sho ws the MVM architecture. Conceptu-
ally , the MVM accesses two memories - the Instruc-
tion Memory and the Data Memory. The Instruction
Memory is an array of in tegerswhic h stores the in-
put executable in consecutive locations of the array.
The Data Memory is an array of void pointers that
may point to the results of function execution. The
pointed data may be of any type/shape. The neces-
sary type/shape information is tagged on to each en-
try of the Data Memory. T ypically, the pointed data
are matrices stored in column major format with the
tags indicating their dimension, bounds, type, preci-
sion etc. Note that both the Instruction Memory and
the Data Memory are abstract data structures of the
MVM, and not any actual physical memory.

The MVM maintains a window of instructions that
contains a setof instructions that theMVM is con-
sidering to execute at any point of time. The instruc-
tion window is �lled by fetc hing instructions from the
Instruction Memory. The location in the Instruc-
tion Memory from where the next instruction is to
be fetc hed is pointed b y the Fetch Program Counter
of the MVM. In addition, the MVM has an Exe-
cute Program Counter which points to the location
in the Instruction Memory until which all instruc-
tions have been successfully completed and commit-
ted. The MVM �rst �nds the instructions within the
window that have all the variables they use ready i.e,
all their operands have been computed correctly by
some previous instructions. Note that some instruc-
tions have no operands that they read, and therefore
are always ready for execution. Once all such instruc-
tions are identi�ed, the MVM starts the execution of
these functions on available resources. The mapping

2

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

MATLAB Code

a = rand(512);
b = fft(a);

MVM Compiler

AST Construction
AST TRaversal

MVM Assembly Code

:
Rand a 512
Fft b a

MVM Assembler

Assembling

MVM Runtime System
Data Dependency Analysis

Scheduling
Allocation
Execution

::

 21.2 3.0 0.8 }

a = { 12.7 32.2 9.6 ,

:

Input MATLAB Code
Execution Result of

MVM Executible Code
1F 29 0C 11 38 A6

Figure 1: Overview of the Match Virtual Machine framework.

Execute Program Counter

Instruction
Fetch

Insruction Window

State

Decode

Instructions Other info

Resource Allocation Chart

Schedule

and

Spawn

Processes

Spawned Process

Spawned Process

Instruction Memory Data Memory

Scheduler

Fetch Program Counter

Figure 2: The MVM Architecture

of instructions to resources is dictated by the cost
estimates of executing the function on di�erent re-
sources and the scheduling algorithm used. Results
from the function execution are written into the Data
Memory along with all necessary type/shape informa-
tions. Completed instructions are removed from the
instruction window and new instructions are fetched.
The scheduling algorithm is repeatedly applied to the
window until all instructions are executed. Note that
if the MVM identi�es t w o instructions both of which
ha ve all their operands ready, and there are tw o re-
sources that can execute these tw o instructions, then
the MVM can start executing both instructions si-
multaneously. This is the basic mechanism by which
the MVM exploits parallelism. It should be noted
that this scheme is suitable to exploit only task par-

allelism. T o exploitdata parallelismMVM relies on
libraries written is a data-parallel manner. Certain

concepts like jump prediction,register renaming etc
have been borro w edfrom typical high performance
microprocessor architectures to further improve the
performance of the MVM. The jump prediction, reg-
ister renaming and data parallel aspects of MVM are
discussed in detail in [2, 1]. A brief summary of the
steps of execution are as follows :

� Fill Window : This step attempts to �ll the in-
struction window by fetching instructions from
the Instruction Memory. If a branch instruction
is encountered then the outcome of the branch is
predicted. The fetched operands are renamed.

� Schedule : This step involves �nding the instruc-
tions in the instruction window that have all the
variables they use already computed. These in-
structions are marked \ready" and are consid-
ered for allocation.

3

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

� Allocate : The set of ready instructions are
mapped on to the set of available resources for
execution. Execution of the mapped functions
are initiated after mapping. A resource becomes
unavailable once a function has been assigned to
it. It becomes available after the completion of
the function.

� Commit : An instruction is committed i.e, the
Execution Program Counter of the MVM is ad-
vanced beyond the instruction when the execu-
tion of the instruction is complete and all prior
instructions have been committed.

The above steps are repeated until the execution
of the input to the MVM is complete. Thus, the
MVM fetches instructions and commits them in-

order. How ev er, the execution and completion of the
instructions may be out-of-order. T o expose more
parallelism, MVM uses techniques such as jump pre-
diction and variable renaming [4], [2]. These opti-
mizations lead to dramatic increase in performance
of the MVM.

2.2 Allocation Algorithms

As mentioned in Section 2.1, after instructions ready
for execution have been identi�ed, the instructions
are mapped onto resources based on the their ex-
pected time to completion and the allocation algo-
rithm used. Three di�erent allocation algorithms
ha vebeen implemented in the MVM. The purpose
here is not to suggest a best allocation algorithm for
the MVM framework, but to investigate the e�ect of
di�erent allocation algorithms. The three allocation
algorithms implemented are :

� Arbitrary : Given a set of instructions ready to
execute and a set of resources capable of execut-
ing these instructions, the arbitrary scheduling
algorithm assigns instructions to the resources
without taking in to account any cost metric.
This algorithm is extremely fast and does not
require an y kind of cost estimation. How ev er,
given heterogeneity of resources and di�erent
computational needs of di�erent functions, arbi-
trary sc heduling algorithm may not be the best
choice.

� Shortest Job First : The shortest job �rst
(SJF) algorithm �nds the instruction that takes
the minimum time among all ready instructions
considered over all available resources. The in-
struction is then mapped to the corresponding
resource.

� Longest Job First : The longest job �rst (LJF)
algorithm �nds the instruction who's smallest
expected execution time is largest among all
ready instructions considered over all available
resources.

The mapping problem with the objective of �n-
ishing all the functions in least time possible has
been pro vento be NP complete [22]. T ypically,
greedy heuristics are used to solve the scheduling
problem where schedules are produced at runtime
[20], [21], [23].

2.3 Cost Estimation

The allocation algorithms described in Section 2.2
depend on the cost estimates for the instructions.
T ypically these costs are expected time to complete.
Since in MVM the scheduling decisions are taken
at runtime, the cost estimates can be modi�ed and
hence adapted during runtime. The cost estimation
algorithm takes the function, the operandsizes and
resource as input and returns an estimate of the time
it will take to complete the function on the resource.
The algorithm can take into consideration the valid-
ity of its earlier predictionsand can modify accord-
ingly . Also it is easy to extend the cost estimation
algorithm to take into account various other factors
a�ecting the execution time of the functions. For ex-
ample, if the computational resources consists of a
cluster of w orkstationshared by users, the time to
execute a function on a resource depends on the cur-
ren t load on the w orkstation. The cost estimation
algorithm can be modi�ed to take into account these
factors to give better estimations, which results in a
more meaningful schedule. Note that initial estimates
are provided by the MVM based on some static es-
timates. A typical compiler w oulduse these static
estimates for scheduling the complete program. The
MVM how ever, can modify these estimates as the ex-
ecution proceeds.

2.4 Compiling to the MVM

One of the main advantages of the MVM is the ease
of compilation to it. The compilation process just
transforms the MATLAB code to MVM assembly in-
structions that is simple to handle at runtime and
does not add any information or optimizations. The
�rst step involv ed in compilation is parsing the input
MATLAB program based on a formal grammar and
building an abstract syntax tree. The grammar used
for MATLAB 5.2 isgiv en in [7]. As the code com-
piled for the MVM does not have type/shape infor-
mation, typical type shape analysis methods required

4

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

at compile time are not needed. This reduces the
complexity of the compiler to a great extent. Also,
the MVM makes the parallelization and scheduling
decisions automatically at run time. Hence typical
parallelization annotations required in other frame-
w orks are also not needed and the user is not required
to know parallelizing strategies. A simple traversal of
the abstract syntax tree is used to produce the code.
It is assumed that for all operations and functions
present in the input MATLAB program, there exists
at least one library function on one of the components
of the multiprocessor system. Exceptions are scalar
operations which have corresponding operators in C.
Details about code generation can be found in [1].

3 Experimental Results

3.1 Experimental Environment

The results presented in this section are for the MVM
running on an 8 processor SGI Origin2000 shared
memory multiprocessor. Each of the eight proces-
sors is a 64-bit MIPS R10000 225MHz processor with
32Kb of primary cache. The benchmarks used in-
clude the image correlation benchmark (Figure 3)
and synthetically generated benchmarks. The outer
loop of the image correlation benchmark simulates
the case where w e are correlating a stream of im-
ages. The syn theticbenchmarks w eregenerated by
a tool that can be used to generate MATLAB codes
with desired characteristics. The tool tak es depen-
den t steps, function mix, parallelism, size of the met-
rics etc as expected statistical averages and produces
MATLAB codes ha ving those characteristics. The
principle objective of the experiments w as to demon-
strate that if the input codes had parallelism, then
the MVM framework's abilit y to exploit the paral-
lelism was comparable to that of hand optimized ver-
sions.

3.2 Instruction Window Size

Figure 4 shows the variation in execution time with
varying instruction window sizes and number of pro-
cessors for the image correlation benchmark using ar-
bitrary scheduling. As seen the speedups saturate be-
yond 3 processors for an instruction window size of
32 instructions. How ev er, for an instruction window
of 64 instructions, we continue to get speedups till 7
processors. This con�rms the fact that a larger in-
struction window helps in exposing more parallelism,
and w eare able to employ more processors usefully
to get better speedups.

for i = 1:10

a=rand(512);
b=rand(512);
a1=�t(a);
b1=�t(b);
c1=a1*b1;
d =i�t(c1);
end;

ASSIGNS iters 10
ASSIGNS loops 0
ASSIGNS one 1

>> for loop1 RAND a 512
RAND b 512
FFT1 a1 A
FFT1 b1 B
MATMULT c a1 b1
IFFT d c
ADDS loops loops one
SUBS over iters loops
JNZ over for loop1
END

Figure 3: The Image Correlation benchmark and the
corresponding MVM assembly code generated.

1 2 3 4 5 6 7 8

128
64

320

10

20

30

40

50

60

Time (sec)

Processors

window size

Figure 4: Execution times for Image Correlation
benchmark with arbitrary scheduling. V ariation with
number of processors (1 to 8) and instruction window
size (32; 64 and 128). Times are in seconds

3.3 Branch Prediction

T o illustrate the e�ectiveness of branch prediction
mechanism w echoose the code sho wnin Figure 5.
Suc h loops are typical in iterative solvers.

Figure 5 shows the code that is run with and with-
out the branch prediction mechanism. In tuitiv ely,
without branch prediction, w ecan exploit the par-
allelism present within a basic block only. This may
sev erely limit the parallelism available if the basic

5

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

mat1=rand(512);
mat2=rand(512);
while(mat1 > mat2)

a1 = rand(512);
a2 = rand(512);
mat1 = a1*a2;
a1 = rand(512);
a2 = rand(512);
mat2 = a1*a2;

end;

Figure 5: MATLAB code to emphasize the branch
prediction scheme.

blocks are small and even increasing window sizes will
be unable to uncover an y more parallelism.Most of
the performance comes by predicting branches that
capture the loops in the input MATLAB code. Pre-
dicting these branches has the e�ect of unr ollingthese
loops, exposing more parallelism. T able 1 shows the
execution times with and without the branch pre-
diction mechanism. The wbp column is for \with
branch prediction" and wobp column is for \without
branch prediction". As seen, neither increasing the
number of processors nor increasing the window size
improves performance in the absence of branch pre-
diction. Whereas with branch prediction, these pa-
rameters show considerable increase in performance.
Note that w eha vechosen the code particularly to
emphasize the importance of branch prediction.

3.4 Overheads

In this section we address the concerns regarding the
overhead theMVM introduces. T able 2 shows the
execution times of 4 synthetic benchmarks on MVM
compared with the best manual approach. The best
manual approach involv es �ndingan optimal sched-
ule for the benchmark and hand coding a parallel C
program for it. The overheads are about 15%.
In Table 3 w eshow the execution time for exe-

cuting the code sho wn in Figure 6, for increasing
values of N . The results are for the MVM running
on an Origin 2000 against compiled C code. As can
be seen, beyond matrices of size 256, the performance
of MVM approaches the performance of an equivalent
compiled C code. Combined with the fact observed
previously that the MVM produces near optimal par-
allelization, w econclude that the overheads associ-
ated with MVM is quite low. In particular, the MVM
can give performance within 10% of the best manual

T able2: Comparison of execution times for 4 syn-
thetic benchmarks. The execution times on the MVM
are compared against hand coded C versions of the
benchmarks with optimal scheduling. Times are in
seconds.

Benchmarks
Platforms Synth1 Synth2 Synth3 Synth4
C Code 1.43 1.21 1.26 1.35
MVM 1.67 1.27 1.43 1.55
Overhead 17% 5% 13% 16%

approach. F or the image correlation benchmark the
best manual approach achieved an execution time of
26:86secs, whereas the MVM achiev ed an execution
time of 28:12secs. Note that the manual approach in-
volv es detailed analysis of the algorithm and tedious
programming e�ort, whereas the MVM does not re-
quire anything beyond the MATLAB description of
the algorithm.

tic;
N=4;
a=ones(N);
b=ones(N);
c=a*b;
toc;

Figure 6: MATLAB code to determine the MVM
overhead.

T able 3:Overhead of the MVM : Comparison of exe-
cution times of code shown in Figure 6 when run of
the MVM with 1 processor against compiled C code,
for increasing matrix sizes. Times are in seconds.

Matrix Size (N)
Platforms 16 32 64 128 256 512 1024
Compiled C Code 0.00 0.00 0.01 0.05 0.43 3.29 28.21
MVM 0.00 0.00 0.01 0.06 0.44 3.33 28.32

6

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

Table 1: Image Correlation on MVM running on Origin2k with branch prediction (wbp) and without branch
prediction (wobp). The scheduling algorithm is arbitrary. Times are in seconds.

Number of processors
Window 1 2 3 4 5 6 7
size wbp w obp wbp wobp wbp wobp wbp w obp wbp w obp wbp wobp wbp w obp
32 33.04 35.01 16.63 17.01 13.41 16.16 10.92 18.54 7.69 18.65 6.87 16.30 7.51 17.82
64 33.88 35.22 17.48 17.05 13.80 16.17 13.34 17.38 7.04 17.88 6.95 17.50 7.01 17.67
128 35.01 35.20 20.20 17.25 13.08 17.01 10.14 17.95 7.89 18.23 6.83 17.29 6.99 17.11

4 Future Work

4.1 Cluster Computing

With falling latencies and growing bandwidth of net-
w orks, clusters of computers have become viable al-
ternatives to super computers of the past. Also these
clusters are cost e�ective and widely available. Such
a cluster may be constructed by utilizing the idle time
of workstations. Projects like the Condor [25], the U.
C. Berkeley NOW [26], Beowulf [27], etc., pro vide a
w ealth of information. In suc h a scenario, the MVM
design seems very attractive. The fact that the MVM
makes all the scheduling and allocation decisions at
runtime enables it to handle varying number of com-
putational resources with varying loads. In the case
where resources become unavailable, all that needs
to be done is that the resource has to be marked un-
available. When the resource becomes available the

ag can be turned on to indicate the same. No other
changes are necessary. This idea can be extended to
handle fault tolerance where some of the resources
can go down while executing an instruction. In such
a case, the instruction can be restarted at a di�er-
en t resource after cleaning up the threads spa wned
earlier to execute the instruction. Handling all these
issues through a compiler is more complex.

4.2 Scheduling Algorithms

We ha veimplemented a few scheduling algorithms
in the MVM scheme. The performance and applica-
bilit y of other scheduling algorithms present in the
literature ([20], [21], [23]) is an interesting research
issue. The scheduling algorithms presented in this
paper view the time to spawn a function on a remote
platform, execute the function and get back the result
as one composite time. Separating the di�erent com-
ponents and designing scheduling algorithms to opti-
mize performance by overlapping thedi�erent com-
ponents is an interesting problem. Along this line, a
further optimization is to avoid collecting back inter-
mediate results after the completion of each function,

and do a series of operations before collecting the re-
sult back. Recon�gurable components are predicted
to be an important part of future heterogeneous sys-
tems. Designing scheduling techniques to exploit re-
con�gurability e�ectively is another interesting issue.

4.3 Estimation Techniques

The MVM provides a framework to experiment with
a variet y of cost estimation techniques. Currently
substantial literature exists on obtaining costs of
functions [24]. Investigatingtechniques to dynam-
ically �nd the cost estimates is an interesting prob-
lem.

5 Conclusions

We have presented a new framework to execute MAT-
LAB in parallel. The framework involves compil-
ing MATLAB to an abstract machine (called the
MATCH Virtual Machine) that does runtime depen-
dency analysis and allocation, much like a modern
high performance microprocessor. The framework
does not require any user interven tion to execute the
MATLAB code in parallel. Since most of the anal-
ysis and allocation is done at runtime, the compiler
is highly simpli�ed and no compile time type/shape
analysis or data dependency analysis is needed. The
framework is capable of exploiting both task and data
parallelism and can adapt to changes in the charac-
teristics of the underlying multiprocessor system it is
running on. An implementation of the framework on
SGI Origin2000 shared memory multiprocessor indi-
cate that performance within 15% of hand optimized
and parallelized code can be obtained. The present
w orkalso opens in teresting researc h avenues in in-
vestigating the adaptation of the framework to dif-
feren tmultiprocessor systems and in designing new
scheduling/allocation strategies that the framework
demands.

7

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

References

[1] M. Haldar, A Library based MATLAB Compiler and

R untime System for Adaptive Heter ogeneous Platforms,

M.S Thesis, Northw estern University, Dec. 1999.

[2] M. Haldar, A. Nayak, A. Kanhere, P. Joisha, N. Shenoy,
A. Choudhary and P. Banerjee, Match Virtual Machine

: A n A daptive R untime System to execute MATLAB

in Par allel, Technical Report No.CPDC-TR-2000-05-006,
ECE Department, North w estern University, May 2000.

[3] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, Y.
A. Li, Heter ogeneous Computing, \Handbook of Parallel
and Distributed Computing", A. Y. Zomaya Editor, pp.
725-761, McGraw-Hill, New York, NY, 1996.

[4] J. L. Hennessy, D. A. Patterson, \Computer Architecture:
A Quantitative Approach," Morgan Kaufmann Publish-
ers,Inc., 1996.

[5] P . Banerjee et al,A MATLAB Compiler for Distributed,

Heter ogeneous, R econ�gur able Computing Systems, Field
Programmable Custom Computing Machines, F CCM'00,
April 2000.

[6] P . Joisha, A. Kanhere, U. Sheno y, A. Choudhary, and
P. Banerjee,An Algebraic F ramework for Array Shape In-
ferencing in MATLAB , Technical Report No.CPDC-99-
11-019, ECE Department, North w estern University, Nov.
1999.

[7] Pramod G. Joisha, Abhay Kanhere, Prithviraj Baner-
jee, U.Nagaraj Sheno y and Alok Choudhary, The De-

sign and Implementation of a Parser and Scanner for the

MATLAB Language in the MATCH Compiler , Technical
Report, Center for P arallel and Distributed Computing,
North w estern University, CPDC-TR-9909-017, Sep. 1999.

[8] L. DeRose and D. P adua, A MATLAB to Fortran90

T ranslator and its E�e ctiveness, Proc. 10th A CM Int.
Conf. Supercomputing (ICS), May 1996.

[9] S. Ramaswam y, E. W. Hodges, and P. Banerjee, Com-
piling MATLAB Programs to SCALAPA CK: Exploiting

T ask and Data Parallelism, Proc. Int. Parallel Processing
Symp. (IPPS-96), pp. 613{620, April 1996.

[10] M. Benincasa, R. Besler, D. Brassaw, and J. R. L. Kohler,
R apid Development of Real-Time Systems Using RTEx-

press, Proceedings of the 12th International Parallel Pro-
cessing Symposium, pp. 594{599, March 30 - April 3,
1998.

[11] P . Drak enberg, P . Jacobson, and B. Kagstrom, A

CONLAB Compiler for Distribute dMemory Multicom-

puter,Proc. 6th SIAM Conf. Parallel Processing for Sci-
enti�c Computing, vol. 2, pp. 814{821, 1993.

[12] A. E. Trefethen, V. S. Menon, C. C. Changm G. J. Caa-
jkowski, L. N. Trefethen, Multi-MATLAB: MATLAB on

Multiple Processors, Technical Report 96-239, Cornell
Theory Center, Ithaca, NY, 1996.

[13] M. J. Quinn, A. Malishevsky, N. Seelam, Y. Zhao, Prelim-
inary R esults from a Parallel MATLAB Compiler, Proc.
12th In ternational Parallel Processing Symposium, March
1998, pp. 81-87.

[14] M. J. Quinn, A. Malishevsky, N. Seelam, Otter: Bridg-

ing the Gap between MATLAB and ScaLAPA CK, Proc.
7th IEEE International Symposium on High Performance
Distributed Computing, August 1998.

[15] E. Rijpk ema,E. Deprettere, B. Kienhuis, Compilation
from Matlab to Pr ocess Networks, Second International
Workshop on Compiler and Architecture Support for Em-
bedded Systems (CASES'99), 1999.

[16] V. Menon and K. Pingali,A Case for Source Level Trans-

formations in MATLAB, tech. rep., Department of Com-
puter Science - Cornell University, 1999.

[17] J. Hollingsworth, K. Liu, P . P auca, Parallel T oolbox

for MATLAB, Technical Report, Wake Forest University
(1996).

[18] S. P awletta, W. Drewelow, P. Duenow, T. Pawletta, M.
Suesse, A MATLAB Toolbox for Distributed and Parallel

Pr ocessing, Proc. MATLAB Conference, Cambridge, MA,
1995.

[19] G. Almasi, C. Casa val, and D. A. P adua,MATMarks:

A Shared Memory Environment for MATLAB Program-

ming, tech. rep., University of Illinois - Computer Science
Department, 1999.

[20] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R.
F. Freund, Dynamic Mapping of a Class of Independent

T asks onto Heterogeneous Computing Systems, J. Paral-
lel and Distributed Computing,Vol.59(2),Nov. 1999, pp.
107-131.

[21] M. A. Iverson, F. Ozguner, Dynamic, competitive schedul-
ing of multiple DA Gs in a distributed heterogeneous envi-

ronment, 7th IEEE Heterogeneous Computing Workshop
(HCW'98), 1998, pp. 70-78.

[22] O. H. Ibarra, C. E. Kim, Heuristic algorithms for schedul-
ing independent tasks on nonidentic al processors, J.
ACM, Vol.24(2), Apr. 1977, pp.280-289.

[23] C. Leangsuksun, J. Potter, S. Scott, Dynamic task map-
ping algorithms for a distributed heterogeneous computing

environment, 4th IEEE Heterogeneous Computing Work-
shop (HCW'95), 1995. pp.30-34.

[24] M. Maheswaran, T. D. Braun, H. J. Siegel, Heterogeneous
distributed computing, in \Encyclopedia of Electrical and
Electronics Engineering",1999, Vol.8,pp.679-690.

[25] Condor Project Home Page,
http://www.cs.wisc.edu/condor/

[26] Berkeley NOW Project Home Page,
http://no w.cs.berkeley.edu/

[27] Beo wulf Project Home Page,
http://cesdis.gsfc.nasa.gov/lin ux/beowulf/beowulf.html

[28] \MathWorks Home Page," tech. rep., MathWorks Inc.,
www.mathw orks.com.

[29] \Mathtools Home Page," tech. rep., MathTools Corpora-
tion, www.mathtools.com.

[30] The MathWorks, Inc., 24 Prime Park Way, Natick, MA
01760{1500, USA, Using MATLAB|The Language of

T echnical Computing, Jan. 1997. Using MATLAB (ver-
sion 5.0).

8

2000 International Conference on Parallel Processing (ICPP'00)
0-7695-0768-9/00 $10.00 @ 2000 IEEE

