
Scheduling Algorithms for Automated Synthesis of
Pipelined Designs on FPGAs for Applications described in

MATLAB�

Malay Haldar, Anshuman Nayak, Alok Choudhary and Prith Banerjee
MACH Design Systems, Inc.

Schaumberg, IL, USA.

ABSTRACT
We present a high-level synthesis framework to synthesize
optimized hardware on FPGAs from algorithms described
in MATLAB. We focus on a framework to pipeline loops
present in the input application. We present a range of
scheduling algorithms to obtain the pipeline schedule and
discuss their comparative strengths. The synthesized hard-
wares have been mapped to a Xilinx XC4028 FPGA with
external memory and corresponding experimental results are
included.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) pose a unique

solution to the complex needs of signal/image processing
and communications architectures because of their high per-
formance and
exibility. Recent advancements in FPGA
technology and commercial availability has made recon�g-
urable computing an attractive option for many applica-
tions. FPGAs in the million gates range are already avail-
able today. Current trends indicate that FPGAs have a
faster growth of transistor density than even general pro-
cessors. Thus, more and more complex designs will be put
on FPGAs to utilize the increased transistor budget. This
motivates the need for system level design tools. Current
hardware designers use hardware description languages like
VHDL/Verilog and low level CAD tools to implement their
designs. These tools are inadequate for designing mutli-
million gate designs as they involve understanding the cycle-
by-cycle behavior of gates. System level design tools will en-
able these complex designs within acceptable time-to-market.
As a result, there has been tremendous interest in using

general purpose languages for the purpose of hardware syn-
thesis. Most of the work has been on synthesizing hardware

�This research was supported by DARPA under contract
F30602-98-2-0144.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’00, November 17-19, 2000, San Jose, California.
Copyright 2000 ACM 1-58113-338-3/00/0011 ..$5.00

from algorithms described in C/C++ [14, 18, 13, 15, 17,
12]. Other languages such as Java have also received some
consideration [16]. We have chosen MATLAB as the target
language due to the following considerations :

� MATLAB is very widely used within the signal/image
processing and networking communications communi-
ties. Providing a synthesis path directly from MAT-
LAB would shorten the development time of next gen-
eration signal/image processing applications dramati-
cally.

� MATLAB has a well de�ned set of libraries for com-
mon functions in signal and image processing. This
makes MATLAB very conducive to design reuse which
is an important strategy to tackle mutli-million gate
designs.

� Absence of pointers and complex data structures and
presence of regular loops makeMATLAB very amenable
to extract parallelism which is the key to get perfor-
mance out of mapping applications to hardware.

Most of the recent work depends on an optimization com-
piler framework of the target high level language. The SUIF
compiler framework has been a popular choice for synthesis
tools targeting C/C++. Closely related works to this pa-
per include the Modula Pipeline compiler[8] and an earlier
version of the MATCH compiler[9]. The Modula compiler
is based on the SUIF framework. It explores various loop
optimizations including pipelining. The principal di�erence
between the Modula compiler and the MATCH compiler
is that MATCH attempts to pipeline the VHDL generated
from the MATLAB loops, whereas the Modula compiler
pipelines the C loops �rst and then generate hardware for it.
Thus, the optimizations of the MATCH compiler are closer
to the hardware achieving higher performance, but also ex-
pose the complexities of the hardware to the compiler. The
earlier version of the MATCH compiler relied on a modi�ed
ASAP algorithm to produce the pipeline schedules[9]. While
the schedules generated were optimal in terms of states of
the schedule, little attention was paid to the resource usage
of the pipeline. In this paper, we improve upon the previous
framework by taking into account resource constraints while
producing the pipeline schedule. We also present a compar-
ison of performance and resource usage among the di�erent
scheduling strategies.
The contributions of this paper can be summarized as

follows :

85

� We present an improvement over [9] concerned with
the production of pipelined hardware corresponding to
MATLAB loops. We include resource constraints and
resource optimizations into the scheduling framework.

� We present an experimental evaluation of the di�er-
ent scheduling strategies and demonstrate the resource
performance trade-o� paradigm in the context of pipelin-
ing hardware on FPGAs.

2. OVERVIEW OF MATCH
The work presented in this paper is part of a MATLAB

compiler for heterogeneous systems consisting of general pur-
pose processors, embedded processors and FPGAs[11]. Our
compiler takes the description of a system in MATLAB and
partitions it into software to be executed on general pur-
pose and embedded processors and hardware to be mapped
to FPGAs. In this paper we address the issues involved in
generating an e�cient hardware once the front-end of the
compiler has partitioned the system into hardware and soft-
ware. In particular we focus on the pipelining framework
that does dependency analysis on the input algorithm and
produces a pipelined design if possible. Figure 1 shows an
overview of the framework. First the input MATLAB code
is parsed to construct an Abstract Syntax Tree (AST). Since
MATLAB variables do not have any notion of type-shape, a
compiler phase infers the types of the variables and the di-
mensions of the matrices. The AST is scalarized, where the
operations on matrices are expanded out into loops. Next
the AST is levelized, where complex expressions are bro-
ken down into simpler expressions containing at most three
operands. The basic techniques for obtaining a hardware
description from a MATLAB AST is discussed in [10]. A
dependency analysis phase infers the control and data de-
pendency present in the AST. Finally a pipelining phase an-
alyzes the loops to check if pipelining is possible, determines
the initiation rate and produces a corresponding pipelined
hardware description in VHDL. The output register transfer
level (RTL) VHDL code is then passed through commercial
synthesis and physical design tools to generate a netlist and
bit-stream to con�gure the FPGA.

2.1 Overview of the WildChildTM Architecture
Our compiler is designed to produce code for most current

FPGA architectures. The compiler reads in a description of
the FPGA board architecture and mechanisms to access the
external memory which is used to produce the RTL VHDL
for the particular FPGA board. Our current experimen-
tal results are on the WildChildTM FPGA board from An-
napolis Micro Systems. It is a VME compatible board with
eight Xilinx 4010 FPGAs and one Xilinx 4028 FPGA. In
this paper we focus on our work regarding the generation of
hardware for a single FPGA with an external memory. For
that purpose we have used the Xilinx 4028 FPGA having
1024 CLBs. The memory connected to the FPGA is 32-bit
wide and contains 218 addressable locations.

3. OVERVIEW OF THE PIPELINING FRAME-
WORK

Figure 2 shows an overview of the pipelining framework.
Given a series of nested loops, the framework attempts to
pipeline the innermost loop. If the loop body contains con-

Input : Dependence graph of loop body G(V,E).
Output : A pipelined hardware, if possible.
Algorithm :
M : Number of memory references in the loop body.
I : Initiation Rate.
MM : Next modulo memory number to be assigned.
CS : Current state number to be assigned.
IF reverse dependence edge then RETURN.
M Number of memory references.
I M.
MM 0; CS 0
FOR all vertices v 2 V; state[v] 1
UNTIL 9 vertex v 2 V , s.t state[v] =1

state advanced false
FOR all vertices v 2 V not memory references

IF(predecessor ready AND state[v] =1)
state[v] CS

ENDIF
ENDFOR
FOR all vertices v 2 V memory reference

IF(predecessor ready AND state[v] =1)
state advanced true
IF(CS%M �MM)

state[v] CS +M � (CS%M �MM) ;
ELSE

state[v] CS +MM � CS%M
ENDIF;
MM MM + 1
CS state[v] + 1

ENDIF
ENDFOR
IF(state advanced = false) CS CS + 1

ENDUNTIL
Produce code for prologue,epilogue and steady state
Calculate loop bounds
Produce VHDL code

Figure 3: Modi�ed ASAP algorithm to �nd pipeline
schedule of a loop body

ditional statements, they are converted to predicated state-
ments [9]. A data
ow graph is constructed from the loop
body and a scheduling algorithm is applied. The schedule
for the loop body is used to produce a pipeline schedule. The
modulo variable expansion technique is applied to scalars
that have live overlapping ranges [6]. Finally loop condi-
tionals are added around the kernel of the pipeline sched-
ule and VHDL code is generated. Details of the pipelining
framework can be found in [9].
In this paper we discuss various scheduling algorithms

that are applied to the data
ow graph. These algorithms
have di�erent objectives producing various trade-o�s be-
tween resources and performance.

4. ASAP SCHEDULING
The simplest of the algorithms is a modi�cation of the

ASAP (As Soon As Possible) algorithm [3]. The key as-
sumption behind the algorithm is that the arrays present in
the application are stored in an external memory, and there
is a single memory port through which the external memory
can be accessed. For most signal/image processing appli-
cations, the arrays involved are simply too large to �t on
an on-chip memory module in the FPGA. Moreover, most
current FPGA board architectures provide a single-port ex-
ternal memory. Thus, the assumption holds for most cases.

86

Scalarization

VHDL Code

Type-Shape Analysis

MATLAB AST

MATLAB Code
Input

Levelization

Dependence Analysis

Pipelining Loop

Output

Figure 1: Overview of the synthesis framework.

Input

MATLAB

statement applied for conditionals

graph

algorithmoverlapping live scalars
code from the
pipeline schedule

pipelined VHDL
code for the loop

Yes

No

loop
check if

pipelining can be
construct nodes

and predicated nodes

construct dataflow

produce unpipelined code

apply scheduling
produce pipeline

schedule and rename
produce VHDL

Figure 2: Overview of the pipelining framework.

For the case where a single memory can be accessed via mul-
tiple ports, the problem can be handled by having multiple
instances of the memory resource and applying a resource
constrained scheduling as discussed in Section 6. In the case
where multiple memories can be accessed, the problem can
be dealt as a parallelization problem with distributed mem-
ory. For present considerations, as there is only one mem-
ory port, there can be only one memory access at any stage.
Thus the schedule for the loop body is developed such that
each memory access is placed in a state so that the state
number modulo the number of memory accesses in the loop
body is unique for each memory access. This ensures that
two memory access never occur concurrently.
Since each vertex is visited once to assign the state and

each edge is considered once for updating the dependencies,
the complexity of the algorithm is O(E+V). E is the num-
ber of edges in the dependency graph G(V;E) and V is the
number of vertices in the dependency graph. For the other
algorithms presented in this paper we express the computa-
tional complexity in the same notation.

5. ALAP SCHEDULING
A shortcoming of the modi�ed ASAP algorithm is that

the resource usage towards the beginning of the schedule
is considerably higher than the rest of the states. In other
words, resource usage throughout the schedule is highly non-
uniform. To understand the phenomenon consider a typical
signal processing loop body, the matrix multiplication. The
loop body has a single statement shown in Figure 4(a).
The basic data types in MATLAB are multi-dimensional

for i = 1 : N
 for j = 1 : N
 for k = 1: N
 c (i, j) = c (i, j) + a (i, k) + b (k, j)
 end
 end
end

(a)

Access location a (i, j)

state 1 : temp1 <= i * N ;

state 2 : temp2 <= temp1 + j ;

(b)

state 3 : address_a <= Base_a + temp2 ;

state 4 : mem_request <= ’1’ ;

state 5 : mem_address <= address_a ;

state 6 : a_data <= mem_data_out ;

Address
calculation
states

Memory
interface
specific
states

Figure 4: (a)Matrix multiplication code (b) Exam-
ple of states generated for an array access a(i,j).

87

arrays (or matrices). Each of the array accesses corresponds
to a memory access. For each memory access, �rst the ad-
dress is computed and then appropriate signals applied to
the memory interface (an abridged version is shown in Fig-
ure 4(b)). The bulk of the computation is not in the matrix
multiplication, but in the computation of the addresses cor-
responding to the memory accesses. Each address compu-
tation requires two additions and one multiplication (with-
out subexpression elimination optimization). As there are 4
memory accesses, address computation involves 8 additions
and 4 multiplications. Since the address computations are
not dependent on any data within the loop body, all of them
get scheduled towards the beginning of the schedule creating
an imbalance of resource utilization (Figure 5(a)).

Scheduled
States

Memory specific

Address calculation

Memory specific

Address calculation Address calculation

(b)

for a (i, j)
Address calculation

Memory specific

Memory specific
states for a (i, j)

for b (i, j)

states for b (i, j)

for c (i, j)

states for c (i, j)

for c (i, j)

states for c (i, j)

Scheduled
States

Address calculation
for c (i, j)

Memory specific
states for c (i, j)

Address calculation
for b (i, j)

Memory specific
states for b (i, j)

Address calculation
for a (i, j)

Memory specific
states for a (i, j)

Memory specific
states for c (i, j)

Address calculation
for c (i, j)

(a)

Figure 5: (a)Accumulation of resources in the be-
ginning due to ASAP scheduling (b) ALAP schedule
produces more uniform resource requirements.

The modi�ed ALAP (As Late As Possible)[3] scheduling is
motivated by the observation that the memory accesses are
serialized. Hence, if the address computations are pushed as
close to the memory accesses as possible, then the resource
imbalance across the schedule will be alleviated. The mod-
i�cation of the ALAP algorithm is similar to the algorithm
shown in Figure 3, with a few modi�cations made to sched-
ule nodes in the reverse order. Initially, all nodes that do
not have any successors are considered ready. A node be-
comes ready when all its successors are assigned some state.
The initial state is assigned an arbitrarily large state num-
ber, and the states are assigned in a decreasing order. The
key idea once again is to create a schedule such that mem-
ory accesses do not occur concurrently in the stable state of
the pipeline. Figure 5(b) shows how resource requirements
become uniform due to modi�ed ALAP scheduling.
As in the case of modi�ed ASAP scheduling, the complex-

ity of the algorithm is O(E + V).

Input : Dependence graph of loop body G(V;E),
Resource Vector R[nres].

Output : A Pipeline Schedule fS(V); IIg.
Algorithm :
II 1
WHILE(true)

CREATE Resource-Table RT of size II � nres
FOR all vertices v 2 V; state[v] 1
S 0
UNTIL 9 vertex v 2 V , s.t state[v] =1

�V Ready V ertices ofG(V;E)
�R[�nres] Available Resources ofR[nres]

FOR all resources r 2 �R
vbest Best Vertex for resource r.
state[v] S
Update Ready Vertices
Update Resource-Table RT

ENDFOR
IF Resource Used Up

BREAK
S S + 1
ENDUNTIL

IF 9 vertex v 2 V , s.t state[v] =1
II II + 1

ELSE
RETURN Schedulestates[V]; II

ENDIF
ENDWHILE

Figure 6: List scheduling algorithm to �nd pipeline
schedule of a loop body

6. LIST SCHEDULING WITH RESOURCE
CONSTRAINTS

All the earlier algorithms discussed produced optimal sched-
ules with di�erent amounts of resource usage. By optimal
we mean a schedule with the lowest possible initiation rate.
Such an approach is suitable when the applications are small
and the design �ts on the FPGA. However, for two key rea-
sons we may want to devise an algorithm that produces
a schedule given a predetermined number of resources, so
that various resource versus performance options can be ex-
plored. The reasons are :

� The loop body under consideration may be large and
complex, and hence the resources required by an opti-
mal schedule are not available. In this case, we want to
start with the resources required by the optimal sched-
ule and decrease them incrementally to determine the
point where the resource requirements are met without
sacri�cing too much performance.

� There are multiple loops and the combined resources
required to produce an optimal schedule for all the
loops is not available. In that case, we must be able to
deallocate resources from non-critical loops and allo-
cate them to critical loops and achieve a balance where
performance is maximized.

Next, we present a list scheduling algorithm to produce
a pipeline schedule under resource constraints. The list
scheduling framework is well studied[3]. The critical step
is to design the best match function, or to compute the pri-
ority of each node. The selection of the node by the best
match function should re
ect its criticality in the schedule.

88

Next, we discuss a couple of strategies we explored regarding
the selection of the best node for a resource. Note that list
scheduling for pipelines di�er from conventional list schedul-
ing as all the iterations of the loops are scheduled together in
the pipelined version as opposed to scheduling the loop body
for a particular iteration only in conventional list scheduling.

6.1 Maximum Successors Heuristic
A node can get scheduled only when all of its predeces-

sors in the dependency graph have been scheduled. Thus,
scheduling a node that is predecessor to a lot of nodes will
in turn enable the scheduling of all its successors. This mo-
tivates our �rst selection heuristic, wherein given a set of
nodes to be assigned to an available resource, we select the
node with the maximum number of successors. The idea
is to have as many nodes as possible in the ready state, so
that each resource is utilized as much as possible. If we are
able to schedule each resource at each step of the schedule
to some node, then we can achieve an optimal schedule.
The complexity of the basic list scheduling algorithm is

O(E+V), as each vertex and edge is considered once. Com-
puting the priority of each node also takes O(E+V) as each
vertex is visited and an edge is considered twice from the
vertices it connects. Hence, total complexity is O(E + V).

6.2 Longest Path to Sink Heuristic
Although the maximum successors heuristic gives an es-

timate of the criticality of a node in the schedule, it is very
myopic in the sense that it takes into account immediate
successors only. In our next heuristic we attempt to take
into account successors beyond the immediate ones. The
heuristic is motivated by the fact that the schedule without
resource constraints is dominated by the longest path from
the source to the sink of the dependency graph. For example
consider Figure 7. While choosing between node A and B to
schedule, if node A is chosen on the basis of larger number
of successors, an inferior schedule will be produced as the
schedule length is dominated by the path starting at node
B. Thus, the length of the path from a node to the sink
node gives an indication of its criticality. This is the basis
of Hu's scheduling algorithm [7]and is at the core of many
popular heuristics.
For computing the longest path to the sink from each node

we can apply ALAP scheduling to the dependency graph.
The di�erence between the state assigned to a node and the
state assigned to the sink node will give the longest path to
the sink. As the complexity of ALAP scheduling isO(E+V),
the total complexity of the algorithm is also O(E + V).

6.3 Aggregated Resource Heuristic
The longest path in the dependency graph is the longest

path in the schedule too only when there are no resource con-
straints. Consider Figure 8. Clearly, the longest path in the
dependency graph is not the longest path in the schedule due
to resource constraints, and hence a heuristic based on the
longest path heuristic produces sub-optimal schedule. This
motivates our next heuristic. Our attempt is to incorporate
the fact that resource constraints may produce a dominant
path in the schedule that is di�erent from the longest path
in the dependency graph. In our current heuristic, for each
node we consider the subgraph of the dependency graph for
which the node is the root (for example, see Figure 9).
We compute the total resource requirements of the sub-

2 *

+ +

+

* *

*

sink

Resources

Schedule dominated by
longest path to sink.

A B

*

Schedule node A or B ?

1 +

Figure 7: Maximum Successor vs Longest Path to
Sink Heuristic.

Schedule node A or B ?

+ +

*

* * *

+

+

+

sink

ResourcesA B
1 *
1 +

Figure 8: Longest Path to Sink vs Aggregated Re-
source Heuristic.

89

graphs. Then for each resource type required by the sub-
graph, we divide it by the instances of each resource type
available in the resource constraint. This gives a lower bound
on the schedule length dictated by each resource type. We
take the maximum of these lower bounds to indicate the crit-
icality of the node. In Figure 9, the resource requirements
to schedule the sub-graph with node A as root is four mul-
tipliers, whereas for the sub-graph with node B as root, we
need three adders. Given a multiplier and an adder as the re-
source constraint, the estimate for number of states required
to schedule the subgraph rooted at A is higher (4=1 = 4)
than the subgraph rooted at node B (3=1 = 3). Hence, al-
though the length of the path from node B is longer, node
A gets scheduled �rst.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

Schedule node A or B ?

+

*

* * *

+

sink

ResourcesA
1 *
1 +

B+

+

+

Subgraph with node
B as root

Subgraph with node
 A as root

Figure 9: Computing the aggregated resource re-
quirements for the sub-graph with the particular
node as root.

Of course, we have neglected the fact that the sub-graph
corresponding to two nodes may overlap and hence their
schedules may interact. The resource estimation of the sub-
graph is used just as a heuristic and not as a rigid allocation
requirement, hence some inaccuracy is tolerable.
For computing the resource requirements of the sub-graph

induced by each node, the dependency graph is �rst topolog-
ically sorted. The complexity of this operation is O(E+V).
The nodes are then considered in reverse order. For each
node, if it has only one successor in the dependency graph,
then the resource requirement of the sub-graph of the succes-
sor and resource requirement of the node are added together
to obtain the resource requirement of the sub-graph for the
node. If the node has multiple successors, then the set union
of the resource requirements of each successor is computed
and assigned as the resource requirement of the sub-graph
for the node. For taking the union, each resource must have
two pieces of associated information : (1) the node in the de-
pendency graph corresponding to the resource and (2) the
conditions that must be true for the resource to be used.
Resources corresponding to the same node are counted only
once. Resources with mutually exclusive conditions are also
considered once. To accomplish this e�ciently, the resources
are maintained in sorted order corresponding to the topo-

logical sort. In that case, the worst case for each union is
O(V), as each node can get visited once while merging to get
the union. Thus, the complexity of computing the resource
requirements of the sub-graph for each node is O(V 2). Since
the list scheduling algorithm itself takes O(E+V), the total
complexity of the algorithm is O(V 2). Note that control de-
pendencies due to if � then� else are already transformed
to predicated statements before the application of this algo-
rithm as described in [9].

7. EXPERIMENTAL RESULTS
In this section we present some experimental results. The

benchmarks presented include matrix multiplication, FIR
�lter, sobel edge detection algorithm, average �lter and a
motion estimation algorithm. The matrix multiplication
algorithm multiplies two input matrices. Matrix multipli-
cation is at the core of many signal and image processing
algorithms. FIR (Finite Impulse Response) �lter is very
important in the signal processing domain as it suggests a
system that passes certain frequency components and rejects
all other frequencies. Sobel edge detection algorithm takes
an input image and performs a two dimensional linear con-
volution with 3�3 kernels. The average �lter takes an input
image and for each pixel of the image computes the average
values of the pixels in the neighborhood. A comparison is
then made between the pixel and the average value. The
motion estimation algorithm is used to lower the bandwidth
requirement in video transmission by comparing blocks of
the current frame with blocks of the previous frame and se-
lecting a best match. We have chosen these applications as
benchmarks as they are representative of the applications
that are most suitable for implementation in hardware.

For the benchmarks described above, we present two dif-
ferent sets of experimental results. First we present a com-
parison of the resource unconstrained algorithms (modi�ed
ASAP and ALAP). Since both algorithms produce sched-
ules with optimal initiation rate, the execution times of the
designs produced are similar. For comparison of the two al-
gorithms, we present the resource utilization on the FPGAs
by the designs produced for the benchmarks. Secondly, we
compare di�erent heuristics used in the list scheduling al-
gorithm. For a given resource constraint, we compare the
execution times of the designs produced corresponding to
the di�erent heuristics. We also present the resource uti-
lization for designs produced. All the designs were mapped
to a Xilinx 4028 FPGA with an external memory as de-
scribed in Section 2.1.

7.1 ASAP vs ALAP
Figure 10 shows the resource utilization for the bench-

marks using the two scheduling algorithms to produce the
pipeline schedule - modi�ed ASAP and modi�ed ALAP. The
ratio of the CLB (con�gurable logic blocks) usage on the
FPGA is shown. As can be seen, ALAP scheduling pro-
duces much better designs due to less resource utilization.
In particular, the resource utilization for the sobel bench-
mark is six times less for the ALAP scheduling as compared
to ASAP scheduling. This can be attributed to the fact that
the sobel loop has twelve array accesses and the phenomenon
discussed in Section 5 totally dominates. On the other hand
for the average �lter benchmark the di�erence between the
ASAP and the ALAP algorithms is not signi�cant as the

90

inner loop in the benchmark is simple with only one array
access. The performance of the designs shown in terms of
execution times were identical. In general, ALAP schedul-
ing limits unnecessary concurrency of operations resulting
in improved resource requirements.

0

1

2

3

4

5

6

7

Motion est Sobel Avg Mat. Mult Filter

Benchmarks

R
at

io
o

f
C

L
B

u
sa

g
e

Figure 10: CLB usage of ASAP/ CLB usage of
ALAP.

7.2 List Scheduling Heuristics
We compare the three heuristics : (1) the maximum suc-

cessor (2) the longest path to sink and (3) the aggregated
resource heuristic within the list scheduling framework for
producing the pipeline schedule given some resource con-
straints. Figure 11 shows the execution time for the three
heuristics corresponding to di�erent resource constraints for
the sobel �lter benchmark. Figure 12 shows the same data
for the motion estimation benchmark. By execution time we
refer to the computation time taken by the design produced
on the FPGA (excluding con�guration and communication
time with the board). The execution times are shown for dif-
ferent resource constraints such that sub-optimal schedules
are produced. The resource constraints increase from left to
right and execution time for the optimal design without any
resource constraints is shown on the far right. As can be
seen, under very tight resource constraints, the aggregated
resource heuristic performs better than the other two heuris-
tics. Although the performance of the heuristics are close to
each other, maximum successor heuristics performs slightly
worse than the other two heuristics. The reason behind the
close performance of the heuristics may be attributed to the
fact that the concurrency between the operations within the
loop body are limited and the heuristics do not have much
scope to di�er. In particular, the parallelism for the appli-
cations is across the loop iterations and not within the loop
body.

8. CONCLUSIONS AND FUTURE WORK
We presented a compiler to synthesize optimized hard-

ware on FPGAs from applications described in MATLAB.
We discussed a range of scheduling techniques to obtain
pipelined hardware from loops present in the input applica-
tion. Our future work leverages this framework to perform
design space exploration. In particular we are focusing on
three primary issues

0

5

10

15

20

25

30

1 2 3 4
Increasing resources

N
o

rm
al

iz
ed

ex
ec

u
ti

o
n

ti
m

es

Max Pred Longest Path Agg. Res

Figure 11: Normalized execution times (normalized
to 5ms) for the sobel benchmark for the di�erent list
scheduling heuristics. The optimal execution time
obtained by the ALAP scheduling is shown on the
far right.

0

2

4

6

8

10

12

14

1 2 3 4

Increasing resources

N
o

rm
al

iz
ed

ex
ec

u
ti

o
n

ti
m

es

Max Pred ngest Path Agg Res

Figure 12: Normalized execution times (normalized
to 5ms) for the motion estimation benchmark for
the di�erent list scheduling heuristics. The optimal
execution time obtained by the ALAP scheduling is
shown on the far right.

91

� Integration of complex IP cores into the designs and
modi�cation to the scheduling techniques to accom-
modate them.

� Accurate predication techniques to predict the area/delay
of designs given the intermediate structure synthesized
by the compiler.

� An integrated global scheduling framework capable of
optimizing the design across loops and function bodies
to produce high performance design.

We hope these enhancements will enable us to achieve our
goal of producing automated designs that are within a factor
of two of manually optimized hardwares, cutting down the
design time from weeks to minutes.

9. REFERENCES
[1] Peter J. Ashenden The Designer's Guide To VHDL,

Morgan Kaufmann Publishers, Inc.

[2] Steven S. Muchnick Compiler Design Implementation,
Morgan Kaufmann Publishers, Inc.

[3] Giovanni De Micheli Synthesis and Optimization of
Digital Circuits, McGraw-Hill, Inc.

[4] Villasenor, J., Mangione-Smith, W. H. Con�gurable
Computing, Scienti�c American, June 1997, pp. 66-71

[5] V. H. Allan, R. B. Jones, R. M. Lee and
S. J. Allan,Software Pipelining, ACM Computing
Surveys, Vol.27,No.3, September 1995.

[6] M. Lam,Software Pipelining: An E�ective Scheduling
Technique for VLIW Machines , Proc. Programming
Language Design and Implementation, June 1988.

[7] T. C. Hu,Parallel Sequencing and Assembly Line
Problems,Operation Research No.9,1961.

[8] M. Weinhardt and W. Luk, Pipeline Vectorization for
Recon�gurable Systems , Proc. Field-Programmable
Custom Computing Machines, April 1999.

[9] M. Haldar, A. Nayak, A. Choudhary and P. Banerjee,
Automated Synthesis of Pipelined Designs on FPGAs
for Signal and Image Processing Applications
Described in MATLAB,
submittedtoASP �DAC02001.

[10] M. Haldar, A. Nayak, A. Choudhary and P. Banerjee,
FPGA Hardware Synthesis from MATLAB, 14th Intl.
Conf. VLSI Design, Jan 2001.

[11] Prith Banerjee, Nagraj Shenoy, Alok Choudhary,
Scott Hauck, Chris Bachmann, Malay Haldar, Pramod
Joisha, Alex Jones, Abhay Kanhare, Anshuman
Nayak, Suresh Periyacheri, Mike Walkden and David
Zaretsky, A MATLAB Compiler for Distributed,
Heterogeneous, Recon�gurable Computing Systems ,
Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM'00, April 2000.

[12] Ian Page Constructing hardware-software systems
from a single description, Journal of VLSI Signal
Processing, pp. 87-107, 1996

[13] J. Hammes, B. Rinker, W. Bohm and W. Najjar,
Cameron: High Level Language Compilation for
Recon�gurable Systems, Proc. Parallel Architectures
and Compilation Techniques (PACT'99), October
1999.

[14] J. Babb, M. Rinard, C.A. Moritz, W. Lee, M. Frank,
R. Barua, S. Amarasinghe Parallelizing Applications
into Silicon, FCCM 1999

[15] Y. Li, T. Callahan, E. Darnel, R. Harr, U. Kurkure
and J. Stockwood, Hardware-Software Co-Design of
Embedded Recon�gurable Arhitectures, Proc. 37th
DAC, June 2000.

[16] B. L. Hutchings and B. E. Nelson,Using
General-Purpose Programming Languages for FPGA
Design, Proc. 37th Design Automation Conference,
June 2000.

[17] M. Gokhale, J. Stone, J. Arnold and M. Kalinowski,
Stream-Oriented FPGA Computing in the Streams-C
High Level Language, Proc. Field-Programmable
Custom Computing Machines, April 2000.

[18] G. De Micheli, Hardware Synthesis from C/C++
Models, Proc. Design, Automation and Test in Europe
Conference and Exhibition, March 1999.

92

