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Abstract
The present work addresses gradient-based and machine learning (ML)-driven design optimization methods to enhance 
homogenized linear and nonlinear properties of cubic microstructures. The study computes the homogenized properties as 
a function of underlying microstructures by linking atomistic-scale and meso-scale models. Here, the microstructure is rep-
resented by the orientation distribution function that determines the volume densities of crystallographic orientations. The 
homogenized property matrix in meso-scale is computed using the single-crystal property values that are obtained by density 
functional theory calculations. The optimum microstructure designs are validated with the available data in the literature. 
The single-crystal designs, as expected, are found to provide the extreme values of the linear properties, while the optimum 
values of the nonlinear properties could be provided by single or polycrystalline microstructures. However, polycrystalline 
designs are advantageous over single crystals in terms of better manufacturability. With this in mind, an ML-based sampling 
algorithm is presented to identify top optimum polycrystal solutions for both linear and nonlinear properties without com-
promising the optimum property values. Moreover, an inverse optimization strategy is presented to design microstructures 
for prescribed values of homogenized properties, such as the stiffness constant ( C

11
 ) and in-plane Young’s modulus ( E

11
 ). 

The applications are presented for aluminum (Al), nickel (Ni), and silicon (Si) microstructures.

Keywords Data-driven modeling · Multi-scale modeling · Microstructure

Introduction

The field of multi-scale material design aims to identify the 
material features that provide optimum properties for spe-
cific engineering applications, including problems in aero-
space, automotive, and navy [1–3]. The studies in the last 
decade to design theoretical tools for optimizing material 
microstructures are classified as ‘microstructure-sensitive 
design for performance optimization’ (MSDPO) [4, 5]. The 
main advantage of this approach is its ability to create a 
design space of all possible values of the desired parameters, 
which allows the designer to select the optimum solution of 

the design parameter(s) for a particular engineering prob-
lem [6, 7]. Additionally, this optimum property solution 
can be mapped back to the corresponding microstructure 
space which can help determine the optimum manufacturing 
route of the material [8]. The microstructure that provides 
the maximum value of the desired parameter (e.g., stiffness 
constant, C11 ) may not be an optimum solution for another 
parameter (e.g., C12 ). However, this challenge also creates 
an opportunity for materials design to achieve a prescribed 
material property for a particular application by tailoring the 
microstructures [9, 10]. The present study concentrates on 
the data-driven multi-scale modeling and optimization for 
the elastic constants of the cubic materials. This research 
area has become more prevalent with the introduction of 
the Integrated Computational Materials Engineering (ICME) 
[11] paradigm. Recent developments in ICME have led to a 
significant improvement in many aspects of computational 
materials science and process engineering as the emerging 
techniques reduce the cost and risks of the technology [12, 
13].
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Different approaches have been taken by researchers to 
obtain the optimum material properties with the microstruc-
ture-sensitive design. Acharjee et al. [14] and Ganapathysub-
ramanian et al. [15] applied proper orthogonal decomposi-
tion (POD) and method of snapshots in Rodrigues space 
to develop the reduced-order model representation of the 
microstructural orientations in a polycrystalline material. 
This strategy was able to save significant computational 
time. The material design was performed for a compliant 
beam microstructure by Adams et al. [16] through generat-
ing a spectral representation of the orientation distribution 
function (ODF), which defines the design variables for the 
polycrystalline material [17, 18]. A similar approach was 
adopted by Kalidindi et al. [19] for designing a thin plate 
with a circular hole in the center to maximize the uniaxial 
load-carrying capacity of the plate without plastic defor-
mation. The microstructure-sensitive design method was 
applied to the hexagonal closed packed (HCP) micro-
structures by Fast et al. [20] to obtain the design space of 
elasto-plastic properties of a cantilever beam that is made 
of alpha titanium. Other optimization studies on materials 
design include the finite element analysis [21] and graph-
based method [22] as reported in the literature to improve 
mechanical properties of polycrystalline materials.

More recently, a linear programming algorithm was used 
to find out the microstructural textures that lead to opti-
mum volume-averaged properties using the idea of build-
ing a reduced-order design space, called the property clo-
sure [23–25]. The optimization techniques can also be used 
within this reduced space to calculate the desired properties 
by designing the microstructural texture. The applications of 
this approach were performed by Acar et al. [24] including 
the example of finding the best microstructure design of an 
airframe panel for obtaining the maximum buckling tem-
perature. This process was extended to find the maximum 
yield strength of the Galfenol alloy, while the constraints for 
the vibration tuning were considered [25]. In both cases, the 
property closures of several homogenized stiffness param-
eters were generated and utilized for the solution.

Density functional theory (DFT) is a powerful tool to 
understand micro-scale material behavior [26, 27]. DFT 
uses the first principle calculations to determine the material 
properties at the atomic/electronic level. Though it requires 
a significant amount of calculations, new-generation compu-
tational resources may improve its computational time effi-
ciency and reliability [28, 29]. On the other hand, artificial 
intelligence (AI) and machine learning (ML) have become 
immensely popular in materials science and engineering in 
the last few years for enhancing materials property predic-
tion as well as accelerating materials discovery and design 
[30–44].

The present work will mainly build upon the previous 
work for microstructure design by extending the study to 

three cubical materials (Al, Ni, and Si) from a total of 4721 
materials in the JARVIS-DFT database [45, 46]. Our goal 
is to optimize the meso-scale material properties by linking 
the atomistic scale simulation (DFT) and the microstructure 
model. In particular, gradient-based and ML-based optimi-
zation algorithms are applied to find the optimum (maxi-
mum and minimum) stiffness constant ( C11 ) and Young’s 
modulus ( E11 ) values along with the corresponding micro-
structures defined in terms of the ODFs. Moreover, the ML-
based sampling algorithm is able to reduce the dimensions 
of the ODF space and generate numerous solutions (top opti-
mum designs) that are close to the optimum microstructure 
solution. Finally, the results from these approaches will be 
compared and validated with the previous works from the 
literature for both linear ( C11 ) and nonlinear ( E11 ) properties. 
Figure 1 summarizes this study in a block diagram which 
consists of two steps. Step I comprises of determining the 
elastic tensor values of the cubic materials by utilizing the 
DFT calculations. With these tensor values, the property 
matrix of each material is generated and used in Step II. 
The homogenized material properties (e.g., C11 and E11 ) 
are optimized in Step II using gradient-based optimization 
and the ML-based sampling algorithms. As expected, the 
homogenized linear property ( C11 ) has a single-crystal opti-
mum solution, while the nonlinear property ( E11 ) still has a 
sharp texture optimum solution, but it is a polycrystal with 
two nonzero independent ODFs. The presented ML tech-
nique is shown to find both optimum designs that involve 
the single-crystal solution of C11 and the sharp texture poly-
crystalline solution of E11 , as well as identifying other top 
optimum designs for both properties. The ML solution is 
verified against the gradient-based optimization solution 
(Sequential Quadratic Programming (SQP)) for different 
optimum microstructure designs and may be extended to 
more challenging multi-scale design optimization problems 
(e.g., optimization of crystal plasticity properties) in the 
future. Moreover, the optimum texture is determined using 
SQP for a given value of E11 (near to the maximum value) 
which corresponds to a polycrystal solution. Additionally, 
the ML-based approach is also used to generate multiple 
polycrystalline textures for E11 . These findings are signifi-
cant as the polycrystalline microstructures are known to be 
advantageous over single-crystal designs in terms of cost, 
performance, ease of manufacturing, homogeneity, and good 
control over composition [47], while the single crystals have 
direct use areas where the anisotropic elastic properties are 
required [48]. The presented microstructure formulation can 
possibly be applied to model the materials that have differ-
ent crystallographic structures (i.e., hexagonal close-packed, 
face-centered cubic, body-centered cubic). Similarly, the 
optimization approach may also be applicable to the design 
of different microstructures in the future by extending the 
current methodology. The organization of this article is as 
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follows: The modeling section comprises atomistic-scale 
modeling (DFT), microstructure modeling (ODF), gradient-
based optimization model, and the ML-based optimization 
model. Next, the numerical results are presented and dis-
cussed for both linear and nonlinear properties of Al, Ni, and 
Si. Finally, the summary of the study along with the future 
works to be accomplished is narrated in the conclusion.

Background for Modeling

Four different models have been developed in this study. 
In the first step, the single-crystal material property values 
are determined by DFT calculations. The microstructures of 
the sample materials are modeled using the ODF approach. 
Later on, a multi-scale optimization model is developed and 
solved using gradient-based optimization and ML to find the 
extreme C11 and E11 values and the corresponding micro-
structures. The details of these models are discussed in the 
following sections.

Density Functional Theory

Density functional theory (DFT) calculations were carried 
out with Vienna Ab-initio Simulation Package (VASP) 
and the projector-augmented wave (PAW) method [49, 
50]. Please note that commercial software is identified to 
specify procedures. Such identification does not imply a 
recommendation by the National Institute of Standards and 

Technology. The structure relaxation with OptB88vdW 
functional [51] was obtained with 10−8 eV energy toler-
ance and 0.001 eV/Å force-convergence criteria. The elas-
tic tensor is determined by performing six finite distortions 
of the lattice and deriving the elastic constants from the 
strain–stress relationship. Further details about the DFT 
elastic-constant database can be found in Ref. [45].

Microstructure Modeling

A polycrystalline material consists of several crystals hav-
ing different crystallographic orientations that define the 
microstructural texture. The individual orientations of the 
crystals are represented by the angle-axis parameterization 
technique by Rodrigues. This method follows a different 
approach of representing crystal orientations in compari-
son with the Euler angles [52, 53]. The interested readers 
are referred to the study by Kumar et al. [54] for detailed 
information on Rodrigues parameterization of micro-
structural solution spaces. In this work, the microstruc-
ture is described using the ODF, which defines the volume 
density of each unique crystal orientation in the micro-
structure. A local finite element discretization scheme is 
applied along with the Rodrigues parametrization to com-
pute the meso-scale features. The definition of the ODF, 
in terms of the volume densities of the crystals, requires 
the implementation of the normalization constraint that is 
expressed by the following equation:

Fig. 1  Block diagram of this 
study. Step I is performed at 
micro-scale to get the volume 
averaged optimized property at 
meso-scale level in Step II
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Homogenization aims to compute the volume-averaged 
properties of the polycrystalline microstructures as a func-
tion of the single-crystal properties. For example, using the 
Taylor estimation [55], the volume-averaged elastic proper-
ties Cavg of homogeneous polycrystalline materials can be 
obtained from the following equation:

where C is the stiffness tensor of each crystal and < . > is 
the symbol of averaging. Similarly, if any property of a sin-
gle crystal �(r) , which is dependent on the crystal orienta-
tion, is known, then the homogenized polycrystal property 
< 𝜒 > can be determined by performing the averaging over 
the ODF. Mathematically, the expression is:

As mentioned earlier, the crystal orientation is represented 
by the Rodrigues parameterization, which is obtained from 
the scaling of the axis of rotation, n, that is expressed in 
terms of the orientation, r , and angle of rotation, � , as: 
n = r∕tan(�∕2) . In Eq. (3), �(r) represents the single-crystal 
material properties that are obtained from the DFT simula-
tions (stored in JARVIS). The computation of the homog-
enized microstructure properties using the single-crystal 
data is explained next.

Computation of Homogenized Properties using 
Single‑Crystal Property Data Obtained from DFT 
Simulations

The homogenized (volume-averaged) properties of the 
microstructures are obtained using the given expression in 
Eq. (3). Here, the integration for the homogenized properties 
is performed over the fundamental domain by considering 
the rotation of the crystals, R. Given the Rodrigues orienta-
tion vector, r, the rotation, R, can be obtained with the fol-
lowing expression:

Any polycrystal property obtained using Eqs. (3) and (4) can 
be shown in the linear form by this parameterization [23]. 
The finite element discretization of the microstructural ori-
entation space is exhibited in Fig. 2. Here, each independent 
nodal point of the finite element mesh represents a unique 
ODF value for the associated crystal. The matrix representa-
tion of Eq. (3) can be written as follows:

(1)∫R

A(r, t) dv = 1

(2)Cavg =< C >

(3)< 𝜒 >= ∫R

𝜒(r)A(r, t) dv

(4)R =
1

1 + r ⋅ r
(I(1 − r ⋅ r) + 2(r⊗ r + I × r))

where Nelem is the number of elements of the finite element 
mesh with Nint integration points in each element, and A(rm) 
is the ODF value at the m th integration point with global 
coordinate rm of the n th element. | Jn | is the Jacobian matrix 
of the n th element and �m is the integration weight of the 
m th integration point. The Rodrigues parameterization met-
ric is given by:

The expression in Eq. (5) is given in terms of the nodal point 
values, while it can also be derived in terms of the properties 
defined at the integration points: < 𝜒 >= PintT Aint , which is a 
linear form in terms of the ODF at integration points:

where i=1,2,.......Nint × Nelem.
When the symmetry arising from the cubic crystalline 

system is considered, the number of independent nodal 
points decreases. Let A be the vector of ODF values at the 
independent nodes that are obtained from the integration 
point values, Aint , using the tetrahedral finite element defi-
nition. Next, the properties can simply be represented as 
< 𝜒 >= PTA in terms of the independent nodal point ODF 
values. The nodal point property matrix, PT , can also be 
computed from PintT . Here, the meso-scale stiffness tensor 

(5)

< 𝜒 > = ∫R

𝜒(r)A(r, t) dv

=

Nelem∑

n=1

Nint∑

n=1

𝜒(rm)A(rm)𝜔m|Jn|
1

(1 + rm.rm)
2

1

(1 + rm.rm)
2

Pint = �(ri)�i|Ji|
1

(1 + ri.ri)
2

and Aint = A(ri)

Fig. 2  Finite element discretization of the orientation space
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can be computed using the microstructure homogenization 
expression (for example, C11 = PT

11
A , where P11 is the 

property matrix of the single-crystal values for C11 ). The 
Young’s modulus ( E11 ), on the other hand, is inversely 
related to the stiffness as it is given by E11 =

1

S11
 , where 

S11 = S(1, 1) , while S is the compliance matrix defined as 
S = C−1 . Therefore, it is called a nonlinear property. Simi-
larly, the normalization constraint of Eq. (1) can be written 
in the linear form as qTA = 1 . Finally, the ODF must sat-
isfy the following non-negativity condition (A ≥ 0).

Gradient‑Based Optimization

Two separate optimization problems are defined for the 
multi-scale model. One of them is to find the optimum 
microstructures that maximize and minimize the C11 and 
E11 values. The second problem is to obtain the micro-
structure design that provides a prescribed value of E11 . In 
both cases, the Sequential Quadratic Programming (SQP) 
algorithm is applied to solve the optimization problem. 
Table 1 shows the mathematical definitions of these opti-
mization problems.

The ODF solutions of the optimization problem in 
Table 1 need to satisfy two design constraints, i.e., the 
volume normalization constraint and the non-negativity 
of the ODFs.

ML‑based Optimization Model

An ML-based optimization method is used to find multi-
ple polycrystal solutions in the microstructure space. The 
applied method is similar to the approach of Paul et al. [39]. 
The framework of the ML-based optimization method is 
shown in Fig. 3. There are three main steps in this approach.

In the first step, agnostic sampling methods are used to 
randomly generate microstructure property pairs: the most 
desirable set of ODFs and the most undesirable set of ODFs. 
Compared to Paul et al.’s problem [39], our problem has no 
additional constraints, so four sampling algorithms, Random 
Intervals, Random k Intervals, Random Every k, and Best-
First Assignment [56], are used here. In the experiments, 
each of the four algorithms generates around 1 million valid 
ODFs, thereby a total of 4 million ODFs.

The second step is the identification of candidate ODF 
dimensions using ML-based methods. The purpose here 
is to evaluate ODF dimensions which are more important 
for generating optimum solutions. The top 10% and bottom 
10% data of ODFs in terms of the desired design objective 
are selected and labeled as “High” and “Low.” Then, ran-
dom forest-based [57] models are constructed to predict the 
output using the ODF dimensions as features. The feature 
importance from these models can thus help to rank the ODF 
dimensions in the order of their importance.

The third step is targeted sampling. In this step, we pro-
ceed to the second iteration of sampling only on a subset of 
ODF dimensions that are more important in providing near-
optimum solutions, instead of sampling across all dimen-
sions. Firstly, only m dimensions that are advantageous in 
providing near-optimum solutions are selected. Further, k 
dimensions from the m dimensions are randomly selected 
for sampling. After that, we iterate k from {3, 4, 5, 6, 7} 
when m is equal to 10, and from {6, 7, 8, 9, 10} when m is 
equal to 20. For each k and m parameters pairs, N iterations 
of sampling are performed to generate optimum solutions. 

Table 1  Summary of the optimization problems to maximize and 
minimize C

11
 and E

11
 values and design microstructures for a pre-

scribed E
11

 value

max and min C
11

 and E
11

min ( E
11

 - design E
11

 value)

subject to: qTA = 1 subject to: qTA = 1

A ≥ 0 A ≥ 0

Fig. 3  Framework of ML-based optimization method
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Finally, all solutions obtained from different parameters are 
aggregated. It was observed in our experiments that as we 
increase the value of the parameter N, it increases the time 
of sampling, which in turn leads to better results. The value 
of N is 1 million for the experiments in this study.

Results and Discussion

The optimization of the meso-scale stiffness constant, C11 , 
and the in-plane Young’s modulus, E11 , is performed for 
the three cubic materials by gradient-based and ML-based 
algorithms. In both cases, the material property matrix is 
computed using the DFT data in JARVIS. The optimum 
results obtained from two optimization methods are com-
pared to the literature data for the same parameters. The 
gradient-based SQP algorithm can identify the local opti-
mum solution for the microstructure design. However, the 
ML technique can produce multiple optimum solutions that 
will be discussed in this section.

Optimization of a Linear Property ( C
11

)

The single-crystal microstructure, which is intrinsically ani-
sotropic, provides the maximum and minimum values of 
C11 in the < 111 > and < 100 > directions, respectively [58, 
59]. The gradient-based algorithm of this study is also able 
to find the single-crystal ODFs for the maximum and mini-
mum C11 . However, the ML-based optimization obtains top 
optimum solutions corresponding to polycrystalline micro-
structures. To the best of the authors’ knowledge, there is 
no experimental study that is performed for finding the 
meso-scale maximum or minimum C11 value. It is also dif-
ficult to manufacture single-crystal materials. Therefore, we 
have chosen the range of experimental C11 values from the 
literature without labeling them maximum or minimum to 
validate the numerical results. Table 2 shows the optimum 
values for C11 using gradient-based optimization and ML 
methods, and their comparison with the available experi-
mental data from the previous studies [60, 61] for the three 
example materials.

Table 2 shows that both optimization algorithms are pro-
viding almost equal Cmax

11
 and Cmin

11
 values and the experi-

mental C11 values lie between them for all the three example 

materials. However, the significance of the ML-based tech-
nique is that it can generate multiple polycrystalline textures 
with C11 values that are close to the optimum value of C11 . 
This is advantageous for manufacturing purposes. Figure 4 
depicts the optimum microstructures that provide Cmax

11
 for 

Al, Ni, and Si generated by both optimization techniques.

Optimization of a Nonlinear Property ( E
11

)

The selected nonlinear property is the in-plane Young’s 
modulus value ( E11 ). Accordingly, Emax

11
 and Emin

11
 are cal-

culated for Al, Ni, and Si by gradient-based optimization 
and ML methods. In this case, unlike the homogenized lin-
ear properties, there is no guarantee that the single-crystal 
microstructure will yield extreme values of the nonlinear 
parameter [6]. This is also verified through our observa-
tion in the present study as a sharp polycrystalline texture 
with two nonzero ODF values is found to be the optimum 
solution by both design methods. The optimized Emax

11
 value 

is used for comparison with the literature [62, 63] as the 
maximization of the in-plane Young’s modulus ( E11 ) is natu-
rally a more important design problem for improved elastic-
ity. Table 3 reports the optimum values of E11 from both 
approaches and their validation with the available data from 
the previous studies for the three example materials.

It is evident from Table 3 that the Emax
11

 values obtained 
from the gradient-based optimization algorithm and ML are 
almost identical, where the maximum difference for all cases 
is below 1 GPa. The Emax

11
 values for Al and Si are used from 

Cantwell et al. [62] where the authors estimated the in-plane 
Young’s modulus as a function of crystallographic directions 
for microelectromechanical systems (MEMS). On the other 
hand, the Ni data were used from the study by Ju et al. [63] 
which modeled the nanoindentation of a Ni surface at dif-
ferent crystal orientations using molecular dynamic (MD) 
simulations to approximate the maximum E11 . The outcomes 
of the presented optimization approach also provide similar 
Emax
11

 for these materials. The percentage of errors for Al, Ni, 
and Si are 7.3%, 3.9%, and 0.5%, respectively. We antici-
pate that these errors arise from the microstructural uncer-
tainties and the differences in modeling assumptions. For 
example, the two-crystal optimum solution of the present 
work is a sharp texture design that is substantially difficult 
to process. Therefore, there could be differences between 

Table 2  Comparison of 
maximum and minimum of the 
stiffness constant ( C

11
 ) values 

obtained from gradient-based 
optimization and ML along with 
the validation with the literature 
data (unit of C

11
 is GPa)

Material Gradient-based Optimization Machine Learning  Range of C
11

 values 
from the literature [60, 
61]C

max

11
C
min

11
C
max

11
C
min

11

Al 122.8104 107.202 122.8102 107.2456 105.6–112
Ni 346.2944 268.0388 346.293 268.2173 220–270
Si 184.9062 156.5225 184.906 156.5787 165.7–168
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the mathematical optimum solutions and processed textures. 
Another possible error source can be the epistemic uncer-
tainties related to the computational methods (e.g., modeling 
assumptions, convergence, errors).

The next objective of this study is to design the micro-
structure for a prescribed value of E11 using gradient-based 
optimization (see Table 1). Therefore, we have considered 
three different values of E11 (close to the Emax

11
 value) for the 

example materials. For instance, the E11 values of Al are 
determined as 75 GPa, 76.5 GPa, and 77 GPa where the Emax

11
 

of Al is 77.75 GPa. Similarly, the chosen values for Ni are 
270 GPa, 273 GPa, and 275 GPa, while its maximum value 
for E11 is 277.5 GPa. These values for Si are 165 GPa, 167.5 
GPa, and 169 GPa where Emax

11
 is 170.06 GPa. For all three 

microstructures, the results exhibit that the ODFs converge 
to the optimum sharp texture design (two-crystal solution) 
as E11 approaches its maximum value.

This outcome is also visible from Figs. 5, 6 and 7. For 
example, in Fig. 5, the microstructures (ODFs) of Al are 
plotted in the Rodrigues orientation space for the three pre-
scribed E11 values and the maximum E11 value. Figure 5a 
represents the microstructure with E11 value of 75 GPa, 
which demonstrates a smooth polycrystalline texture. The 

texture becomes sharper as the E11 value increases, e.g., E11 
of 76.5 GPa (Fig. 5b) and E11 of 77 GPa (Fig. 5c). Finally, 
the optimum two-crystal texture providing the Emax

11
 ) value 

of 77.75 GPa is depicted in Fig. 5d which is obtained from 
both optimization techniques. The optimum microstructure 
designs for Ni and Si, in Figs. 6 and 7, respectively, follow 
the same trend. This result underlines the two unique orien-
tations for cubic microstructures that lead to maximum in-
plane Young’s modulus. The presented technique for inverse 
design can be applied to all polycrystalline microstructures 
to achieve the prescribed values of the homogenized material 
properties. For manufacturing purposes, the ML approach 
can be integrated into the design framework to identify the 
top optimum polycrystalline microstructure designs.

Optimization Results from ML‑Based Method

The optimum values of C11 and E11 obtained by gradient-
based optimization and ML are compared in Tables 2 and 3, 
respectively, as the results of the proposed ML method are 
comparable to the conventional optimization results. The 
optimum designs of the gradient-based method are a sin-
gle crystal for C11 and a two-crystal texture for E11 . On the 

Fig. 4  Optimum microstruc-
tures (ODFs) in the orienta-
tion space for a Cmax

11
 of Al by 

gradient-based optimization and 
C
max

11
 of b Al, c Ni, and d Si by 

ML approach

Table 3  Comparison of 
maximum and minimum 
in-plane Young’s modulus 
values ( E

11
 ) obtained from 

gradient-based optimization and 
ML along with the validation 
with the literature data (unit of 
E
11

 is GPa)

Material Gradient-based Optimiza-
tion

Machine Learning E
max

11
 from the lit-

erature [62, 63]
Error (%)

E
max

11
E
min

11
E
max

11
E
min

11

Al 77.7468 48.2523 77.7462 48.5039 72.3 7.3
Ni 277.5323 140.2831 277.5119 141.2446 288 3.9
Si 170.0734 127.84 170.0647 128.0674 172 0.5
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contrary, the ML method provides multiple solutions with 
more than two strictly nonzero ODF dimensions owing to 
its parameter setting to improve the manufacturability of the 
microstructures. The number of the top optimum designs 
(top 0.01%, 0.1%, 0.5%, and 1% designs) identified by 
the ML model is shown in Table 4 and 5 for C11 and E11 , 
respectively.

As represented in Tables 4 and 5, the method success-
fully finds multiple near-optimum polycrystal solutions 
for all three materials. The near-optimum solutions corre-
spond to different microstructure designs having the same 
or similar values for the stiffness constant and Young’s 
modulus. In the case of Cmax

11
 optimization, 103, 72, and 

102 solutions can be discovered for Al, Ni, and Si, respec-
tively, within a neighborhood of 10−4 from the optimum 
solution. Furthermore, 584, 429, and 485 solutions within 
a neighborhood of 10−2 are discovered, respectively, for 
Cmax
11

 problem. Similarly, for Cmin
11

 calculation, 232, 151, 
and 230 solutions in a neighborhood of 10−2 , for Al, Ni, 
and Si, respectively, are identified.

On the other hand, 3, 1, and 8 solutions can be discov-
ered for Al, Ni, and Si, respectively, for Emax

11
 determination 

within a neighborhood of 10−4 from the optimum solu-
tion. Furthermore, 2431, 1936, and 2676 solutions within 
a neighborhood of 10−2 are suggested, respectively, for 
Emax
11

 of those materials. Next, for Emin
11

 problem, 2, 1, and 

Fig. 5  Optimized microstruc-
tures (ODFs) in the orientation 
space with a E

11
=75 GPa, b E

11

=76.5 GPa, c E
11

=77 GPa, and 
d Emax

11
=77.5 GPa of Al

Fig. 6  Optimized microstruc-
tures (ODFs) in the orientation 
space with a E

11
=270 GPa, b 

E
11

=273 GPa, c E
11

=275 GPa, 
and d Emax

11
=277.53 GPa of Ni
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12 solutions in a neighborhood of 10−2 , for Al, Ni, and Si, 
respectively, are identified.

The results presented above for both gradient-based and 
ML-driven optimization studies are not expected to be sen-
sitive to the finite element discretization of the orienta-
tion space (Fig. 2). Preliminary research was performed 

by Acar [64] for titanium microstructures by considering 
the mesh sizes of 50 and 388 to address the effects of the 
finite element mesh sensitivity on optimum homogenized 
properties. The findings showed that both meshes provided 
equivalent optimum solutions with the introduction of an 
adjoint sensitivity method into the Sequential Quadratic 
Programming algorithm. The future work may be focused 
on the investigation of the effects of finite element mesh 
discretization on homogenized properties of any micro-
structure, not only the optimum designs.

Obtaining multiple near-optimum solutions is critical 
because traditional low-cost manufacturing processes can 
only generate a limited set of microstructures. Multiple near-
optimum solutions can accelerate materials development 
efforts by increasing the variability of optimum designs and, 
thus, improve the efficiency of manufacturing immensely. 
Therefore, given the ability of the ML-based sampling algo-
rithm to identify promising microstructure design spaces 
which can then be rigorously searched to discover multiple 
polycrystal solutions, it can be applied as a useful tool for 
the challenging multi-scale design optimization problem 
(e.g., optimization of crystal plasticity properties).

Conclusions

Two optimization algorithms are developed in this study to 
determine the optimum values of linear ( C11 ) and nonlinear 
( E11 ) properties and corresponding microstructures for three 
cubic materials: Al, Ni, and Si. First, the homogenized mate-
rial properties of the microstructures are computed by link-
ing the DFT calculations with the ODF-based microstructure 
model. The first design approach utilizes the gradient-based 

Fig. 7  Optimized microstruc-
tures (ODFs) in the orientation 
space with a E

11
=165 GPa, b 

E
11

=167.5 GPa, c E
11

=169 GPa, 
and d Emax

11
=170.06 GPa of Si

Table 4  Number of polycrystal solutions for C
11

 obtained by ML-
based method within 0.01%, 0.1%, 0.5%, 1% of the optimum solu-
tions

Material within 0.01% within 0.1% within 0.5% within 1%

Al C
min

11
0 8 130 232

C
max

11
103 210 409 584

Ni C
min

11
0 7 90 151

C
max

11
72 210 405 429

Si C
min

11
0 12 125 230

C
max

11
102 222 405 485

Table 5  Number of polycrystal solutions for E
11

 obtained by ML-
based method within 0.01%, 0.1%, 0.5%, 1% of the optimum solu-
tions

Material within 0.01% within 0.1% within 0.5% within 1%

Al E
min

11
0 0 0 2

E
max

11
3 48 701 2431

Ni E
min

11
0 0 0 1

E
max

11
1 50 549 1936

Si E
min

11
0 0 5 12

E
max

11
8 130 1943 2676
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optimization that provides single-crystal optimum micro-
structures for the extreme values of C11 and two-crystal 
designs for E11 . The second design approach is based on 
ML-based optimization that is able to produce numerous 
polycrystalline microstructures without compromising the 
optimum values of the homogenized properties. For exam-
ple, 2431, 1936, and 2676 optimum microstructure solu-
tions are suggested within 1% of Emax

11
 value of Al, Ni, and 

Si, respectively. This outcome is significant to accelerate 
the manufacturing of materials by increasing the variability 
of optimum design solutions. The numerical results for the 
optimum microstructures are validated for different materi-
als using the available data in the literature. In the future, 
this approach can be extended to other crystalline structures, 
such as hexagonal, monoclinic, trigonal, and tetragonal 
microstructures, and to more complex multi-scale design 
problems, such as the design of microstructures under large 
deformations using crystal plasticity simulations.
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