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Abstract—Recently, the dramatic increase of the data amounts
drives up the demand for data compression among HPC ap-
plications. Although many file systems and I/O middlewares
have incorporated compression features, few high-level parallel
I/O libraries support data compression due to the challenges
of achieving scalable performance on HPC systems. This paper
presents the design and implementation of the variable compres-
sion feature in the Parallel NetCDF library. Our design employs
the same concept of chunking used by the HDF5 library, but
we focus on enabling I/O aggregation across multiple requests
to address the challenges on performance and scalability. We
evaluate our solution using the I/O kernel of real-world scientific
applications and analyze the impacts of data compression on
parallel I/O performance. Our result suggests that handling
multiple requests at once can significantly improve the parallel
I/O performance on chunked and compressed data.

Index Terms—Compression, Chunked Storage Layout,
NetCDF, I/O Aggregation

I. INTRODUCTION

As the scale of modern HPC systems grows at a rapid pace,
the volume of data produced by applications follows. To allow
efficient storing, managing, and sharing, many scientific data
are now stored in compressed format [1]. Due to the diverse
nature of scientific data, compression is usually performed
inside high-level I/O libraries where the characteristics of the
data are known instead of the parallel file system.

A major challenge regarding parallel I/O on compressed
data is that most compressed data cannot be partially decom-
pressed. Due to this limitation, accessing part of the com-
pressed data, except a few specially designed algorithms [2],
[3] for a limited type of operations, requires decompression
of the entire dataset. Modifying part of a compressed dataset
requires decompressing, re-compressing, and overwriting the
entire dataset. It implies that a compressed dataset can only
be modified by one process at a time.

One solution adopted by the HDF5 library [4] is using a
chunked storage layout. A dataset is divided into equal-sized
chunks that are compressed independently. To ensure data
consistency of a chunk, only one process, called the owner,
is allowed to modify it directly. Other processes write to the
chunk by forwarding the request to the owner.

The strategy above comes with several tradeoffs. There
are communication overheads to manage chunk access and
to forward the write requests. Also, the number of chunks
limits the scalability. Finally, since writing to datasets requires
communication, all write operations must be collective.

In this work, we introduce a compression feature for vari-
ables in the PnetCDF [5] library. Scientific applications in
various domains, including much of the climate applications,

store their data in classic NetCDF format [6], [7], [8]. The
classic NetCDF format [9] is more efficient than other complex
file formats, but it does not support compressing data objects.
We saw increasing demand from the community for data
compression features in NetCDF variables.

We enable variable compression using a chunked storage
layout similar to HDF5[4]. Our design uses an array-based
reference table to organize the chunks. We store chunking and
compression-related metadata as special NetCDF attributes un-
der the variable. The file containing chunked variables remains
a valid NetCDF file, though chunked variables can only be
interpreted by PnetCDF. We took the same approach as HDF5
to ensure data consistency, but we adopt a different policy
for picking chunk owners that not only tries to minimize the
communication cost but also tries to balance the compression
workload among the processes.

Although the concept of chunking is not new, our de-
sign emphasizes enabling I/O aggregation and utilizing it to
mitigate the limitation of the existing solution. By handling
multiple I/O requests together, we can reduce the number
of interprocess communications and hence the contention of
the interconnect. We can also avoid decompressing and re-
compressing chunks when a chunk is written more than once.
Most importantly, by aggregating requests across all variables,
the total number of chunks we handle is more than that if
we handle each request individually. Having more chunks to
handle allows us to achieve better load-balancing, parallelism,
and hence scalability. We support I/O aggregation through
PnetCDF’s non-blocking API [10].

We evaluated our implementation on Cori [11] at the
National Energy Research Scientific Computing Center
(NERSC), using up to 4096 processes. We tested various I/O
patterns, including rank-based appending I/O patterns com-
monly used by AMR applications, a checkerboard I/O pattern,
and I/O kernels from the E3SM [12] simulation framework,
as well as the Pandana module [13] in the NuMI Off-axis νe
Appearance (NOvA) experiment [14].

The experiment results suggest that I/O requests aggregation
can significantly improve the efficiency of parallel I/O on
chunked and compressed data. Our solution generally achieves
2 to 3 times the parallel write performance compared to HDF5.
When multiple variables are involved, our solution with I/O
aggregation can be up to 14 times faster than HDF5. Our
solution can improve the end-to-end I/O performance up to
2.7 times compared to writing variables without compression
on highly compressible datasets.
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II. RELATED WORK

Many works apply compression to improve parallel I/O
performance. Welton et al. employ compression to increase the
network throughput between compute nodes and I/O nodes of
the file system [15]. Filgueira et al. use compression to reduce
the communication time between compute nodes and I/O
aggregators in MPI-IO [16]. Islam et al. utilize compression
to reduce checkpointing overhead [17]. Bui et al. proposed
several techniques, including compression, to improve the I/O
performance on IBM Blue Gene/Q supercomputers [18].

Chunked storage layout is widely used to enable parallel I/O
on compressed data. Hadjidoukas and Wermelinger introduce
a compressed data format for the Cubism framework [19]
that utilizes the block nature of the application to divide the
data into chunks for compression. They incorporate efficient
wavelet-based techniques and state-of-the-art floating-point
compressors [20]. Bicer et al. proposed a solution based on
a chunked layout to access compressed NetCDF variables
in parallel in which padding is being added to compressed
chunk to accommodate the future growth [21]. Other than
a workaround to access the compressed dataset in parallel,
chunked storage layout is also used to store data growing
along multiple dimensions [22], [23]. Zarr is a python package
that implements chunked multi-dimensional arrays that can be
accessed concurrently by all threads or processes [24]. Zarr
allows chunks to be transformed using the Numcodecs [25]
package. N5 is a library providing primitive operations to store
chunked n-dimensional arrays [26]. It stores every chunk as
a single file under a directory representing the array. ADIOS
[27] supports data compression by compressing individual data
blocks in a log-based storage layout.

A. Data compression in parallel HDF5

HDF5 [4] is an I/O library widely used for handling scien-
tific data. HDF5 datasets can be stored in a contiguous layout
that flattens the data into a single block or a chunked layout.
In a chunked dataset, the data is stored as non-intersecting,
fixed-size, and rectangular chunks. When the chunks are stored
in the file, each chunk is flattened either in a row-major
or a column-major order. The chunks can be stored in any
order and at any location. HDF5 uses a B-tree-based data
structure to track the location of chunks. HDF5 supports data
compression through filters on chunked datasets. Filters are
data transformations applied to chunk data before writing the
chunk to the file. Applications can apply different filters to the
dataset; some of them provide compression functionality.

The parallel write operation in HDF5 consists of 2 phases.
The first phase is to exchange the data among processes.To
ensure data consistency, each chunk can only be written
directly by a process called the chunk owner. The chunk owner
is the process with the most data to write to that chunk.
Processes exchange the data such that the entire data of each
chunk is aggregated to the owner process. The second phase
is to compress the chunks and to write the compressed data to
the file. Each process independently compresses the chunks it
owns. Then, processes exchange the compressed data size to

calculate the write offset in the file and collectively write the
compressed chunks to the file. Finally, the file offset of the
chunks is written in the b-tree index.

The parallel read operation in HDF5 for compressed
datasets is implemented in 4 steps. First, each process cal-
culates the intersection of the requested data space and all the
chunks in the dataset. Second, all the processes look up the
location of the requested chunks in the b-tree index. Third,
the processes collectively read the chunks they need. Finally,
each process independently decompresses the chunks and gets
the requested part of the chunks.

B. NetCDF

NetCDF (Network Common Data Form) [9], [28] is a self-
describing, machine-independent (portable) data format for
array-oriented data. A classic NetCDF file contains three types
of objects: attribute, dimension, and variable. Attributes con-
tain metadata for the file and variables. Dimensions are named
scalar which describes a dimension of variables in the problem
domain. One dimension, called the ‘record dimension’, in a
NetCDF file can have unlimited size. Variables are multi-
dimensional array of data (counterpart of a dataset in HDF5).
NetCDF variables are always stored in a contiguous layout
in which data is flattened into the file in canonical order. The
shape of a variable is defined by referring to dimension objects.

A variable that has the record dimension is called a ‘record
variable’. The record dimension can only be the most signifi-
cant dimension of the variable. A unit slice of a record variable
along the record dimension is called a ‘record’. The coordinate
of the slice along the record dimension is referred to as the
record number. Record variables can be resized arbitrarily
along the record (first) dimension. The size of the record
dimension increases automatically to fit the variable with most
records. There is only one unlimited dimension in a NetCDF
file shared by all record variables. As a result, all record
variables contain the same number of records. Whenever a
record variable gets a new record, the size of all other record
variables also increases.

In addition to the classic format, there is also the NetCDF-4
[29] format. NetCDF-4 store NetCDF data objects as HDF5
data objects. A NetCDF-4 file is a particular type of HDF5
file that follows NetCDF-4 specification. Compared to the
classic format, NetCDF-4 introduces the concept of group as
well as features from HDF5, such as chunked storage layout
and filters. In this work, we focus on supporting variable
compression in the classic NetCDF format.

C. PnetCDF

PnetCDF [5] is a high-level parallel I/O library for managing
dimensions, variables, and attributes in classic NetCDF files.
Applications can access part of the variable by specifying
a subarray of the variable to read or write. In addition to
conventional read and write APIs, PnetCDF also provides a set
of non-blocking APIs. Non-blocking APIs allow applications
to post multiple I/O operations, and let PnetCDF aggregate
them into a large request for better performance.
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III. DESIGN AND IMPLEMENTATION

Our approach adopts a chunked storage layout similar to
HDF5 to enable compression for NetCDF variables. Applica-
tions can enable chunked storage layout and/or compression
on individual variables. We designed a data structure to store
chunked variables using classic NetCDF data objects. We
implement our solution in the PnetCDF library.

A. Chunking and Compression Metadata

As the classic NetCDF format does not include metadata
entries for describing data chunking and compression, we use
the following NetCDF attributes to store such metadata for
each chunk-enabled variable. These attributes all have names
with the first character ’ ’, which are reserved for special
names with meaning to implementations, as restricted in the
NetCDF convention [30].
• chunk dims is a 1D integer array attribute of size equal

to the number of dimensions of the chunked variable. It
contains the dimension IDs previously defined through calls
to ncmpi_def_dim(). This attribute also serves as an
indicator of a chunked variable. If this attribute is missing,
the variable is not chunked (a traditional variable).

• chunk refs is an attribute storing the starting file offsets
of the chunk reference table. For fixed-size variables, this
attribute is a 64-bit integer. The chunk reference table is a
1D 64-bit integer array of size equal to the number of chunks
of the variable. The table stores the file starting offsets of
individual chunks. For record variables, this attribute is a 1D
64-bit integer array of size equal to the number of records.
Each of its array elements points to the file starting offset
of a record’s chunk reference table. There is one chunk
reference table for each record, and reference tables can
be stored in non-contiguous locations in the file.

• chunk ext ndims is an attribute of a 64-bit integer, storing
the number of effective records for the variable. Effective
records are referred to as the number of records that have
been written in the file. This value is less than or equal to
the value of the unlimited dimension stored in the file.

• filters is an attribute of an integer array, storing the IDs of
predefined filters that are applied on the data chunks. The
array indices also indicate the order of filters applied to the
data chunks in a pipelined fashion.

• Other filter-specific attributes, such as compression level
of lossless compression method, error tolerance of lossy
compression method, etc. These attributes will be added
when the corresponding filter is incorporated into PnetCDF.

B. Data Chunks and Chunk Reference Table

Two new data objects introduced in our design for de-
scribing the chunking and compression settings are the chunk
reference table and data chunks. A fixed-size variable’s chunk
reference table is comprised of two 1D arrays of 64-bit integer
type, both of size equal to the number of chunks of the
variable. One array is the offset array that stores file offsets
pointing to the starting locations of individual chunks. The
other is the size array that stores the sizes of each compressed

chunk in the file. For record variables, each record of a variable
has its own chunk reference table, and the tables of consecutive
records are not necessarily stored contiguously in the file.

Data chunks contain the parts of the variable in com-
pressed form. They can be compressed and decompressed
independently. Each data chunk occupies a contiguous space
in the file, but chunks of a variable are not required to
be stored contiguously. This design allows flexibility in file
space management but can adversely affect I/O performance
if chunks are dispersed all over the file.

Without violating the NetCDF file format specification,
we store the new data objects in the ”free space” between
variables. The free spaces are paddings between the end of a
variable and the beginning of the next variable. Paddings are
required to comply with the NetCDF format specification in
which variables must be aligned to 4-byte boundaries. The use
of such alignment has also been extended in both PnetCDF and
NetCDF libraries to align the variable’s file space to file system
striping boundaries in order to achieve better I/O performance
[31], [32]. Our design utilizes this feature to make space for
chunk reference tables and data chunks.

A new API named ncmpi_var_set_chunk is used to
set the size of the chunks on a chunked variable. Once chunk
sizes have been set, the number of chunks for a fixed-size
variable or a record variable’s record is known. For fixed-
size variables, their reference tables can be allocated when
calling API ncmpi_enddef. During this time, PnetCDF will
check all defined variables and adjust the ”begin” fields of
all variables to make room for chunk reference tables. For
record variables, their reference tables are allocated when new
records are created. Because the compressed size of a chunk
is not known at the time of ncmpi_enddef, the file space
for data chunks is not allocated until the application writes to
the chunk. The chunk offsets in the chunk reference table are
set to -1 to indicate that the chunks haven’t been allocated yet.

A new API named ncmpi_var_set_filter is used to
enable compression for variables and choose the compression
method. Our pluggable interface allows incorporation of any
compression algorithm, such as deflate [33], [34], zstd [35],
SZ [36], ZFP [37] ... etc.

C. Chunk data layout for fixed-size variables

Fig. 1 illustrates the data layouts of chunked and un-
chunked variables. A classic NetCDF file is divided into
header and data sections. The file header stores the metadata
of dimensions, variables, and attributes, while the data section
stores variables’ raw data. Fig. 1(a) shows two traditional
un-chunked fixed-size variables, X and Y. When variables X
and Y are defined one after another, their metadata is stored
consecutively in the file header. The metadata field ”begin” of
each variable points to the starting file location of its raw data,
shown as blue arrows. In this example, a gap appears between
the space occupied by two variables’ raw data, which is legit to
the NetCDF file format specification. Our design makes use
of such gaps to store the chunked variables, including their
reference tables and data chunks.
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File
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…
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X's raw data
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…
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…

(a) original fixed-size variables

File

…

variable X

begin

variable Y
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…

…

X's ref. table

Y's ref. table

…

X's chunk 0

…

X's chunk N-1

…

Y's chunk 1
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Y's chunk N-1
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…
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(b) chunked fixed-size variable

File

…

variable X

begin

variable Y

begin

…

X's record 0

Y's record 0

X's record 1

Y's record 1

…

…

…

Header

Data

(c) original record variable

File

…

variable X

begin

…

…

X's ref. table 0

…

X's chunk 0

…

X's chunk N - 1

…

Data X's ref. table 1

…

X's chunk N

…

X's chunk 2 * N - 1

…

record 0

record 1

Header

(d) chunked record variable

Fig. 1: Data layout of compressed variables versus uncompressed variables. The anchor variable is painted light green. The
reference table is painted cyan. The chunk data is painted light green. Note that chunkes does not need to be stored in order.

Fig. 1(b) shows the file layouts of two chunked fixed-
size variables X and Y. Although chunk reference tables are
metadata, we store them in the data section of a NetCDF file
rather than in the file header. For fixed-size variables, their
chunk reference tables are placed at the beginning of the data
section. The chunk reference table contains the location of
individual chunks, as shown by the red arrows. Entries in the
chunk reference table are ordered according to the row-major
canonical order of the chunk in the variable. The index of
a chunk in the chunk reference table is referred to as the
chunk ID and is used to identify the chunk within the library.
As depicted in this example, both variables X and Y have
N chunks. Chunks are not required to be stored adjacent to
each other; however, our implementation tries to place them
in contiguous space if possible for better I/O performance.

D. Chunk data layout for record variables

Fig. 1(c) shows two traditional un-chunked record variables,
X and Y, with two records each. Record variables have
the same header as fixed-size variables except that the first
dimension is always the record dimension. The metadata field
”begin” of each variable points to the starting file location of
its first record, shown as blue arrows. Records with the same
record number from all record variables are stored together in a
block referred to as a record of the NetCDF file. File records
are ordered according to their record number. Paddings are
allowed between records of variables and between file records
as long as each file record has the same size.

NetCDF format specification requires that file records be
stored after all fixed-sized variables [38]. To comply with it,
PnetCDF needs to move all records downward every time it
inserts padding for new chunks. Constantly relocating record
variables can degrade the performance significantly. To avoid
the issue, we keep the file free of traditional record variables.

Traditional record variables are emulated by chunked variables
with a chunk size equal to a record’s size.

Fig. 1(d) shows the file layouts of a chunked record variable
X with two records. We fix the chunk size along the record di-
mension to one, so no chunk spans across multiple records. A
record of record variables is structurally similar to a fixed-size
variable, except they share the metadata with other records.
For record variables, their chunk reference tables are placed
randomly within the data section, similar to data chunks. We
only allocate the chunk reference table of a record when the
application writes the record. For records that are not written,
the corresponding field in the chunk refs attribute is set to
NULL to indicate that the chunk does not exist. As depicted
in this example, both records 0 and 1 have N chunks. Similar
to fixed-size variables, we try to store chunks of a record in
a contiguous space for performance consideration. However,
chunks from different records are stored separately to avoid
the need to relocate existing records.

NetCDF data model allows at most one shared record
dimension and requires it to be the first dimension of all record
variables. Under this assumption, we can view each record as a
fixed-size variable with its own chunks and reference table. A
record variable can then be viewed as an array of records that
only need to support appending. These properties motivated
us to use the lightweight, array-based chunk reference table in
our design. In contrast, HDF5 has a more flexible data model
in which the number and location of unlimited dimensions are
unrestricted. The array-based data structure used in our design
may not work in this scenario since it will require frequent
insertion and reordering that can degrade performance.

E. Parallel Access Policy for Data Chunks

For parallel access to data chunks, we employ a similar
policy as HDF5. Chunks are assigned to a single process

4
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called the owner. Only the owner can directly modify the
chunk in the file. While a process can own multiple chunks,
a chunk can only be owned by one process. The owner is
responsible for performing compression, decompression, and
I/O operations on the chunk. If a process needs to access a
chunk owned by another process, it sends a request to the
owner of that chunk to have the owner access the chunk on
its behalf. As it requires the participation of other processes,
writing to compressed variables must be a collective operation.

Since accessing local chunks does not require communica-
tion, chunk ownership assignments can affect the communi-
cation overhead. We define the access size of a process to
a chunk as the size of all intersections between the process’s
local I/O requests and the chunk. To minimize communication
costs, we should assign a chunk to the process with the
largest access size. The total size of data being exchanged
under this assignment is minimal since the selected chunk
owner will have more data to send than any other processes
that can replace it. However, compression and I/O workload
can also affect the overall I/O performance. Chunk owners
are responsible for compression, decompression, performing
raw data I/O of the chunk, and handling requests from other
processes writing to the chunk. An imbalanced assignment
may concentrate the compression and I/O workload onto a few
processes, resulting in poor parallelism. In the worst case, a
process owning too many chunks may run out of memory for
chunk caching. As a result, chunks need to be assigned as
evenly as possible, not only for better performance but also to
fit within resource limitations.

While HDF5 prioritizes minimizing the communication cost
and only consider load balancing when there is a tie, our
design adopts a more flexible approach. We introduce a per-
process workload penalty that is proportional to the total
size of chunks a process already owns. For each chunk, we
calculate the preference score of a process by deducting the
workload penalty from the access size. The process with the
highest preference score becomes the owner of the chunk.
After assigning a chunk to a process, the workload penalty of
the process increases to make it more difficult for that process
to own another chunk.

F. Parallel writing to compressed variables

A process writes to a chunk owned by another process by
sending its write request to the chunk owner. If a process
accesses multiple chunks owned by the same owner, we use
MPI datatypes to combine the request, so there is only one
message sent to the owner. This strategy differs from HDF5’s
approach in that HDF5 sends one message per chunk. Each
request consists of the chunk ID and the position (a subarray)
within the chunk to write, followed by the data to write. The
data is converted to match the data type of the variable before
packing into requests. If an I/O request spans multiple chunks,
the sender breaks it into multiple requests.

A collective write starts by having processes perform a col-
lective communication, so chunk owners know the number of
incoming messages they need to receive. We use MPI datatype

to encapsulate the metadata and the data of requests without
explicitly packing the data into a contiguous memory buffer.
If the intersection covers a non-contiguous region, we use an
MPI subarray type; otherwise, we use a contiguous datatype
with a lighter overhead that benefits small I/O requests.

Chunk owners allocate a memory buffer, called the chunk
buffer, for every chunk they own. The chunk buffer store the
data of the chunk before compression. When the owner does
not completely write a chunk, the owner fills the chunk with
the variable’s fill value. If the chunk already exists in the
file, it is read back and decompressed into the buffer to be
merged with the new data. Once chunk buffers are initialized,
the chunk owner process incoming request messages, copying
the data to the corresponding place in the chunk buffer. After
processing all requests, including the owners’ own, the owners
compress the chunk buffer.

New chunks are stored together in the ”free space” between
NetCDF variables. They are arranged in the order of the chunk
ID. The file offset of a chunk can be calculated from the size
of the chunks. For existing chunks that are being modified,
the existing space is reused if the compressed size fits into the
existing location; otherwise, it is treated as a new chunk and
relocated to a new location. For now, we do not recycle the
space as we do not expect frequent modification variables.

We use MPI-IO to write compressed chunks directly into
the space reserved for data chunks. If a process owns more
than one chunk, we define an MPI file view to write all
chunks collectively. For each variable, one process will update
the reference table with the new offset and size of the
compressed chunks. We overwrite the existing reference table
if it exists. Otherwise, we create the reference and update the
chunk refs attribute to point to the new reference table.

G. Parallel reading from chunked variables

Reading works similar to writing, except the data flows in
reverse, from the chunk owner to the process that reads the
chunk. A process reading from a chunk sends a read request
to the chunk owner and waits for the response. Read requests
share the same metadata with write requests to describe the
chunk and the data’s location within the chunk to read. The
chunk owner constructs an MPI datatype to select the data
from the chunk buffer and send it to the requesting process.
The requesting process also uses MPI datatype to distribute
the data received directly into the application buffer. If the
application requests a data type inconsistent with the native
type of the variable, the data is converted by the requesting
process locally before returning to the user.

Our design relies on chunk owners to read and decompress
chunks for other processes. HDF5, on the other hand, sup-
ports reading by having each process independently read and
decompress the chunks they need. It allows chunk owners
to reuse the chunk buffer during the entire session without
the concern of data consistency. Also, we avoid performing
repeated decompression work when multiple processes are
reading the same chunk. From a different aspect, the HDF5s
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approach enjoys the advantage of low communication over-
head since the only collective operation is reading the raw
data. Their strategy can be very efficient when a chunk is
read by only one process. We will further discuss the pros
and cons of the two approaches in the experiment section.

IV. I/O REQUEST AGGREGATION

Most applications store their data across multiple variables.
Each variable may represent a variable in the simulation or
a feature in the gathered data. When applications access a
NetCDF file, they often make multiple I/O requests to access
multiple variables or to access different parts of a variable.
If we can aggregate and handle these I/O requests together,
we will have more opportunities to perform optimization.
PnetCDF’s non-blocking API [10] provides native support
to I/O aggregation. It allows the application to stage I/O
operations in PnetCDF and process them at once.

Aside from reducing the communication overhead, the most
important benefit of I/O aggregation is improved scalability.
Recall that only the owner can access a chunk directly, the
degree of parallelism is then capped at the number of chunks.
Reducing the chunk size to get more chunks may not be
feasible because chunks need to have a certain size to achieve
a decent compression ratio. Handling multiple requests across
different variables at a time allows us to parallelize across
chunks from all variables. With more chunks to distribute
among processes, we can further extend the scalability.

We provide an example to help illustrate the idea. Consider
an application running on N processes that write to M (< N)
small variables. Each variable has only one chunk due to its
small size. PnetCDF API only allows the application to access
one variable per call. Since there is only one chunk, only one
process can perform compression and the I/O, serializing the
entire operation. If we can handle all requests together, the
penalty incurred from owning a chunk prevents a process from
winning chunks in another variable. It allows M processes
to perform the compression and the I/O in parallel. Since
requests to different variables are combined into one message,
the number of point-to-point communication does not increase.

Supporting non-blocking I/O on compressed variables re-
quires very little modification to the procedure described in
Section III-F and Section III-G. We append the variable ID as
metadata in each chunk access request so that the chunk owner
can tell which variable is accessed when the request message
contains requests of different variables. It allows a process
to access chunks of different variables owned by the same
owner in a single request message. Since the way a process
accesses a chunk is irrelevant to the variable containing the
chunk, no change is required on the other part of the procedure.
The owner of the first chunk of a variable is responsible for
updating the variable’s reference table.

When the application uses non-blocking I/O, the chunk
owner assignment is delayed until the time the aggregated
request is flushed. Having the information of all I/O requests
allows PnetCDF to make better chunk owner assignments
compared to the case where only the first request is visible.

When assigning chunk owners for multiple variables, PnetCDF
will overlap the communication in assigning a variable with
the computation of the access size of another variable to hide
the communication overhead.

V. EXPERIMENT

We ran experiments on Cori, a Cray XC40 supercomputer
at National Energy Research Scientific Computing Center
(NERSC) [11], [39] boosting both Haswell and KNL nodes.
We used Haswell nodes for our experiment. There are 2,388
Haswell nodes connected by Cray Aries with Dragonfly topol-
ogy providing 5.625 TiB/s global bandwidth. Each node has
2 Intel® Xeon™ E5-2698 v3 processors providing 32 cores/64
threads that are matched with 128 GB DDR4 2133 MHz
memory. We ran the experiments on Cori’s Cray Sonexion
2000 file system, a Lustre with 248 OSTs on 248 servers. We
configured our test folder to use 64 stripes and 1 MiB stripe
size. The theoretical peak parallel I/O bandwidth under this
setup is around 57.54 GiB/s for the lustre file system [39] and
about 1 GiB/s per compute node [40].

We evaluated our solution on two commonly seen I/O
patterns in HPC applications – checkerboard data partition
pattern and FLASH I/O pattern. We also tested it on I/O
kernels extracted from two real-world applications. One of
them is the E3SM application [12] with a fragment and near-
random I/O pattern. Another is the Pandana I/O [14] module
with a block-appending I/O pattern similar to FLASH I/O. We
used a mix of real and artificial datasets. Artificial datasets give
us precise control of the compression ratio, while real datasets
represent the compression ratio of real-world applications.

To compare the I/O performance between compressed and
non-compressed data, we introduced a measurement call ef-
fective I/O bandwidth. The effective I/O bandwidth is defined
as the size of the data before compression divided by the total
time of I/O operation. The effective bandwidth accounts for
the size reduction effect of doing compression.

For each dataset, we compared the effective bandwidth
between PnetCDF (our solution) and HDF5 using a contiguous
storage layout, chunked storage layout, and chunked storage
layout with the level 6 deflate (zlib) filter. We repeated
each experiment at least 3 times and take the best result to
mitigate the interference from other applications. Experiments
of different configurations are interleaved in which reading
tests are set as far apart as possible from the corresponding
writing test to reduce the effect of file system caching.

We used the latest version of PnetCDF (1.11.2) and HDF5
(1.12.0) at the time of our experiment. Both libraries were
built with the default toolchain on Cori and ran with their
default configurations. The chunk size and compression related
parameters are set to the same for both libraries.

We augmented both PnetCDF and HDF5 to measure time
spent in internal functions so we can make a more detailed
comparison and identify potential areas for improvement.
Since the architecture and implementation of PnetCDF and
HDF5 are quite different, it is not possible to make a one-to-
one comparison of steps between the two libraries. Instead, we
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organize them into four types of operations - initialization, data
exchange, compression/decompression, and I/O. Initialization
includes operations to initialize the data structure to represent
compressed variables (datasets), such as building the reference
table and reading static variable metadata. The data exchange
time is the time spent on exchanging chunk access requests be-
tween processes, including packing and unpacking the request
messages and communications to synchronize the message
size. The compression time is the time spent compressing the
data chunks. The I/O step includes writing compressed chunks
to the file and updating the chunk reference table.

A. Checkerboard I/O

In the checkerboard I/O pattern, a multi-dimensional vari-
able is divided into fixed-size rectangular subarrays. Each
process accesses one subarray. In MPI-IO, it is equivalent
to setting the file view with a two-dimensional subarray
datatype (MPI Type create subarray). Checkerboard patterns
are commonly seen in simulation frameworks using fixed-
sized grids. We used this pattern to study the relation of I/O
performance to the compression ratio. To do so, we generated
a chunk with completely random numbers so that it is almost
not compressible. We mixed it with a different portion of 0s
(fully compressible) to create chunks of different compression
ratios. We repeated this chunk to form a 2-D variable so that
all chunks’ size and compression costs are consistent. Using
this method, we generated three different datasets. The first
one is an uncompressible dataset (random-100) containing all
random bits. The second one is a reasonably compressible
dataset (random-50) that contains half random bits and half
0s. The third one is a highly compressible dataset (random-
10), which contains only 10% random bits. Since the goal was
to evaluate our chunked storage solution’s performance instead
of the underlying compression algorithm, the data’s content is
irrelevant. Using an artificial dataset allows us precise control
of the compression ratio to achieve our goal.

In this experiment, each process writes a 4k by 4k subarray
in a squared variable. We set chunk size along each dimension
to be twice the per-process subarray size so that each process
writes to a quarter of a chunk. This setting simulates the
situation mentioned above while creating the need to exchange
data for evaluation purposes. The dataset contains only one
variable, so aggregation provides no advantage. We ran it on
up to 128 nodes with 32 processes per node.

Figure 2 shows the result of the checkerboard I/O under
different compression ratios. In terms of write performance,
PnetCDF out-perform HDF5 in most cases. On 4096 pro-
cesses, PnetCDF is up to three times faster than HDF5.
Timing breakdown suggests that HDF5 spent significantly
more time on initialization. In addition to HDF5’s inherently
heavier metadata operation, we found that HDF5 always fills
new chunked and filtered datasets (variables) with background
value regardless of settings (property list), effectively writing
the dataset another time. We have no clue about the reason
behind their design.

When it comes to reading performance, HDF5 scales better
than PnetCCDF. It is a result of HDF5’s approach to handling
collective read on compressed datasets. As discussed in section
3, HDF5 has each process independently read and decompress
the chunks they need. In this experiment, a chunk is only
shared by four processes, making independent MPI read faster
than the collective one. Since each process only reads from
a single chunk, performing repeated decompression across
processes does not increase the overall decompression time.
Without the communication overhead to exchange data, HDF5
overtook PnetCDF when scaling to 4096 processes.

Chunked and compressed layout out-performs the contigu-
ous storage layout even on the non-compressible dataset due to
more efficient I/O pattern [41], [42]. While compression can-
not improve write performance compared to chunked storage
layout except on the highly compressible dataset, it can boost
read performance on the 50% compressible dataset in both
PnetCDF and HDF5. The main reason is that inflate (decom-
pression) runs significantly faster than deflate (compression)
[43]. We need more size reduction in I/O to compensate for
compression cost than that to compensate for decompression
cost.

B. FLASH I/O

In the FLASH simulation framework, the problem space
consists of equal-sized blocks. Blocks do not always combine
into a single rectangular array as in checkerboard I/O pattern;
instead, they can form irregular shapes or multiple discontin-
ued rectangular spaces. Blocks are assigned to processes. A
common way to store the blocks on a disk is to stack them one
after another that resembles a rectangular variable in which
the number of blocks is another dimension. Blocks handled by
the same process are usually stored together. The resulting I/O
pattern is a block-appending pattern where each process writes
blocks in a contiguous space after blocks from processes with
a smaller rank. This type of I/O pattern is commonly seen in
applications that use adaptive mesh refinement (AMR) [44],
such as the FLASH code [45] and AMReX [46].

We used the data generated by the Galaxy Cluster Merger
simulation, a FLASH [45] application, from the sample
datasets of the yt project [47]. The variables in the dataset
are made up by stacking 3-dimensional blocks into a 4-
dimensional variable. There are nine variables of size 43065 x
16 x 16 x 16 in the dataset, totaling 5.91 GiB. We set the chunk
size along the stacking dimension to roughly the number of
blocks per process to reduce communication overhead.

Figure 3 shows the result of Galaxy Cluster Merger dataset.
Our solution significantly outperforms HDF5 when writing
the compressed variables. The timing breakdown shows that
our data exchange and I/O time are noticeably lower than
HDF5, suggesting a significant advantage of aggregating nine
variables’ requests. HDF5 has an edge when it comes to
reading. The reason is that we set the chunk size to match the
per-process block size. It makes chunk boundaries mostly align
with the processes’ access boundary, resulting in a chunk-per-
process I/O pattern. This kind of pattern favors the independent

7

Authorized licensed use limited to: Northwestern University. Downloaded on April 26,2022 at 15:52:46 UTC from IEEE Xplore.  Restrictions apply. 



93

0

2

4

6

8

10

12

14

64 256 1024 4096

E
ff

e
c

ti
v

e
 B

a
n

d
w

id
th

 (
G

iB
/s

)

Number of Processes

hdf5 - p

 hdf5 - c

 hdf5 - z

pnc - p

pnc - c

pnc - z

(a) Writing Random-100 dataset

0

5

10

15

20

25

64 256 1024 4096

E
ff

e
c

ti
v

e
 B

a
n

d
w

id
th

 (
G

iB
/s

)

Number of Processes

hdf5 - p

 hdf5 - c

 hdf5 - z

pnc - p

pnc - c

pnc - z
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(d) Writing the Random-50 dataset
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(f) Compressed Random-50 breakdown
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(g) Writing the Random-10 dataset
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Fig. 2: Checkerboard I/O end to end time (bars) and bandwidth (lines). In the legend, ’pnc’ means PnetCDF and our solution,
’-p’ means contiguous layout, ’-c’ means chunked layout, and ’-z’ means chunked and compressed layout. (c), (f), and (i)
shows the time spent in each steps on compressed Random-100, Random-50, and Random-10 datasets respectively.

decompression approach used by HDF5 as there is no repeated
read and decompression work among processes. Due to an
efficient I/O pattern and a mild compression ratio of 2.65, both
HDF5 and our solution cannot achieve higher I/O bandwidth
than writing to uncompressed variables.

C. Pandana I/O

We implemented an I/O benchmark to simulate the I/O
patterns in the Pandana framework [13] used in the NuMI
Off-axis νe Appearance (NOvA) experiment designed to study
neutrino oscillations [14]. In the NoVA experiment, sensors are
set up to monitor particle collision events and other events
of interest. The events gathered in a round of the NoVA
experiment are collected in an HDF5 file. For each type of
event, there is an HDF5 group to store the event of that type.
Events are stored as a set of 1-D variables. Each variable
represents an attribute of the events. Elements at the same
index across all variables represent an event.

The files generated by multiple rounds of the NoVA ex-
periment are combined into a single HDF5 file and fed to
the analysis program. The concatenation is performed group

by group. Each process reads the events in the files they are
assigned to and appends the events to a contiguous space in the
combined file. The I/O pattern of the concatenation resembles
the block-appending pattern of the FLASH I/O benchmark.

The analysis program assigns each process a contiguous
block of events to analyze and then output the combined
result. The read pattern of Pandana I/O also resembles the
concatenation process’s block-appending pattern except that
the I/O size per process can differ. Events are assigned to
process based on some predefined rule unrelated to the location
of the event before concatenation. Depending on the need of
the analysis task, only required types of events are read.

We gathered the data from 1951 rounds of NoVA experi-
ments. We conducted the experiment using a subset of events
(groups) used in one of the NOvA experiment’s analysis tasks.
The subset contains 108 variables organized in 15 groups
totaling 7.09 GiB. We set the chunk size to 1 MiB. In this
experiment, we assume the read pattern is the same as the
write pattern. We ran the experiment on up to 64 nodes with
32 processes per node.

Figure 4 shows the result on the NoVA dataset. Despite a
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(b) Reading the GCM dataset

0
2
4
6
8

10
12
14
16

hdf pnc hdf pnc hdf pnc hdf pnc hdf pnc hdf pnc hdf pnc hdf pnc

wr rd wr rd wr rd wr rd

256 512 1024 2048

Ti
m

e
 (

se
c

)

Number of Processes

Initialization Data Exchange

Data I/O Compression/Decompression

(c) Compressed GCM dataset breakdown

Fig. 3: FLASH I/O pattern end to end time (bars) and bandwidth (lines) on the Galaxy Cluster Merger (GCM) dataset. In
the legend, ’pnc’ means PnetCDF and our solution, ’-p’ means contiguous layout, ’-c’ means chunked layout, and ’-z’ menas
chunked and compressed layout. (c) shows the time spent in each steps on compressed GCM datasets.
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(b) Reading the NoVA dataset
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Fig. 4: Pandana I/O pattern end to end time (bars) and bandwidth (lines) on the NoVA dataset. In the legend, ’pnc’ means
PnetCDF and our solution, ’-p’ means contiguous layout, ’-c’ means chunked layout, and ’-z’ menas chunked and compressed
layout. (c) shows the time spent in each steps on compressed NoVA datasets.

decent compression ratio of 4.92, the write performance of
the compressed storage layout is poor due to the imbalanced
compression workload. The dataset contains 15 groups of
varying sizes, some are large while others are small. Small
groups do not contain enough chunks to enable good paral-
lelism. Consequently, only a few processes are performing the
compression while other processes wait.

With the advantage of I/O aggregation, PnetCDF out-
perform HDF5 by a huge margin on all storage layouts for
both reading and writing. PnetCDF performs 5 and 14 times
faster than HDF5 on writing and reading, respectively, when
using a compressed storage layout. Unlike that in FLASH I/O,
HDF5 does not perform well on reading. We can see in the
breakdown chart that HDF5 spent most of the time reading the
chunks. The reason, aside from the lack of I/O aggregation,
is the way the dataset is structured. Since data is divided into
109 variables, each variable is relatively small and has only a
few chunks. When reading a variable, multiple processes will
read and decompress the same chunk for part of the data they
need. Those repeated independent read requests from different
processes effectively increase the total amount read and put
additional workloads on the file system.

D. E3SM I/O pattern
Energy Exascale Earth System Model (E3SM) is a coupled

model used for modeling, simulation, and prediction of the
Earth’s climate [12]. We evaluated our implementation with a

benchmark program that reconstructs E3SM’s I/O kernel using
the I/O pattern captured by the PIO library [48]. The problem
domain is represented by cubed sphere grids, which produce
long lists of small and non-contiguous I/O requests across
MPI processes. On top of that, it involves a large number
of variables, resulting in a high metadata handling workload.
The E3SM I/O pattern presents one of the most challenging
I/O patterns to the underlying I/O library.

We used the data and the I/O pattern collected from a high-
resolution simulation of E3SM [49]. E3SM contains specific
models for each component in the earth system. Each model
writes its own output file with a different file structure and I/O
pattern. We take the output from the atmospheric component
(F case) and the oceanic component (G case). The F case
contains 414 variables totaling 15 GiB in size. The largest
variables have a shape of 72 x 777602, followed by variables
of shape 1 x 777602, and various small-sized variables. The G
case contains 52 variables totaling 80 GiB in size, including
variables with a shape of 3693225 x 80, 7441216 x 80,
11135652 x 80, and various small variables.

We adjusted the chunk length along the longest dimension
of a variable to control the size of the chunks. The chunk
length along other dimensions is set to the dimension of the
variable. We set the chunk size to roughly 1 MiB for the F case
and 10 MiB for the G case. Due to its smaller size, the F case
needs a smaller chunk size to ensure there are enough chunks
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(a) E3SM atmorspheric component
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(b) E3SM oceanic component
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Fig. 5: E3SM I/O end to end time (bars) and bandwidth (lines). (c) shows the time PnetCDF spent in each steps on compressed
E3SM datasets. We use ’F’ for atmorspheric component, ’G’ for oceanic component.

to divide among the processes. We used a larger chunk size in
the G case to reduce the overhead on managing the chunks.

The E3SM benchmark poses many challenges. One of them
is the number of variables in the output file. Building the refer-
ence table and assigning the chunks of those variables can take
be time-consuming. Another challenge is a large number of
fragment I/O requests. Packing, sending, and unpacking those
requests results in significant overhead to the data exchange
phase. They also slow down the chunk owner assignment
calculation as there are a large number of requests to consider.
The other factor is the highly irregular I/O pattern in which any
process may write to regions scattered throughout the entire
variable. No matter how the chunk owners are assigned, a large
amount of remote chunk access is unavoidable.

Due to the disadvantages mentioned above, we do not
expect the chunked and compressed layout to outperform
the contiguous layout in terms of overall I/O time. We only
hope aggregation can help to manage the communication
overhead to an acceptable level. We tried to run the E3SM I/O
benchmark using HDF5 API for comparison. Unfortunately,
HDF5 could not finish in a reasonable time despite our
optimization efforts. The main reason is that HDF5 API only
accepts one request to one dataset at a time. With hundreds
of datasets and millions of small I/O requests per process, it
is infeasible to process them one by one. For this reason, we
focus on comparing our solution to the contiguous data layout
in PnetCDF and studying the timing breakdown.

Results are shown in figure 5. The overall compression ratio
is 2.27 for the F case and 1.99 for the G case. Compared
to contiguous storage layout, parallel write to compressed
variables only provide 20%∼50% of effective bandwidth in
both F and G cases. In terms of parallel read performance, the
compressed layout can out-performing the contiguous layout
on a smaller number of processes. A possible reason is that the
decompression workload is generally lighter than compression.

As we scale up the experiment, the performance of the
compressed storage layout drops significantly. The timing
breakdown shows that the time spent in data exchange in-
creases with the number of processes. It is caused by the
overhead to manage MPI asynchronous communications. The
E3SM I/O pattern results in a near-all-to-all communication

pattern in the data exchange step. A process has to send
chunk access requests to many chunk owners since the data
it accesses spans across a large number of chunks. Thus,
the number of MPI asynchronous communications increases
with the number of processes writing the variables. A large
number of simultaneous MPI asynchronous communications
can significantly impact the performance, as suggested in [50].

VI. CONCLUSION

In this paper, we introduced the compression feature for
classic NetCDF variables. We referenced HDF5’s approach
and designed a chunked storage layout for the classic NetCDF
data model. We compared discussed the pros and cons of
our design versus HDF5’s under different I/O patterns. We
proposed the concept of using I/O aggregation to alleviate the
limitations on parallel I/O performance on compressed data.

We evaluated our solution on a supercomputer using I/O
kernels of real-world applications. The result shows that
I/O aggregation is very effective at improving parallel I/O
performance on compressed data when there is more than
one variable involved. Based on this finding, we strongly
encourage other developers to support I/O aggregation in
their I/O library or application to enable the opportunity for
optimization across multiple I/O requests.

We plan to incorporate our work in the PnetCDF library.
We hope our compression feature in PnetCDF can accelerate
the adaptation of data compression of NetCDF applications.
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