
A Fast DBSCAN Algorithm with Spark
Implementation

Dianwei Han, Ankit Agrawal, Wei-keng Liao and Alok Choudhary

Abstract DBSCAN is a well-known clustering algorithm which is based on
density and is able to identify arbitrary shaped clusters and eliminate noise data.
Parallelization of DBSCAN is a challenging work because there is an inherent
sequential data access order and based on MPI or OpenMP environments, there
exist the issues of lack of fault-tolerance and there is no guarantee that workload is
balanced. Moreover, programming with MPI requires data scientists to handle
communication between nodes which is a big challenge. We present a new parallel
DBSCAN algorithm using Spark. kd-tree technique is applied in our algorithm to
reduce search time. More specifically, a novel merge approach is used so that no
communication between executors is required while partial clusters are generated.
Appropriate and efficient data structures are carefully used in our study: Using
Queue to contain neighbors of the data point, and using Hashtable when checking
the status of and processing the data points. Also other advanced data structures
from Spark are applied to make our implementation more effective. We implement
the algorithm in Java and evaluate its scalability by using different number of

D. Han (✉) ⋅ A. Agrawal (✉) ⋅ W. Liao (✉) ⋅ A. Choudhary (✉)
EECS Department, Northwestern University, Evanston, IL 60208, USA
e-mail: dianweih@eecs.northwestern.edu

A. Agrawal
e-mail: ankitag@eecs.northwestern.edu

W. Liao
e-mail: wkliao@eecs.northwestern.edu

A. Choudhary
e-mail: choudhar@eecs.northwestern.edu

© Springer Nature Singapore Pte Ltd. 2018
S. S. Roy et al. (eds.), Big Data in Engineering Applications,
Studies in Big Data 44, https://doi.org/10.1007/978-981-10-8476-8_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8476-8_9&domain=pdf

processing cores. Our experiments demonstrate that the algorithm we propose
scales up very well. Using data sets containing up to 1 million high-dimensional
points, we show that our proposed algorithm achieves speedups up to 6 using 8
cores (10 k), 10 using 32 cores (100 k), and 137 using 512 cores (1 m). Another
experiment using 10 k data points is conducted and the result shows that the
algorithm with MapReduce achieves speedups to 1.3 using 2 cores, 2.0 using 4
cores, and 3.2 using 8 cores.

Keywords DBSCAN ⋅ Scalable data mining ⋅ Big data ⋅ Spark framework

1 Introduction

Clustering is a data mining approach that divides data into different categories that
are meaningful, useful, or both [20]. Cluster analysis has been successfully applied
to many fields: bioinformatics, machine learning, information retrieval, and statis-
tics [20]. Well-known algorithms include K-means [13], BIRCH [24], WaveCluster
[19], and DBSCAN [6]. Current clustering algorithms haven been categorized into
four types: partitioning based, hierarchy-based, grid-based, and density-based [6].
Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a
density based clustering algorithm [6].

Parallel DBSCAN has been implemented with MPI and OpenMP [4, 7, 15, 25].
Generally, an MPI implementation can obtain better performance but it requires the
programmers to take care of implementation in detail, such as how to partition the
data, how to deal with communication, synchronization, file location, and workload
balancing. Besides parallelization with MPI, MapReduce-based approach is pre-
sented as well [7, 9, 14].

We propose a new distributed parallel algorithm with Spark that implements
DBSCAN. A master-slave based approach is as follows. The algorithm first reads
data from the Hadoop Distributed File System (HDFS) and forms Resilient Dis-
tributed Datasets (RDDs), transforming them into data points. Certainly, this pro-
cess is done in Spark driver. It then sends the RDDs into multiple executors. Within
each executor, partial clusters are generated and sent to driver at the end of foreach
statement. Each executor just performs its computation without communicating
with others. This way we avoid shuffle operations that are very expensive. So we
place some additional points (SEEDs: the new term we introduce in our paper) in
each partial cluster. After all the partial clusters are collected through shared
variable accumulator, the algorithm identifies the clusters that are supposed to be
merged by SEEDs. Merging is done in driver code too. In our new design and
implementation, we use the power of shared variables of Spark framework:

174 D. Han et al.

broadcast and accumulator. Also, in order to shorten the search time for points’
neighbors, we implement Java-based kd-tree [3] to reduce complexity from O(n2) to
O(nlogn). The experiments performed on a distributed-memory machine show that
the proposed algorithm can obtain scalable performance.

The organization of the paper is as follows: In Sect. 2, we briefly give an
overview of two frameworks based on big data: Map Reduce and Spark, and the
basic idea of DBSCAN algorithm. Our proposed DBSCAN algorithm is introduced
in Sect. 3. In Sect. 4, we present the parallel implementation with Spark. The
experiments and the results are presented in Sect. 5, followed by some concluding
remarks in Sect. 6.

2 Background

In this section, we first briefly review the basic idea of DBSCAN algorithm. And
then we introduce two distributed computation frameworks that are very powerful
and widely used in big data applications.

2.1 DBSCAN Algorithm

DBSCAN is a clustering algorithm proposed by Ester et al. [6]. And it has become
one of the most common clustering algorithms because it is capable of discovering
arbitrary shaped clusters and eliminating noise data [6]. The basic idea of this
algorithm is finding all the core points and forming the clusters by clustering core
points with all points (core or non-core) that are reachable from them. Essentially,
DBSCAN algorithm is based on three basic definitions: core points, directly
density-reachable, and density-reachable [25]. Given a data set D, of points.

eps-neighborhood of a point p is the neighborhood of p∈D within a radius eps.

Definition 1 A point p is a core point if it has neighbors within a given radius
(eps), and the number of neighbors is at least minpts (which is a threshold). In this
case, the number of neighbors is called density.

Definition 2 A point y is directly density-reachable from x if y is within eps-
neighborhood of x and x is a core point.

Definition 3 A point y is density-reachable from x if there is a chain of points p1,
p2,…, pn, with p1 = x, pn = y and pi + 1 is directly density-reachable from pi for
all 1 <= i < n, pi ∈ D. 

A Fast DBSCAN Algorithm with Spark Implementation 175

The pseudocode of the DBSCAN algorithm is given in Algorithm 1 [8]. The
algorithm starts with an arbitrary point p ∈ D and checks its eps-neighborhood
(Line 4). If the eps-neighborhood size is bigger than pre-defined number minpts, the
code generates a new cluster C. The algorithm then retrieves all density reachable
points from p in D, and add them to the cluster C (Line 8–20). Otherwise, if the eps-
neighborhood contains less than minpts points, then p is marked as noise (Line 6).
The computational complexity of Algorithm is O(n2) where n is the number of data
points. If we use spatial indexing, the complexity reduces to O(nlogn) [3].

2.2 Two Powerful Frameworks Based on Big Data:
MapReduce and Spark

In Hadoop version 1, MapReduce is the only data processing framework that is
available for distributed computation. But in Hadoop version 2, based on Yarn
(resource manager), MapReduce, Spark, and other data processing frameworks are

176 D. Han et al.

available. MapReduce and Spark may share the same HDFS, but it should be
pointed out that Spark jobs can be run with or without Yarn (Standalone mode).

(1) Map Reduce: In big data domain, MapReduce is a simple but powerful
framework which makes programmer easily implement parallel processing. It is
based on Hadoop Distributed File System (HDFS), which allows programmers
to focus mainly on the problem itself instead of the low level implementation
details. Figure 1 tells us about how this programming model works. MAP
workers read data from HDFS and process the data based on the business logic
and then write intermediate data to local disk for sorting and shuffling process.
It is also in the form of key-value pair. After a reduce worker is notified by
master, it uses remote procedure call to read data from local disk of MAP
workers, and then sorts data so that all occurrences of the same key are grouped
together. The output of reduce function will be appended to final output files
(generally HDFS).

Compared with the other distributed computation frame-work, MapReduce has
the following advantages:

• Extremely Scalable. It does not require the support from centralized
RAID-based SAN or NAS storage systems. Every node has its own local
hard-drives. The nodes are loosely coupled and connected with standard net-
work devices. So adding and removing nodes to a cluster becomes very easy and
convenient, and has no impact to running MapReduce jobs [17].

• Highly Parallel and Abstracted. Based on the frame-work’s principle, pro-
grammers do not have to take care of low level implementation details such as
message transferring between master and workers, file location, and workload
balancing. They only need focus on the problem itself. One of the major con-
tributions of MapReduce is that it supports parallelization automatically. The
programmers only need to implement map() method of Mapper class and reduce
() method of Reducer class and the framework will do the rest. However, for

Split

Split

Split

Input files

read
Worker

Worker

Worker

Map phase Intermediate
Data

write

Output filesReduce
phase

Worker

remote read

local write
Worker

Output
file

Fig. 1 An overview of data
flow in MapReduce

A Fast DBSCAN Algorithm with Spark Implementation 177

complicated job, the programmers still need to figure out the number of Mappers
and how to split the input data.  

• Highly Reliable and Fault-tolerant. From the data source perspective, HDFS
uses the replication strategy to handle data source reliability. A single process
failure in MPI will cause the whole job to fail. In MapReduce framework,
another task will be automatically launched if one task fails and the job will
continue running. This feature is especially useful and important for
long-running jobs.  

(2) Spark: At a high level, a running Spark application has one driver process
talking to many executor processes, sending them work to do and collecting the
results of that work. The first thing a Spark program must do is to create a
SparkContext object in driver code, which tells Spark how to access a cluster.
Then it reads one file or multiple files in HDFS and processes them as Dis-
tributed Datasets (RDD), which is a collection of elements partitioned across
the nodes and can be operated on in parallel. RDD is the main abstraction Spark
provides, and RDDs can be created from a file in the Hadoop file system or by
transforming other RDDs. We want to point out that Spark can use not only its
own APIs to read data but also Hadoop API to read data (newAPIHadoopFile
method in this case). TaskScheduler launches tasks to executors via Resource
manager, which in this case, is YARN. After executors complete their tasks,
they will send the results back to the driver (see Fig. 2) (if it is the final RDD of
an action such as count()) [12], or write output to external storage. Spark
framework captures all the important features that MapReduce have. In addi-
tion, it has the following new features.

• In-memory computations. In Spark, Resilient Distributed Datasets (RDDs)
are the first abstraction that allows programmers to perform in-memory
computations on large clusters. RDDs are motivated by two types of
applications that MapReduce handle inefficiently: iterative algorithms and
interactive data mining [22]. Figure 1 depicts that MapReduce frameworks
does not fit iterative algorithms. In order to use MapReduce model to tackle
iterative algorithms, many rounds of map-reduce executions will be per-
formed which is not very efficient because map’s intermediate results should
be written to local disks and then they are remotely read to reduce workers,
and disk I/O operations are very expensive in this case. In Spark, the benefit
of keeping everything in memory is the ability to perform iterative com-
putations at blazing fast speeds.

178 D. Han et al.

• Supporting Streaming data, complex analytics, and real time analysis.
MapReduce offers a very simple but powerful programming model that are
efficient for data-intensive algorithms [11]. But we can not use MapReduce
to perform real time analysis and implementing complex graph based
algorithms in an efficient manner.  

• Fast fault recovery. In MapReduce old version, if the JobTracker does not
receive any heartbeat from a TaskTracker for a specified period of time, the
JobTracker understands that the worker associated to that TaskTracker has
failed. When this situation happens, the JobTracker needs to reschedule all
pending and in-progress tasks to another TaskTracker, because the inter-
mediate data belonging to the failed TaskTracker may not be available
anymore [21]. After hadoop-0.21, checkpointing was added where Job-
Tracker records its progress in a file. When a JobTracker starts, it can restart
work from where it left off. MapReduce uses replication strategy to handle
fault recovery. On the other hand, Spark reconstructs RDDs via lineage to
handle this issue. Compared to the replication method, which consumes
more memory, reconstruction of RDDs takes shorter time [23].

  Even though spark is very efficient, offers parallelization automatically, we still
need to put much effort to avoid shuffle operation. So in our implementation of
DBSCAN we avoid all-to-all communication.

SparkContext

Spark Driver

Spark Executor

Spark Executor

Spark Executor

DAG
Scheduler

TaskSet

Task
Scheduler

Task

Result

Result

Result

Task

Task

Fig. 2 An overview of data flow in spark

A Fast DBSCAN Algorithm with Spark Implementation 179

3 Novel DBSCAN with Spark Implementation

To our best knowledge, there are many DBSCAN implementations with Hadoop’s
MapReduce [9, 14, 17]. But very few people implement DBSCAN with Spark
because the programmers need to design a new algorithm to avoid shuffle opera-
tions to make their parallelization more efficient. For example, after one data point’s
state is updated in one executor we need to spread this updating across the cluster.
So this will introduce shuffle operations which are very expensive in Spark. Let us
take a look at the pseudocode of our new DBSCAN’s algorithm.

3.1 DBSCAN Algorithm with Spark

The pseudocode of the DBSCAN algorithm with Spark implementation is given in
Algorithm 2. The algorithm starts with the code in Spark driver, which reads data,
generates RDDs and transforms them into appropriate RDDs (Line 1, Line 2, and
Line 3). The code in Spark executor is in Lines 4 through 32. After comparing with
Algorithm 1, we can see that two places are new: Line 15 and Lines 29 through 31.
We assume each executor only deals with the points that belong to it. Otherwise,
there would be a lot of overlap of computation between different executors. Placing
SEEDs is in Line 15. The detailed description regarding it will be given in next
Section. The partial clusters are sent back to driver right before the executor finishes
its task by accumulator, which also will be explained in detail in the next Section.
This implementation is meant for ensuring that merging process will not be started
until all the executors finish their tasks. Lines 33 through 34 perform merging
partial clusters and produce the final global clusters (see Algorithm 4). So the code
[1–3] is run in Driver mode, code [4–32] is run in Executor mode, and code [33–34]
is run in Driver mode.

180 D. Han et al.

3.2 Two Important Data Structures Affecting Performance

Using Java as the programming language in our implementation, we need to
consider using the appropriate data structures for efficiency. Here, two data struc-
tures Hashtable and Queue are discussed.

A Fast DBSCAN Algorithm with Spark Implementation 181

If we take a look at Line 14, this operation should be put(key, value), which is
usually O(1 + n/K) where K is the hash table size. If K is large enough, the result is
effectively O(1). Method containsKey(key) is performed in Line 5, Line 7, and Line
20. Again, under normal circumstances, it is O(1). The add operations on Queue are
performed in Line 7 and Line 20, and remove operation on Queue is performed in
Line 13. The number of add operations should be the same as the number of remove
operations according to the condition in Line 12 (while loop will not terminate until
it is empty). Among LinkedList, ArrayList, and Vector, the best performance on
both add and remove operations is obtained using LinkedList. In our code, we thus
use LinkedList to implement Queue.

4 Novel Techniques in Parallel DBSCAN with Spark

In this Section, we will present the implementation details of our parallel DBSCAN
algorithm with Spark. The pseudocode of algorithms is given in the first part. Then
we analyze the time complexity of the whole algorithm.

182 D. Han et al.

4.1 New Clustering Algorithm Without Communication
Between Executors

We need to update data points’ state by map function if we apply the traditional
method, and then propagate this update to other executors. However, that imple-
mentation will introduce a shuffle operation in order to make this update visible by
other executors. Here, we propose a novel clustering algorithm to get around the
shuffle operation. After data points have been partitioned to each executor, we just
let each executor compute the partial clusters locally for data points that are
assigned to this executor. The merging process is deferred until all the partial
clusters have been sent back to the driver. This new design, however, introduces
new challenges: how to create the partial clusters in executors so that they can be
merged in the driver? And how to identify those partial clusters which are supposed
to be merged into one cluster? The pseudocode of algorithms and an example are
given as follows.

Algorithm 3 gives the basic idea of our design. In order to avoid overlap of
computation of partial clusters, we would let individual executors only deal with the
points that belong to this partition so that the executors do not have to communicate
to spread points’ updated states across the clusters. However, we could not merge
the partial clusters into the global clusters after all the partial clusters are collected
in driver because there are no global states of these partial clusters. Therefore, we
come up with a new idea, using SEEDs, which are points that do not belong to the
current partition. And these SEEDs serve as something like markers so that we can
easily identify the outer master partial clusters by using them and merge them into a
bigger cluster. The SEEDs are not related to the locations. If the current point’s
index is beyond the range of current partition it is taken as a SEED. So the main
goal on executor side is to place SEEDs, and on driver side, we find out SEEDs and
identify master partial clusters and merge them.

Before moving on to the algorithm of digging out SEEDs from partial clusters in
Spark driver, we would like to use an example to display how to identify SEEDs
and search for master partial clusters. Figure 3a shows that there are 2 partial
clusters from 2 partitions. SEEDs are those points whose indexes are beyond the
partition’s range. For example, for C[0], its range is from 0 to 2499. So the point
whose indexe is greater than 2499 is 3000. Then the algorithm will identify the
master partial clusters. Obviously, for 3000, the master partial cluster is C[5]
because it contains 3000 and 3000 is a regular element in this cluster. When we
merge two partial clusters we need to remove duplicate elements. Figure 3b show
the resulting cluster C[0].

A Fast DBSCAN Algorithm with Spark Implementation 183

In Spark driver, Algorithm 4 shows how to use SEEDs to merge partial clusters
into global clusters. First of all, it identifies the SEEDs by comparing elements with
its range. In general, the number of SEEDs should be equal to or greater than the
number of partitions. So we obtain an array of seeds (see Line 3). Lines from 4
through 8 form a for loop, which finds the master cluster that contains the seed as a
regular element, then merges the two clusters, and finally, updates the status of
master cluster. When the for loop terminates the status of current cluster is updated
from ‘unfinished’ to ‘finished’.

4.2 Time Complexity Analysis

We define some related notations as follows:

n the number of data points; 
p the number of partitions;

(a)

(b)

c[0] 0 5 6 3000 11 223 2300 23 45 1000

Number of points: 5000 Number of partitions: 2

Range: 0 2499 Status: unfinished

c[5] 3000 2501 4200 2800 2600 3401 3678

Range: 2500 4999 Status: unfinished

c[0] 0 5 6 3000 11 223 2300 23 45 1000

 2501 4200 2800 2600 3401 3678

Number of points: 5000 Number of partitions: 2

Range: 0 4999 Status: finished

Fig. 3 An example showing
the proposed merging cluster
algorithm at different stages.
a There are two partitions and
two partial clusters. Integers
in squares are SEEDs. b After
C[0] merges C[5], C[0] status
is updated as “finished” from
“unfinished”

184 D. Han et al.

m the number of partial clusters;
K the maximum size of partial clusters;
tstraggling the average wait time for framework to allow all stragglers to finish. 
Ts the average time complexity of the sequential algorithm;
Tp the average time complexity of the parallel algorithm;
Save the average speed-up.

Basically, there are three parts in our algorithm.
In the first part, the driver reads data points from HDFS and transforms the data

points into appropriate form that can be processed in executors and constructs the
kd-tree. The time for this phase includes reading file, transforming RDDs, and
building kd-tree. We assume we use Δ for the first two items. For kd-tree con-
struction, we use O(nlogn) [10]. So summing them up, we use Δ + O(n � logn).

In the second part, the local partial clusters are generated in executors. Basically,
in the best case, searching a point from a balanced kd-tree takes O(logn) time. In the
worst case, the time could be n. Some researchers have reported that (near neigh-
bor) range search’s upper bound is O(n1 − 1/d + k) [10]. So we use V to represent
the search time, which is between logn and n1 − 1/d + k; If we use parallel pro-
cessing, we need to add the time for SEEDs placement part. Let us assume an
additional O(m � V) time is added. So in parallel processing, we would spend O((n/
p � V) + (m � V)) + tstraggling time in our case.

In the last part, after all the partial clusters have been sent back from executors to
the driver, the driver merges them and produces the global clusters. Based on our
Algorithm 4, the search operations takes O(n) time at most if we check each
element in the partial clusters. For merging phase, it takes Km times which is less
than n. So we use O(n + Km) time.

To sum up:  Ts =OðΔ+ n*logn+ n*V + n+KmÞ.

Tp =OðΔ+ n*logn+ n ̸pð Þ*V +m*V + tstraggling + n+ KmÞ

Save= Ts ̸Tp.

5 Experiments and Analysis

A series of experimental tests are conducted to evaluate the effectiveness and
efficiency of our DBSCAN algorithm with Spark and MapReduce’s implementa-
tions. We need to note that all parallel executions generate the same result as the
serial execution. The dimension of data is relevant to the computational cost of
querying the kd-tree. We do not perform tests based on varying number of attributes
because we focus on Spark implementation instead of kd-tree implementation in
our work. The tests are done on different sizes of data points with multiple
dimensions. Our experimental results have been reported in terms of the CPU times.

A Fast DBSCAN Algorithm with Spark Implementation 185

After comparing with the results from Patwary et al. [15], we find that our results
match them so we do not list the accuracy in our paper.

5.1 Experimental Setup

To perform the experiment for our DBSCAN’s parallel implementation with Spark,
we use Edison (operated by Lawrence Berkeley National Laboratory and the
Department of Energy Office of Science), a Cray XC30 distributed memory parallel
computer. It has 5576 compute nodes, 133,824 cores in total. Each node has two
12-core Intel “Ivy Bridge” processors at 2.4 GHz and 64 GB DDR3 1866 MHz
memory. Each core has its own L1 and L2 caches, with 64 KB (32 KB instruction
cache, 32 KB data) and 256 KB, respectively; A 30 MB L3 cache shared between
12 cores on the “Ivy Bridge” processor [5]. The algorithms have been implemented
in Java (1.7) using the Spark (1.5) and Hadoop (2.4).

Our testbed consists of 5 datasets, which are divided two groups: (c10 k,
c100 k), and (r10 k, r100 k, r1 m). Both groups of datasets (synthetic-cluster) have
been generated synthetically using the IBM synthetic data generator [1, 16].
Table 1 lists the properties of our test data.

5.2 Comparison of the Time Taken by MapReduce
and Spark

As we are not able to get source code from the other research teams [7, 9, 14], we
have implemented our own DBSCAN with MapReduce approach. From Fig. 4, it is
seen that 9–16 times faster performance is obtained from Spark than MapReduce.
Due to the length of time taken by MapReduce, we have not conducted further tests
on medium scale and large scale data sets.

Table 1 Properties of test data

Name Points d eps Minpts

c10 k 10,000 10 25 5
c100 k 102,400 10 25 5
r10 k 10,000 10 25 5
r100 k 102,400 10 25 5
r1 m 1,024,000 10 25 5

186 D. Han et al.

5.3 Comparison of the Time Spent in Driver
and in Executors

In this part, we discuss the time taken in our program. Figure 5a–d shows the time
taken between executors and driver according to our experiments. Based on the
Algorithm 2, we expect to see more time will be spent in driver with the number of
partial clusters increasing. Let us take a look at Fig. 5a first. When we use more
cores (1–8) to run our program, we see the number of partial clusters becomes
bigger (10–392), but the time spent in driver does not change very much. That is
because the data set is too small. Take a look at Fig. 5c, d, their patterns are exactly
the same. When using more cores (4–32), more partial clusters are produced (from
720 to 9279), and the time spent in driver gradually becomes more. This is con-
sistent with our analysis on the time complexity that we conduct in Sect. 4, where
when the number of partial clusters m increases, the time n + Km becomes large as
well. Figure 5b follows the complexity analysis as well.

5.4 Scalability of Parallel DBSCAN with Spark

Before we discuss the scalability of our algorithm, we need to mention that for large
data sets (>=1 million data points), we use kd-tree with pruning branches to shorten
search time.

The speedup obtained by our DBSCAN algorithm with Spark is given in Fig. 6.
The left column in Fig. 6 shows the speedup considering only the computation in
executors while the right column shows the results considering the computation in

Fig. 4 Time used by
MapReduce and spark.
Number of points: 10,000,
dimension: 10, eps, 25.0,
minPnts: 5

A Fast DBSCAN Algorithm with Spark Implementation 187

executors and driver. It is obvious that the local computation in executors scales
better than the whole computation since their computations are independent. For
10 k data sets, we obtain speedup up to 1.9, 3.6, and 6.2 respectively using 2, 4, and
8 cores. For 100 k data sets, speedup up to 3.3, 6.0, 8.8, and 10.2 respectively using

(a) r10k. (b) r1m.

 (c) c100k. (d) r100k.

Time unit: seconds

1 2 4 8

10 20 78

392

55 58
53 52

178

91
78

28

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

200

100

0

200

100

0

N
um

be
r

of
pa

rt
ia

l c
lu

st
er

s

0
100
200
300
400

Cores

0

4000

Cores

Time Unit: min

Time Unit: sec

64 128 256 512

5123

2764

1875 1480

129 320

800

850 1803

3750

7532

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

pa

rt
ia

l c
lu

st
er

s
N

um
be

r
of

8000

0

2000

1000

0

10000
8000
6000
4000
2000

4000

Time unit: seconds

Cores

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

N

um
be

r
of

pa
rt

ia
l c

lu
st

er
s

7088

3902

2689 2478

8000

0

2000

1000

0

10000
8000
6000
4000
2000

0

4 8 16 32

720 2226

4649

9279

104 121
249

1745

4000

Time unit: seconds

Cores
4 8 16 32

607 2225

6040

9260

64 91

1786

7012

3886

2887 2480

8000

0

2000

1000

0

T
im

e
sp

en
t i

n
ex

ec
ut

or
s

T
im

e
sp

en
t i

n
dr

iv
er

10000
8000
6000
4000
2000

0N
um

be
r

of
pa

rt
ia

l c
lu

st
er

s

776

303

Fig. 5 The time distribution between driver and executors

188 D. Han et al.

(a) Computation in executor. (10k points) (b) Computation in executor and driver.
(10k points)

(c) Computation in executor. (100k points) (d) Computation in executor and driver.
(100k points)

(e) Computation in executor. (1m points) (f) Computation in executor and driver.
(1m points)

0.00

O

O

128 256 512

64.00

128.00

256.00
r1m

O

O

O

64

512.00

Sp
ee

du
p

Cores

Fig. 6 Speedup of DBSCAN algorithm with spark. Left side: time spent in executor. Right side:
time spent in driver and executor

A Fast DBSCAN Algorithm with Spark Implementation 189

4, 8, 16, and 32 cores. For 1 m data set, speedup up to 58, 83, 110, and 137
respectively using 64, 128, 256, and 512 cores.

Take a look at right column, Fig. 6b, d, f show the speedup when total time is
considered. The curves seem more flat compared with the ones in left column. For
10 k data sets, because the total time is less, the merging time is not significant. For
100 k data sets, more partial clusters are collected in driver. When using 4, 8, and
16 cores, the local computation time still dominates the total time, so speedup does
not change very much. When using 32 cores, 9279 partial clusters are generated in
executors and collected in driver. So the speedup drops to 5.6 from 10.2.

For r1 m, we use pruning branches technique, and thus the neighbor size of each
point is decreased. Also we filter out those partial clusters whose size is too small,
and their removal does not impact the accuracy significantly. Therefore, the
speedup of total time does not change a lot compared with local computation.

6 Conclusions

DBSCAN algorithm has been very powerful and popular because it is able to
identify arbitrary shaped clusters as well as handle noisy data. However, paral-
lelization of DBSCAN based on MPI and OpenMP suffers from lack of
fault-tolerance. Moreover, in order to implement parallelization with MPI or
OpenMP, data scientists need to take care of implementation in detail, such as
handling communication, dealing with synchronization, and so forth, which can
pose a challenge for many users. In this paper, we proposed a new Paral-
lel DBSCAN algorithm with Spark, which avoids the communication between
executors and thus leads to a better scalable performance. The results of these
experiments demonstrate that our new DBSCAN algorithm with Spark is scalable
and outperforms the implementation based on MapReduce by a factor of more than
10 in terms of efficiency. In the future, we would try to apply partitioning strategy
with Spark implementation and try to use larger datasets in our study.

Acknowledgements This work is supported in part by the following grants: NSF awards
CCF-1409601, IIS-1343639, and CCF-1029166; DOE awards DESC0007456 and
DE-SC0014330; AFOSR award FA9550-12-1-0458; NIST award 70NANB14H012. This research
used Edison Cray XC30 computer of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

190 D. Han et al.

References

1. Agrawal, R., & Srikant, R. (1994). Quest synthetic data generator, IBM Almaden Research
Center.

2. Beckmann, N., et al. (1990). The r*-tree: An efficient and robust access method for points and
rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (Vol. 19, no. 2, pp. 323–331).

3. Bentley, J. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509–517.

4. Brecheisen, S., et al. (2006). Parallel density-based clustering of complex objects. Advances in
Knowledge Discovery and Data Mining, pp. 179–188.

5. DOE Office of Science (2015, September 17). Edison Configuration (Online). https://www.
nersc.gov/users/computational-systems/edison/configuration/.

6. Ester, M., et al. (1996). A density-based algorithm for discovering clusters in large spatial
databases with noise. In: Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (Vol. 1996, pp. 226–231). AAAI Press.

7. Fu, Y., et al. (2011). Research on parallel DBSCAN algorithm design based on mapreduce.
Advanced Materials Research 301, 1133–1138.

8. Han, J., et al. (2011). Data mining: Concepts and Techniques. Morgan Kaufmann.
9. He, Y., et al. (2014). MR-DBSCAN: A scalable mapreduce-based DBSCAN algorithm for

heavily skewed data. Frontiers of Computer Science, 8(1), 83–99.
10. Kakde, H. M. (2005, August 25). Range Searching using Kd Tree (Online). http://www.cs.

utah.edu/lifeifei/cs6931/kdtree.pdf.
11. Kang, S. J., et al. (2015). Performance comparison of OpenMP, MPI, and MapReduce in

practical problems. Advances in Multimedia 2015.
12. Karau, H., et al. (2015). Learning Spark: Lightning-fast Data Analysis. O’Reilly Media.
13. MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability (Vol. 1, pp. 281–297). USA.

14. Noticewala, M., & Vaghela, D. (2014). MR-IDBSCAN: Efficient parallel incremental
DBSCAN algorithm using mapreduce. International Journal of Computer Applications 93(4),
13–17.

15. Patwary, M. M. A., et al. (2012). A new scalable parallel DBSCAN algorithm using the
disjoint-set data structure. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC 2012, pp. 62:1–62:11.
IEEE Computer Society Press.

16. Pisharath, J., et al. (2010). NU-MineBench 3.0. Technical Report CUCIS-2005-08-01,
Northwestern University (Technical Report).

17. Sakr, S., & Gaber, M. M. (2014). Large Scale and Big Data: Processing and Management.
CRC Press.

18. Spark, A. (2015). Spark Programming Guide (Online). http://spark.apache.org/docs/latest/
programming-guide.html.

19. Sheikholeslami, G., et al. (2000). WaveCluster: A wavelet based clustering approach for
spatial data in very large databases. The VLDB Journal, 8(3), 289–304.

20. Tan, P., et al. (2005). Introduction to Data Mining. Pearson.
21. White, T. (2011). Hadoop: The Definitive Guide. O’Reilly Media.
22. Zaharia, M., et al. (2012) Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (pp. 2–2). USENIX Association.

A Fast DBSCAN Algorithm with Spark Implementation 191

https://www.nersc.gov/users/computational-systems/edison/configuration/
https://www.nersc.gov/users/computational-systems/edison/configuration/
http://www.cs.utah.edu/lifeifei/cs6931/kdtree.pdf
http://www.cs.utah.edu/lifeifei/cs6931/kdtree.pdf
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html

23. Zaharia, M. (2014). An Architecture for Fast and General Data Processing on Large
Clusters. Technical Report UCB/EECS-2014-12, University of California, Berkeley (Tech-
nical Report).

24. Zhang, T., et al. (1996). BIRCH: An efficient data clustering method for very large databases.
In ACM SIGMOD Record (Vol. 25, Issue. 2, pp. 103–114). ACM.

25. Zhou, et al. (2000). Approaches for scaling DBSCAN algorithm to large spatial databases.
Journal of Computer Science and Technology, 15(6), 509–526.

192 D. Han et al.

	9 A Fast DBSCAN Algorithm with Spark Implementation
	Abstract
	1 Introduction
	2 Background
	2.1 DBSCAN Algorithm
	2.2 Two Powerful Frameworks Based on Big Data: MapReduce and Spark

	3 Novel DBSCAN with Spark Implementation
	3.1 DBSCAN Algorithm with Spark
	3.2 Two Important Data Structures Affecting Performance

	4 Novel Techniques in Parallel DBSCAN with Spark
	4.1 New Clustering Algorithm Without Communication Between Executors
	4.2 Time Complexity Analysis

	5 Experiments and Analysis
	5.1 Experimental Setup
	5.2 Comparison of the Time Taken by MapReduce and Spark
	5.3 Comparison of the Time Spent in Driver and in Executors
	5.4 Scalability of Parallel DBSCAN with Spark

	6 Conclusions
	Acknowledgements
	References

