
Design and Implementation of a Scalable Parallel System for Multidimensional
Analysis and OLAP �

Sanjay Goil Alok Choudhary
Department of Electrical & Computer Engineering,

Northwestern University,
Technological Institute,

2145 Sheridan Road, Evanston, IL-60208.
Email: fsgoil,choudhar g@ece.nwu.edu

Abstract

Multidimensional Analysis and On-Line Analytical Pro-
cessing (OLAP) uses summary information that requires ag-
gregate operations along one or more dimensions of nu-
merical data values. Query processing for these applica-
tions require different views of data for decision support.
TheData Cubeoperator provides multi-dimensional aggre-
gates, used to calculate and store summary information on
a number of dimensions.

The multi-dimensionality of the underlying problem can
be represented both in relational and multi-dimensional
databases, the latter being a better fit when query perfor-
mance is the criteria for judgment. Relational databases
are scalable in size and efforts are on to make their per-
formance acceptable. On the other hand multi-dimensional
databases perform well for such queries, although they are
not very scalable. Parallel computing is necessary to ad-
dress the scalability and performance issues for these data
sets.

In this paper we present a parallel and scalable infras-
tructure for OLAP and multidimensional analysis. We use
chunkingto store data either as a dense block using multi-
dimensional arrays (md-arrays) or a sparse set using a Bit
encoded sparse structure (BESS). Chunks provide a multi-
dimensional index structure for efficient dimension oriented
data accesses much the same as md-arrays do. Opera-
tions within chunks and between chunks are a combination
of relational and multi-dimensional operations depending
on whether the chunk is sparse or dense. We present per-
formance results for data sets with 3, 5 and 10 dimensions
for our implementation on the IBM SP-2 which show good
speedup and scalability.

1 Introduction
On-Line Analytical processing (OLAP) and multi-

dimensional analysis is used for decision support systems

�This work was supported in part by NSF Young Investigator Award
CCR-9357840 and NSF CCR-9509143.

to find interesting information from large databases. Multi-
dimensional databases are suitable for OLAP and data min-
ing since these applications require dimension oriented op-
erations on data. Traditional multi-dimensional databases
store data in md-arrays on which analytical operations are
performed. These are good to store dense data, but since
most datasets are sparse in practice, other efficient sparse
storage schemes are required.

It is important to weigh the trade-offs involved in re-
ducing the storage space versus the increase in access time
for each sparse data structure, in comparison to md-arrays.
These trade-offs are dependent on many parameters some
of which are (1) number of dimensions, (2) sizes of dimen-
sions and (3) degree of sparsity of the data. Complex oper-
ations such as required for OLAP can be very expensive in
terms of data access time if efficient data structures are not
used.

Sparse data structures such as the R-tree and its vari-
ants have been used for OLAP [6]. Range queries with a
lot of unspecified dimensions are expensive because many
paths have to be traversed in the tree to calculate aggre-
gates. Chunking has been used in [7] with dense and sparse
chunks. Sparse chunks store an Offset-Value pair for the
data present. Dimensional operations on these require ma-
terializing the sparse chunk into a md-array and performing
array operations on it. For a high number of dimensions
this might not be possible since the materialized chunk may
not fit in memory. A split storage is described in [1], where
the dimensions are split into sparse and dense subsets. The
sparse dimensions use a sparse index structure to index into
the dense blocks of data stored as md-arrays. Further, none
of these address parallelism and scalability to large data sets
in a high number of dimensions.

We compare the storage and operational efficiency in
OLAP and multi-dimensional analysis of various sparse
data storage schemes in [3]. A novel data structure using bit
encodings for dimension indices called Bit-Encoded Sparse
Structure (BESS) is used to store sparse data in chunks,
which supports fast OLAP query operations on sparse data
using bit operations without the need for exploding the

1



sparse data into a md-array. This allows for high dimen-
sionality and large dimension sizes.

In this paper we present a parallel and scalable OLAP
framework for large data sets. Parallel data cube construc-
tion for large data sets and a large number of dimensions
using both dense and sparse storage structures is presented.
Sparsity is handled by using compressedchunksusing a bit
encoded sparse structure (BESS). Data is read from a rela-
tional data warehouse which provides a set of tuples in the
desired number of dimensions. Results of our disk-based
implementations are presented on the IBM SP2, for large
datasets with 3, 5 and 10 dimensions which show good per-
formance and speedups.

The rest of the paper is organized as follows. Section
2 describes OLAP using the data cube operator. Section 3
presents multi-dimensional storage using chunks and BESS
for sparse data. Section 4 presents steps in the computa-
tion of the data cube on a parallel machine and the overall
design. Section 5 describes the algorithms, techniques and
optimizations in the parallel building of the simultaneous
multi-dimensional aggregates and the factors affecting per-
formance. Section 6 presents implementation results and
performance analysis on the IBM SP2. Section 7 concludes
the paper.

2 Data Cubes and OLAP

Multidimensional systems store data in multi-
dimensional structures which is a natural way to express
the multi-dimensionality of the enterprise data and is more
suited for analysis. A “cell” in multi-dimensional space
represents a tuple, with the attributes of the tuple identify-
ing the location of the tuple in the multi-dimensional space
and themeasurevalues represent the content of the cell.

Data can be organized into a data cube by calculating all
possible combinations of GROUP-BYs [5]. This operation
is useful for answering OLAP queries which use aggrega-
tion on different combinations of attributes. For a data set
with n attributes this leads to2n GROUP-BY calculations.
A data cube treats each of thek; 0 � k < n aggregation
attributes as a dimension ink-space.

Data Cube operators generalize the histogram, cross-
tabulation, roll-up, drill-down and sub-total constructs. Fig-
ure 1 shows a lattice structure for the data cube with 5 di-
mensions. At a leveli; 0 � i � n of the lattice, there
areC(n; i) sub-cubes (aggregates) with exactlyi dimen-
sions, where the functionC gives the all combinations hav-
ing i distinct dimensions fromn dimensions. A total ofPn

i=0 C(n; i) = 2n sub-cubes are present in the data cube
including the base cube. Optimizations of calculating the
aggregates in the sub-cubes can be performed using the lat-
tice structure augmented by the various computations and
communication costs to generate a DAG of cube orderings
which minimize the cost. This is discussed in a later section.

Level

ABC ABD ABE ADE BCD BCE BDE CDE

AB AC AD AE BC BD BE CD CE DE

A B D E

ABCDE

ABCD ABCE ABDE ACDE

ALL

C

ACEACD

BCDE

3

4

2

1

0

5

Figure 1. Lattice for cube operator

3 Data Storage: Chunks and BESS
Multidimensional database technology facilitates flexi-

ble, high performance access and analysis of large volumes
of complex and interrelated data [2]. It is more natural
and intuitive for humans to model a multidimensional struc-
ture. A chunkis defined as a block of data from the md-
array which contains data in all dimensions. A collection of
chunks defines the entire array. Figure 2(a) shows chunk-
ing of a three dimensional array. A chunk is stored con-
tiguously in memory and data in each dimension is strided
with the dimension sizes of the chunk. Most sparse data
may not be uniformly sparse. Dense clusters of data can be
stored as md-arrays. Sparse data structures are needed to
store the sparse portions of data. These chunks can then ei-
ther be stored as dense arrays or stored using an appropriate
sparse data structure as illustrated in Figure 2(b). Chunks
also act as an index structure which helps in extracting data
for queries and OLAP operations.

Typically, sparse structures have been used for advan-
tages they provide in terms of storage, but operations on
data are performed on a md-array which is populated from
the sparse data. However, this is not always possible when
either the dimension sizes are large or the number of di-
mensions is large. Since we are dealing with multidimen-
sional structures for a large number of dimensions, we are
interested in performing operations on the sparse structure
itself. This is desirable to reduce I/O costs by having more
data in memory to work on. This is one of the primary
motivations for our Bit-encoded sparse storage (BESS). For
each cell present in a chunk a dimension index is encoded
in dlog jdije bits for each dimensiondi of size jdij. A 8-
byte encoding is used to store the BESS index along with
the value at that location. A larger encoding can be used if
more bits are required. A dimension index can then be ex-
tracted by a bit mask operation. Aggregation along a dimen-
siondi can be done by masking its dimension encoding in
BESS and using a sort operation to get the duplicate resul-
tant BESS values together. This is followed by a scan of the
BESS index, aggregating values for each duplicate BESS
index. For dimensional analysis, aggregation needs to be
done for appropriate chunks along a dimensional plane.



c32

d0

d1

d2

c1 c2 c3 c4

c5 c6 c7 c8

c24

c28

c32

c20

c29 c30 c31

Chunks
Multidimensional array

c1 c2 c3 .. .

Storage in memory

c13

c9 c10 c11

c15 c16

c12

c14

Sparse Data Structures

A1 A2 A3 A4

B1

B2

B3

B4

C1
C2

C3

A
B
C

Value

Offset
Value

Dense Array

or

or

(a) Chunking for a 3D array (b) Chunked storage for the cube

Figure 2. Storage of data in chunks

4 Overall Design

In this section we describe our design for a parallel and
scalable data cube on coarse grained parallel machines (e.g
IBM SP-2) or a network of workstations, characterized by
powerful general purpose processors (few to a few hundred)
and a fast interconnection between them. The programming
paradigm used is a high level programming language (e.g.
C/C++) embedded with calls to a portable communication
library (e.g. Message Passing Interface).

In what follows, we address issues of data partition-
ing, parallelism, schedule construction, data cube building,
chunk storage and memory usage on this machine archi-
tecture. Moreover, a partial cube can be constructed if the
number of dimensions is large or a specific level of the cube
is needed. For example, in 2-way attribute-oriented data
mining of associations, all cubes at level 2 are materialized
by using the base cube and the minimum materializations
of sub-cubes at the intermediate levels between3 andn� 1
[4].

Data is partitioned on processors to distribute work eq-
uitably. In addition, a partitioning scheme for multidi-
mensional has to bedimension-awareand for dimension-
oriented operations have some regularity in the distribution.
A dimension, or a combination of dimensions can be dis-
tributed. In order to achieve sufficient parallelism, it would
be required that the product of cardinalities of the dis-
tributed dimensions be much larger than the number of pro-
cessors. For example, for 5 dimensional data (ABCDE),
a 1D distribution will partitionA and a 2D distribution will
partitionAB. Partitioning determines the communication
requirements for data movement in the intermediate aggre-
gate calculations in the data cube. We support both 1D and
2D partition in our implementations. Since2n cubes are be-
ing constructed, we keep them distributed as well. The dis-
tribution of these cubes depends on the cardinalities of their
largest 1 or 2 dimensions. The same criteria is used here as
the one used for the base cube. However, redistribution of
dimensions and chunks may be required if a dimension is
partitioned anew or is re-partitioned.

Table 1 shows the various distributions for aggregate cal-

Table 1. Partitioning of sub-cubes following
aggregation calculations

Distribution Local Non Local
Dimension 1 Dimension 2

2D ! 2D ABC ! AB ABC ! BC ABC ! AC

2D ! 1D ABC ! BC ABC ! AC

1D ! 1D ABC ! AB;AC ABC ! BC

2D ! UNI ABC ! BC ABC ! AC

1D ! UNI ABC ! BC ABC ! AC

UNI ! UNI ABC ! AB;AC

culations supported in our framework. The underlined di-
mensions are partitioned. Calculations are eitherLocal or
Non Local. Local calculations maintain the data distribu-
tion on each processor and the aggregation calculation does
not involve any inter-processor communication. Non local
calculations distribute a undistributed dimension such as in
ABC ! AC , where dimensionB is aggregated andC,
which was previously undistributed, is distributed. Another
calculation isABC ! BC , whereA is aggregated and
B, the second distributed dimension becomes the first dis-
tributed dimension, andC gets distributed as the second di-
mension. These can be categorized as either dimension 1
or dimension 2 being involved in the (re)distribution. The
sub-cubes can be stored aschunkedor asmd-arrayswhich
are distributed or on a single processor (UNI) with these
distributions. The md-arrays are however restricted to a 1D
distribution since their sizes are small and 2D distribution
will not provide sufficient parallelism. The data cube build
scheduler does not evaluate the various possible distribu-
tions currently, instead calculating the costs based on the
estimated sizes of the source and the target sub-cubes and
uses a partitioning based on the dimension cardinalities.

Several optimizations can be done over the naive method
of calculating each aggregate separately from the initial
data [5]. Smallest Parent, computes a group-by by se-
lecting the smallest of the previously computed group-bys
from which it is possible to compute the group-by. The
next optimization is to compute the group-bys in an order
in which the next group-by calculation can benefit from
the cached results of the previous calculation. An im-



portant multi-processor optimization is tominimize inter-
processor communication. In a cube lattice, each node
represents an aggregate and an arrow represents a possi-
ble aggregate calculation which is also used to represent the
cost of the calculation.

4.1 Data Structure Management

For large data sets the sizes of the cubes and the num-
ber of cubes will not fit in main memory of the processors.
A scalable parallel implementation will require disk space
to store results of computations, often many of them inter-
mediate results. This is similar to apagingbased system
which can either rely on virtual memory system of the com-
puter or perform the paging of data structures to the needs
of the application. We follow the latter approach.

A global cube topology is maintained for each sub-
cube by distributing the dimension equally on each proces-
sor. A dimension of sizedi; 0 � i < n gets distributed
on p processors, a processori getsddi

p
e portion of di, if

i < di mod p, else it getsbdi
p
c. Each processor thus can

calculate what portion belongs to which processor. Further,
a constant chunk size is used in each dimension across sub-
cubes. This allows for a simple calculation to find the target
chunk which a chunk maps to after aggregating a dimen-
sion. However, the first distribution of the dimensions in the
base cube is done using a sample based partitioning scheme
which may result in a inexact partition and they are kept the
same till any of the distributed dimension gets redistributed.

A cube directorystructure is always maintained in mem-
ory for each cube at the highest level. For each cube this
contains a pointer to adata cubestructure which stores in-
formation about the cube and its chunks. It also contains a
file offset to indicate the file address if the data cube struc-
ture is paged out. A status parameter indicates whether
the data cube structure is in memory (INMEM) or on disk
(ONDISK).

A data cube structure maintains the cube topology pa-
rameters, the number of unique values in each dimension,
whether the chunk structure for the cube is in memory (sta-
tus), a pointer to the chunk structure if it is in memory and a
file offset if it is on disk. The total number of chunks for the
chunk structure of the cube is intotalchunks. Additionally,
for each chunk of the chunk structure, a chunk statuscstatus
is maintained to keep track of chunk structure paging. The
chunk address is a pointer to the chunk structure in mem-
ory which stores information for each chunk. This is when
cstatus is set to INMEM. Otherwise, cstatus can either be
UNALLOCATED or ONDISK. In the latter case the chunk
address will be a file offset value. For a md-array, the size
of the array and the dimension factor in each dimension are
stored to lookup for the calculations involving aggregations
instead of calculating them on the fly every time.

A chunk structure for a sub-cube can either be in its en-
tirety or parts of it can be allocated as they are referred

to. The cstatus field of the data cube will keep track of
allocations. Chunk structure keep track of the number of
BESS + value pairsntuplesin the chunk, which are stored in
minichunks. Whether a chunk is dense or sparse is tracked
by type. A dense chunk has a memory pointer to a dense
array whereas a sparse chunk has a memory pointer to a
minichunk. Chunk index for each dimension in the cube
topology is encoded in a 8 byte valuecidx. Further, dimen-
sions of the chunk are encoded in another 8 byte valuecdim.
This allows for quick access to these values instead of cal-
culating them on the fly.

Minichunks can either be unallocated (UNALLO-
CATED), in memory (INMEM), on disk (ONDISK) or
both in memory and on disk (INMEMONDISK). Initially,
a minichunk for a chunk is allocated memory when a
value maps to the chunk (UNALLOCATED! INMEM).
When the minichunk is filled it is written to disk and its
memory reused for the next minichunk (INMEM! IN-
MEM ONDISK). Finally, when a minichunk is purged to
disk it is deallocated (INMEMONDISK ! ONDISK). A
chunk can thus have multiple minichunks. Hence, choosing
the minichunk size is an important parameter to control the
number of disk I/O operations for aggregation calculations.

5 Parallel Aggregation Calculations
Since chunks can either be sparse or dense, we need

methods to aggregate sparse chunks with sparse chunks,
sparse with dense chunks and dense with dense chunks. The
case of dense chunks to sparse chunk does not arise since a
dense chunk does not get converted to a sparse chunk ever.
Figure 3 illustrates a local and non local aggregation cal-
culation. Computation and communication costs for aggre-
gation are used by the scheduler by analyzing the chunk
aggregation operations and the resulting partitioning. The
cost analysis of the various aggregations between 1D, 2D
and uniprocessor aggregations is not included in this paper.

P3P1

P0 P2
0 5 15 20

20
b

35
b
40

b

a a a
10

a a a

20

P0 P2P1 P3

15

b25

aa a a a a a a
0 5 5 10 10 15 15 20

ABC -> ABLocal :

2D -> 2D

b

b

b

0

15

20

b
5

b

b

b

0

15

20

b
5

Non Local : ABC -> AB

2D -> 1D

b

0 5

P0

P1

b

b

b

0

10

15

P2

b15

30
b

25b

P3

0 5 15 10 15 20

b

b

b

0

10

15

15b

25b
30

a a a

c5
c0

c10

a a a

c0
c5

c10

a a a

c0
c5

c10

c0
c5

c10

a a a

10 10 15

b
5

b
20

b5

b
20

Figure 3. Local and Non Local aggregation
calculations

The extents of a chunk of the aggregating cube can be



contained in the extents of a chunk of the aggregated cube.
In this case the BESS+value pairs are directly mapped to the
target chunk, locally or non-locally. However, the BESS in-
dex values need to be modified to encode the offsets of the
new chunk. If the chunk is overlapping over a target chunk
boundary, then each BESS value has to be extracted to de-
termine its target chunk. This is computationally more ex-
pensive than the direct case. It is to be noted that a 2 dimen-
sional distribution may result in more overlapped chunks
than a 1 dimensional distribution, because the former has
more processor boundary area than the latter.

Sparse chunks store BESS+value pairs in minichunks.
Sparse to sparse aggregations involve accessing these
minichunks. The BESS values are kept sorted in the
minichunks to facilitate the aggregation calculations by us-
ing sort and scan operations used in relational processing.
To aggregate dimensionB in a cubeABC, The bit encod-
ing for B is masked from the BESS values for both chunks.
A integer sort is done on the remaining encoding of A and
C on both the chunks. This gets the values which map to the
same A and C contiguous to each other. This is followed by
a merge of sorted values aggregating where the values ofA

andC are the same.
Buffer management for this aggregation depends on the

order in which chunks to be aggregated are accessed. There
are two alternative ways to access chunks,dimension ori-
entedin which the chunks are accessed along the dimen-
sion to be aggregated. The other method,chunk number-
ing, accesses chunks in the order in which they are laid out
in memory. In the dimension oriented access, a buffer can
be filled with the source chunks that map to a single tar-
get chunk and the sort and scan operations are done on the
buffer in memory. For the chunk order access, the consec-
utive chunks accessed are mapped to different chunks for
all dimensions except the innermost dimension. This re-
sults in sort of each individual chunk and merge with the
sorted values calculated earlier mapping to the same chunk.
This involves a disk read to get the previous result from the
minichunk of the target chunk, which was written to disk if
it was full.

The sparse-dense chunk aggregation and chunked - md-
array aggregation are done by converting a BESS index into
an array offset. Due to lack of space we do not elaborate
those cases here.

6 Performance Results
In this section we present performance results for our

system on a 16-node IBM SP-2 distributed memory par-
allel computer available to us at Northwestern University.
AssumeN tuples andp processors. Initially, each proces-
sor readsN

p
tuples from a shared disk, assuming that the

number of unique values is known for each attribute. These
are partitioned using a sample based partitioning algorithm
(Partitioning phase) so that the attribute (dimension) values

are ordered on processors and distributed almost equally.
To load the base cube, tuples are sorted (Sorting phase) on
the combined key of all the attributes so that the access to
chunks is conformant to its layout in memory/disk. (Sorting
in the orderA0 ! A1 ! A2 : : : An�1, is conformant to the
layout of chunks whereA0 is the outer most dimension and
An�1 is the inner most, for loading a sorted run of values.)
The base cube is loaded on each processor from these tuples
locally on each processor. The sub-cubes of the data cube
are calculated from here (Building phase).

Table 2. Description of datasets and at-
tributes, (N) Numeric (S) String

ndim jdij
Q

i
di Tuples

I 3 1024(S),256(N), 512(N) 2
27 1.34 M

II 5 1024(S),16(N),32(N),16(N),256(S) 2
31 2.14 M

III 10 1024(S),16(S),4(S),16,4,4,16,4,4,32(N)237 1.37 M

We choose 3 data sets, one each of dimensionality 3, 5
and 10 to illustrate performance. Random data with a uni-
form distribution used for the performance figures. Table
2 illustrates the data sets for our experiments. The chunk
sizes in each dimension for the 3 dimensional data set is
chosen as 32, 8 and 16. The number of chunks is215 for the
base cube, but this gets distributed across processors. The 5
dimensional data set has chunk sizes in each dimension of
32, 4, 8, 8, 16 and for the 10 dimensional data set the chunk
dimension sizes are 64, 4, 2, 4, 2, 2, 4, 2, 2. The number
of sub cubes in the datacube for Dataset I is23 = 8, for
Dataset II is25 = 32 and for Dataset III is210 = 1024. We
report the results of complete data cube construction here.

Figure 4 shows the time taken by the various phases
of the data cube construction algorithm. For 2 dimen-
sional partitioning, 5 and 10 dimensional sets provide good
speedups. However, in the 3 dimensional set we observe
a good speedup from 4 to 8 processor but 16 processor
case results in more communication intensive computations
which involve a 2 dimensional distribution to aggregate to
uniprocessor sub-cubes. The performance of 1 dimensional
distribution is similar to the 2 dimensional distribution for
the 10 dimension case.

Figure 5 shows the time taken by the two different meth-
ods of accessing chunks for aggregation calculations. Di-
mension oriented method is better than the access that fol-
lows chunk numbering. In all cases we observe that the di-
mension ordering method works better than the access pat-
tern that follows chunk numbering.

Figure 6 shows the time taken when initial partitioning
of the base cube is either 2 dimensional or 1 dimensional.
We observe that 1D partitioning works better for lower di-
mension data sets with 3 and 5 dimensions. This is due to
the fact that the lower levels of the lattice (with less number
of dimensions) are either distributed on a single dimension



4 8 16
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0
T

im
e 

(in
 s

ec
on

ds
)

3D, N=1.34 million

Partition
Sort
Load
Build (2D)
Build (1D)

4 8 16
Number of Processors

0.0

10.0

20.0

30.0

40.0

50.0

60.0

T
im

e 
(in

 s
ec

on
ds

)

5D, N=2.14 million

Partition
Sort
Load
Build (2D)
Build (1D)

8 16
Number of Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

T
im

e 
(in

 s
ec

on
ds

)

10D, N=1.37 million

Partition
Sort
Load
Build (2D)

1446.4

900.3

Figure 4. Time taken by various phases of the data cube construction algorithm for datasets with
dimensions 3 (8 sub cubes), 5 (32 sub cubes) and 10 (1024 sub cubes)

4 8 16
Number of Processors

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

3D, N=1.34 million

Chunk Numbering
Dimension Oriented

4 8 16
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

5D, N=0.214 million

Chunk Numbering
Dimension Oriented

Figure 5. Comparison of the two chunk ac-
cess methods, chunk numbering and dimen-
sion oriented for a dataset with 3 and 5 di-
mensions

or are on a single processor, hence communication costs
are low. For a 2 dimensional partitioning, redistribution is
required quite early in the lattice structure which involves
larger cubes. Also, the number of overlapping chunks are
higher in a 2 dimensional partitioning when compared to a
1 dimensional distribution, in which the individual BESS
index values have to be checked for their target mapping.

However, for the 10 dimension case, the 2-dimensional
distribution is slightly better. A large number of cubes are
calculated in this case and more cubes can benefit from a 2
dimensional partitioning.

4 8 16
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

3D, N=1.34 million

2D partition
1D partition

4 8 16
Number of Processors

0.0

10.0

20.0

30.0

40.0

50.0

60.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

5D, N=2.14 million

2D partition
1D partition

4 8 16
Number of Processors

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

T
im

e
 (

in
 s

e
c
o
n
d
s
)

10D, N=0.137million

2D partition 
1D partition

Figure 6. Comparison of partitioning
schemes for 3, 5 and 10 dimensional data
sets when the initial distribution of the base
cube is either 2D or 1D

7 Conclusions
In this paper we have presented the design and imple-

mentation of a scalable parallel system for multidimen-
sional analysis and OLAP. Multidimensional data is stored
in chunkswhich are either sparse or dense. Sparse chunks
are represented by a BESS+value pair and aggregation op-
erations between them use sort and scan operations using
the dimension indices encoded in BESS. For maximum ef-
ficiency of operations some cubes are stored as md-arrays
if the cardinalities of the dimensions involved are not large
and the cube size is below a specific threshold. Operations
for chunked and md-array cubes are supported. Results on
data sets with 3, 5 and 10 dimensions show good perfor-
mance.

References

[1] G. Colliat. OLAP, Relational, and Multi-dimensional
Database Systems. InSIGMOD Record, volume 25(3),
September 1996.

[2] K. enan Software. An introduction to
multi-dimensional database technology. In
http://www.kenan.com/acumate/mddb.htm, 1997.

[3] S. Goil and A. Choudhary. Sparse data storage schemes for
multi-dimensional data for OLAP and data mining. Technical
Report CPDC-9801-005, Northwestern University, December
1997.

[4] S. Goil and A. Choudhary. High performance data mining
using data cubes on parallel computers. InProc. International
Parallel Processing Symposium, March 1998.

[5] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. InProc. 12th Inter-
national Conference on Data Engineering, 1996.

[6] S. Sarawagi. Indexing OLAP Data. InData Engineering
Bulletin, volume 20(1), March 1997.

[7] Y. Zhao, P. Deshpande, and J. Naughton. An array-based al-
gorithm for simultaneous multi-dimensional aggregates. In
Proc. ACM-SIGMOD International Conference on Manage-
ment of Data, pages 159–170, 1997.


